前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Boss-Worker线程模型]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...果这个对象A被另一个线程B所引用,当我们不再使用A,可A却处于B的hold状态,那么我们每次创建的A都得不到回收,这个时候就会发生内存泄漏了。 频繁GC卡顿 上面说了,App的堆内存有最大值,是有限的,那么如果我们频繁的创建,当运行内存不断上升,为了维持App的运行,GC回收也会频繁操作,软件运行资源有些,必然导致卡顿问题。 JAVA的GC机制,非常的复杂和精辟,不可一言概论之,在看过许多blog之后,给出一点自己的总结。 简述JVM GC 我们都知道Java语言非常的方便,不像C语言,申请和释放内存都是自己操作,java有虚拟机帮忙。Android 的每个应用程序都会使用一个专有的Dalvik虚拟机实例来运行,即使内存泄漏也只是kill当前App. Java虚拟机有一套完整的GC方案,只是简单理解的话就是,它维持着一个对象关系树,当开始GC操作时,它会从GC Roots开始扫描整个Object Tree,当发现某个无法从Tree中引用到的对象时,便将其回收。 GC Roots分类举例: Class类 Alive Thread 线程stack上的对象,如方法或者局部变量 JNI活动对象 System Class Loader Java中的引用关系 java中有四种对象引用关系,分别是:强引用StrongRefernce、软引用SoftReference、弱引用WeakReference、虚引用PhantomReference,这四种引用关系分别对应的效果: StrongRefernce 通过new创建的对象,如Object obj = new Object();,强引用不会被垃圾回收器回收和销毁,即是OOM,所以这也容易造成我们接下来会分析的《非静态内部类持有对象导致的内存泄漏问题》 SoftReference 软引用可以被垃圾回收器回收,但它的生命周期要强于弱引用,但GC回收发生时,只有在内存空间不足时才会回收它 WeakReference 弱引用的生命周期短,可以被GC回收,但GC回收发生时,扫描到弱引用便会被垃圾回收和销毁掉 PhantomReference 虚引用任何时候都可以被GC回收,它不会影响对象的垃圾回收机制,它只有一个构造函数,因此只能配合ReferenceQueue一起使用,用于记录对象回收的过程 PhantomReference(T referent, ReferenceQueue<? super T> q) 关于ReferenceQueue 他的作用主要用于记录引用是否被回收,除了强引用其他的引用方式得构造函数中都包含了ReferenceQueue参数。当调用引用的get()方法返回null时,我们的对象不一定已经回收掉了,可能正在进入回收流程中,而当对象被确认回收后,它的引用会被添加到ReferenceQueue中。 Felix obj = new Felix();ReferenceQueue<Felix> rQueue = new ReferenceQueue<Felix>();WeakReference<Felix> weakR = new WeakReference<Felix>(obj,rQueue); 总结 看完Android引用和回收机制,我们对于代码中内存问题的原因也有一定认识,当时现实中内存泄漏或者溢出的问题,总是不经意间,在我之后一些列的文章中,会对不同场景的代码问题进行分析和解决,一起来关注吧! 本篇文章为转载内容。原文链接:https://blog.csdn.net/sslinp/article/details/84787843。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 11:39:05
262
转载
Consul
...如缓存机制、网络通信模型等,这些改变虽然提升了整体性能,但也可能影响部分依赖特定行为的应用程序。 3. 面对兼容性问题的应对策略 3.1 版本迁移规划 在决定升级Consul版本前,应详细阅读官方发布的Release Notes和Upgrade Guide,了解新版本特性、变动以及可能存在的兼容性风险。制定详尽的版本迁移计划,包括评估现有系统的依赖关系、进行必要的测试验证等。 3.2 逐步升级与灰度发布 采用分阶段逐步升级的方式,首先在非生产环境进行测试,确保关键业务不受影响。然后,咱们可以尝试用个灰度发布的方法,就像画画时先淡淡地铺个底色那样,挑一部分流量或者节点先进行小范围的升级试试水。在这个过程中,咱们得瞪大眼睛紧盯着各项指标和日志记录,一旦发现有啥不对劲的地方,就立马“一键返回”,把升级先撤回来,确保万无一失。 3.3 客户端同步更新 确保Consul客户端库与服务端版本匹配,对于因API变更导致的问题,应及时升级客户端代码以适应新版本API。例如: go // 更新Consul Go客户端至对应版本 import "github.com/hashicorp/consul/api/v2" client, _ := api.NewClient(api.Config{Address: "localhost:8500"}) 3.4 兼容性封装与适配层构建 对于重大变更且短期内难以全部更新的应用,可考虑编写一个兼容性封装层或者适配器,让旧版客户端能够继续与新版本Consul服务交互。 4. 结语 面对Consul版本更新带来的兼容性问题,我们既要有预见性的规划和严谨的执行步骤,也要具备灵活应对和快速修复的能力。每一次版本更新,其实就像是给系统做一次全面的健身锻炼,让它的稳定性和健壮性更上一层楼。而在这一整个“健身计划”中,解决好兼容性问题,就像确保各个肌肉群协调运作一样关键!在探索和实践中,我们不断积累经验,使我们的分布式架构更加稳健可靠。
2023-02-25 21:57:19
544
人生如戏
NodeJS
...件驱动和非阻塞I/O模型特别适合处理高并发和实时场景,结合GraphQL的强大功能,能够轻松应对复杂API需求。 让我们通过一个实际的例子来直观感受一下: javascript // Node.js中使用express-graphql创建简单的GraphQL服务器 const express = require('express'); const { graphqlHTTP } = require('express-graphql'); const { buildSchema } = require('graphql'); const schema = buildSchema( type Query { user(id: ID!): User } type User { id: ID! name: String! email: String! } ); const users = [ { id: '1', name: 'Alice', email: 'alice@example.com' }, ]; const rootValue = { user: (args) => users.find(user => user.id === args.id), }; const app = express(); app.use('/graphql', graphqlHTTP({ schema, rootValue, graphiql: true, // 开启GraphiQL在线查询工具 })); app.listen(4000, () => console.log('Now browse to localhost:4000/graphql')); 这段代码展示了如何在Node.js中利用express-graphql库搭建一个简单的GraphQL服务端,用户可以根据ID查询到具体用户信息。 3. 在Node.js中实现GraphQL Resolvers - Resolver解析器:GraphQL的核心在于resolver函数,它负责根据查询语句中的字段,从数据源获取对应的数据。 javascript // 更复杂的Resolver示例 const resolvers = { Query: { users: () => users, user: (parent, args) => users.find(user => user.id === args.id), }, User: { posts: (parent) => getPostsByUserId(parent.id), // 假设有一个获取用户帖子的方法 }, }; function getPostsByUserId(userId) { // 这里模拟从数据库或其他数据源获取帖子数据的过程 // 实际开发中,这里可能会调用Mongoose或Sequelize等ORM操作数据库 } 在这个例子中,我们定义了Query类型下的users和user resolver,以及User类型下的posts resolver。这样一来,客户端就能够用GraphQL查询这么个工具,轻轻松松获取到用户的全部信息,还包括他们相关的帖子数据,一站式全搞定! 4. 探讨与实践 优化与扩展 当我们基于Node.js和GraphQL构建API时,可以充分利用其灵活性,进行模块化拆分、缓存策略优化、权限控制等一系列高级操作。比如,我们能够用中间件这玩意儿来给请求做个“安检”,验证它的真实性和处理可能出现的小差错。另外,还可以借助 DataLoader 这个神器,嗖嗖地提升批量数据加载的速度,让你的数据加载效率噌噌往上涨。 - 模块化与组织结构:随着项目规模扩大,可将schema和resolver按业务逻辑拆分为多个文件,便于管理和维护。 - 缓存策略:针对频繁查询但更新不频繁的数据,可以在resolver中加入缓存机制,显著提升响应速度。 - 权限控制:结合JWT或其他认证方案,在resolver执行前验证请求权限,确保数据安全。 总结来说,Node.js与GraphQL的结合为API设计带来了新的可能性。利用Node.js的强劲性能和GraphQL的超级灵活性,我们能够打造一款既快又便捷的API,甭管多复杂的业务需求,都能妥妥地满足。在这个过程中,咱们得不断地动脑筋、动手实践,还要不断调整优化,才能把这两者的能量完全释放出来,榨干它们的每一份潜力。
2024-02-08 11:34:34
65
落叶归根
Apache Pig
...educe是一种编程模型和相关实现,用于处理及生成大量数据集的并行计算框架。在Apache Hadoop中,MapReduce工作原理是将复杂的分布式计算任务分解为两个主要阶段。 Hadoop , Hadoop是一个开源的分布式计算框架,由Apache软件基金会开发,旨在高效、可靠地处理海量数据集。它包括Hadoop Distributed File System (HDFS) 和MapReduce两个核心组件。HDFS提供高容错性的分布式文件系统存储海量数据,而MapReduce则负责并行处理这些数据。结合Apache Pig等工具,Hadoop能够支持各种大数据应用,如日志分析、机器学习、实时流处理以及大规模文本数据处理等场景。
2023-05-19 13:10:28
723
人生如戏
Kylin
... 3. 创建项目及模型并关联远程表 接下来,在Kylin的Web界面创建一个新的项目,并在该项目下定义数据模型。在选择数据表时,Kylin会根据之前配置的HDFS和JDBC连接信息自动发现远程集群中的表。 - 创建项目:在Kylin管理界面点击"Create Project",填写项目名称和描述等信息。 - 定义模型:在新建的项目下,点击"Model" -> "Create Model",添加从远程集群引用的表,并设计所需的维度和度量。 4. 构建Cube并对跨集群数据进行查询 完成模型定义后,即可构建Cube。Kylin会在后台执行MapReduce任务,读取远程集群的数据并进行预计算。构建完成后,您便可以针对这个Cube进行快速、高效的查询操作,即使这些数据分布在不同的集群上。 bash 在Kylin命令行工具中构建Cube ./bin/kylin.sh org.apache.kylin.tool.BuildCubeCommand --cube-name MyCube --project-name MyProject --build-type BUILD 至此,通过精心配置和一系列操作,您的Kylin环境已经成功支持了跨集群的数据源查询。在这一路走来,我们不断挠头琢磨、摸石头过河、动手实践,不仅硬生生攻克了技术上的难关,更是让Kylin在各种复杂环境下的强大适应力和灵活应变能力展露无遗。 总结起来,配置Kylin支持跨集群查询的关键在于正确设置数据源连接,并在模型设计阶段合理引用这些远程数据源。每一次操作都像是人类智慧的一次小小爆发,每查询成功的背后,都是我们对Kylin功能那股子钻研劲儿和精心打磨的成果。在这整个过程中,我们实实在在地感受到了Kylin这款大数据处理神器的厉害之处,它带来的便捷性和无限可能性,真是让我们大开眼界,赞不绝口啊!
2023-01-26 10:59:48
83
月下独酌
转载文章
...成部分,负责管理视图模型(ViewModel)的行为逻辑,处理用户交互及与服务器的通讯。本文中的commCtrl就是一个控制器,它定义了一系列的方法和属性,如reSearch函数处理分页请求,以及paginationConf对象存储分页配置信息,以此来控制和协调商品评价列表的展示和交互行为。
2023-10-12 14:36:16
72
转载
Mahout
...t在推荐系统中的数据模型构建失败探索 一、引言 你是否曾经经历过这样的情况?你的推荐系统在生产环境中突然崩溃,只因为用户对商品进行了一些看似微不足道的操作?如果你的答案是肯定的,那么你可能已经意识到了推荐系统的脆弱性,以及它们对于数据质量的依赖。 在本篇文章中,我们将深入研究推荐系统中最常见的问题之一——数据模型构建失败,并尝试利用Mahout这个强大的开源库来解决这个问题。 二、数据模型构建失败的原因 数据模型构建失败的原因有很多,例如: - 数据质量问题:这可能是由于原始数据集中的错误、缺失值或者噪声引起的。 - 模型选择问题:不同的推荐算法适用于不同类型的数据集,如果选择了不适合的模型,可能会导致模型训练失败。 - 参数调整问题:推荐系统的性能很大程度上取决于模型的参数设置,不恰当的参数设置可能导致模型过拟合或欠拟合。 三、Mahout在数据模型构建失败时的应对策略 3.1 数据清洗与预处理 在我们开始构建推荐模型之前,我们需要对原始数据进行一些基本的清理和预处理操作。这些操作包括去除重复记录、填充缺失值、处理异常值等。下面是一个简单的例子,展示了如何使用Mahout进行数据清洗: java // 创建一个MapReduce任务来读取数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(CSVInputFormat.class); job.setReducerClass(CSVOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data cleaning and preprocessing complete!"); } else { System.out.println("Data cleaning and preprocessing failed."); } 在这个例子中,我们使用了CSVInputFormat和CSVOutputFormat这两个类来进行数据清洗和预处理。说得更直白点,CSVInputFormat就像是个数据搬运工,它的任务是从CSV文件里把我们需要的数据给拽出来;而CSVOutputFormat呢,则是个贴心的数据管家,它负责把我们已经清洗干净的数据,整整齐齐地打包好,再存进一个新的CSV文件里。 3.2 模型选择和参数调优 选择合适的推荐算法和参数设置是构建成功推荐模型的关键。Mahout提供了许多常用的推荐算法,如协同过滤、基于内容的推荐等。同时呢,它还带来了一整套给力的工具,专门帮我们微调模型的参数,让模型的表现力更上一层楼。 以下是一个简单的例子,展示了如何使用Mahout的ALS(Alternating Least Squares)算法来构建推荐模型: java // 创建一个新的推荐器 RecommenderSystem recommenderSystem = new RecommenderSystem(); // 使用 ALS 算法来构建推荐模型 Recommender alsRecommender = new MatrixFactorizationRecommender(new ItemBasedUserCF(alternatingLeastSquares(10), userItemRatings)); recommenderSystem.addRecommender(alsRecommender); // 进行参数调优 alsRecommender.setParameter(alsRecommender.getParameter(ALS.RANK), 50); // 尝试增加隐藏层维度 在这个例子中,我们首先创建了一个新的推荐器,并使用了ALS算法来构建推荐模型。然后,我们对模型的参数进行了调优,尝试增加了隐藏层的维度。 3.3 数据监控与故障恢复 最后,我们需要建立一套完善的数据监控体系,以便及时发现并修复数据模型构建失败的问题。Mahout这玩意儿,它帮我们找到了一个超简单的方法,就是利用Hadoop的Streaming API,能够实时地、像看直播一样掌握推荐系统的运行情况。 以下是一个简单的例子,展示了如何使用Mahout和Hadoop的Streaming API来实现实时监控: java // 创建一个MapReduce任务来监控数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(StreamingInputFormat.class); job.setReducerClass(StreamingOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data monitoring and fault recovery complete!"); } else { System.out.println("Data monitoring and fault recovery failed."); } 在这个例子中,我们使用了StreamingInputFormat和StreamingOutputFormat这两个类来进行数据监控。换句话说,StreamingInputFormat这小家伙就像是个专门从CSV文件里搬运数据的勤快小工,而它的搭档StreamingOutputFormat呢,则负责把我们监控后的结果打包整理好,再稳稳当当地存放到新的CSV文件中去。 四、结论 本文介绍了推荐系统中最常见的问题之一——数据模型构建失败的原因,并提供了解决这个问题的一些策略,包括数据清洗与预处理、模型选择和参数调优以及数据监控与故障恢复。虽然这些问题确实让人头疼,不过别担心,只要我们巧妙地运用那个超给力的开源神器Mahout,就能让推荐系统的运行既稳如磐石又准得惊人,妥妥提升它的稳定性和准确性。
2023-01-30 16:29:18
121
风轻云淡-t
Maven
...具,采用基于项目对象模型(Project Object Model, POM)的概念进行构建自动化。POM是Maven的核心,用于描述项目的配置信息,包括项目依赖关系、构建过程、目标和插件配置等。Maven具有统一的构建生命周期和强大的依赖管理功能,使得开发团队能够高效、一致地构建和管理项目。 Maven Environment , Maven环境是指为了能够在本地计算机上正确运行和使用Apache Maven工具所必需的软件和配置集合。这通常包括已安装的Maven软件本身、正确的系统环境变量设置(例如JAVA_HOME指向Java SDK的安装路径,M2_HOME指向Maven安装路径)、以及可能需要的本地仓库配置等。在Maven环境中,开发者可以通过命令行或集成开发环境(IDE)调用Maven命令进行项目的构建、测试、打包等一系列操作。
2024-03-20 10:55:20
109
断桥残雪
Mahout
...版本更新动态,以确保模型训练效率和结果准确性不受影响。 因此,对于开发者而言,持续跟踪并适应所依赖库的API更新是一项重要任务。这不仅意味着需要定期检查官方文档和社区讨论,理解为何要进行API更改,还应当学会利用新特性优化既有项目,从而不断提升应用性能和用户体验。同时,这也强调了软件工程中“设计原则”的重要性,包括模块化、接口稳定性和向后兼容性,这些都是减少因API变动引发问题的关键因素。
2023-09-14 23:01:15
104
风中飘零
Sqoop
...提供了一个分布式编程模型,用于处理和生成大数据集。在文中,Sqoop被用来在关系型数据库与Hadoop之间进行数据迁移。 ORA-00955: 名称已经存在 , 这是一个Oracle数据库抛出的错误代码,表示在创建对象(如表、索引、序列等)时,所使用的名称与数据库中已存在的某个对象名称相同,违反了数据库的唯一性约束。在文章的上下文中,当用户尝试通过Sqoop导出数据至Oracle数据库,并在创建目标表时遇到此错误时,需要更改新表的名称以避免重名冲突。
2023-05-30 23:50:33
120
幽谷听泉-t
RabbitMQ
...就是个超级实用的编程模型,特别是在那些复杂的分布式系统里头,它能神奇地让不同应用程序之间的交流变得松耦合,这样一来,整个系统的稳定性和可靠性嗖嗖往上涨,就像给系统吃了颗定心丸一样。
2023-09-07 10:09:49
94
诗和远方-t
Ruby
...的广泛应用,如何在多线程环境中妥善处理异常并确保资源安全释放成为了新的挑战。Ruby的Concurrency框架(如GIL和Fibers)及其相关的最佳实践为解决此类问题提供了可能的方案。 实践中,遵循 SOLID 原则和面向对象设计,采用RAII(Resource Acquisition Is Initialization)模式编写代码也能有效地管理和释放资源,无论是否出现异常。这种设计模式强调资源的生命周期应与其对应的对象生命周期绑定,从而保证了资源的及时释放。 总之,在Ruby的世界里,不断跟进语言特性和社区最佳实践,结合具体的业务场景灵活运用异常处理机制,是每一位Ruby程序员持续提升代码健壮性与稳定性的必经之路。
2023-09-10 17:04:10
89
笑傲江湖
ZooKeeper
...r那个相当聪明的数据模型和监听功能,咱们完全可以捣鼓出一个既能让业务跑得溜溜的,又能稳如磐石、始终保持高可用性的分布式系统架构。就像是用乐高积木搭建一座既美观又结实的大厦一样,我们借助ZooKeeper这块宝,来创建咱所需要的高性能系统。所以,在我们实实在在做开发的时候,要是能摸透并熟练运用ZooKeeper这家伙的节点负载均衡策略,那可是对提升我们系统的整体表现力有着大大的好处,这一点儿毋庸置疑。
2024-01-21 23:46:49
122
秋水共长天一色
.net
...ss , 一种云计算模型,用户无需管理底层服务器资源,只需编写代码并按照使用的资源付费。在数据处理场景中,Serverless可以帮助开发者专注于业务逻辑,而无需关心服务器运维和扩展问题。 Azure Functions , 微软提供的无服务器计算服务,它允许开发者创建和部署小型、独立的函数,这些函数在事件触发时自动运行。在处理大数据时,Azure Functions可以作为数据处理的中间层,处理和过滤数据,然后再将其存储或转发到其他系统。
2024-04-07 11:24:46
435
星河万里_
Tomcat
...响应时间变长。 - 线程池配置不合理:线程池大小设置不当会导致请求处理效率低下,特别是在高并发场景下。 - 数据库连接池配置:数据库连接池配置不当也会严重影响性能,比如连接池大小设置太小,导致数据库连接成为瓶颈。 代码示例: 假设我们想要增加Tomcat中Java堆的内存,可以在catalina.sh文件中添加如下参数: bash JAVA_OPTS="-Xms512m -Xmx1024m" 这里,-Xms表示初始堆大小,-Xmx表示最大堆大小。根据实际情况调整这两个值可以有效缓解内存不足的问题。 3. 调优技巧 如何让Tomcat飞起来? 找到问题之后,接下来就是对症下药了。下面是一些实用的调优建议: - 调整JVM参数:除了前面提到的内存设置外,还可以考虑启用压缩引用(-XX:+UseCompressedOops)等JVM参数来提高性能。 - 优化线程池配置:合理设置线程池大小可以显著提高并发处理能力。例如,在server.xml文件中的元素下设置maxThreads="200"。 - 使用连接池:确保数据库连接池配置正确,比如使用HikariCP这样的高性能连接池。 代码示例: 在server.xml中配置线程池: xml connectionTimeout="20000" redirectPort="8443" maxThreads="200"/> 4. 实践案例分享 从慢到快的转变 在我自己的项目中,我发现网站响应时间过长的主要原因是数据库查询效率低。加了缓存之后,再加上SQL查询也优化了一下,网站的反应速度快了不少,用起来顺手多了!另外,我调了一下JVM参数和线程池配置,这样系统在高峰期就能扛得住更大的流量啦。 思考时刻:优化工作往往不是一蹴而就的,需要不断测试、调整、再测试。在这个过程中,耐心和细心是非常重要的品质。 结语 好了,今天的分享就到这里。希望这篇文章能给你点灵感,让你知道怎么通过调整Tomcat的设置来让网站跑得更快些。记住,技术永远是在不断进步的,保持好奇心和学习的态度是成长的关键。如果你有任何问题或见解,欢迎随时留言交流! 最后,祝大家都能拥有一个响应迅速、用户体验优秀的网站! --- 希望这篇技术文章能够帮助到你,如果有任何具体问题或者需要进一步的信息,请随时告诉我!
2024-10-20 16:27:48
110
雪域高原
Flink
... 此外,针对异步编程模型的深入解读与探讨也不容忽视。例如,知名论文《Asynchronous Programming Models for Big Data Processing》中,作者从理论层面剖析了异步I/O在分布式系统及大数据处理中的核心价值,并结合具体案例阐述了其在降低延迟、提高资源利用率等方面的优越表现。这些前沿研究成果对于指导实际工程实践以及未来技术创新具有重要意义。
2024-01-09 14:13:25
492
幽谷听泉-t
转载文章
...VA,支持鸭子目录,模型的自动加载,代码分裂等 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_32447301/article/details/93423515。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-06 14:19:32
316
转载
Nacos
...内存被占用。 2. 线程池问题 Nacos内部使用了线程池来处理请求,如果线程池中的线程数量过多或者线程生命周期过长,都可能导致内存泄漏。 3. 对象引用未被正确释放 当某个对象被创建后,如果没有正确地释放对它的引用,那么这个对象就会一直存在于内存中,形成内存泄漏。 四、如何避免Nacos引起的内存泄漏? 1. 优化数据结构 对于Nacos中存储的数据,我们可以采用更合理的数据结构来减少内存的占用。比如,咱们可以考虑用哈希表来替代链表,为啥呢?因为哈希表在找东西的时候更快捷呀,就像你用字典查单词一样唰一下就找到了。而且,它也不会像链表那样产生一堆乱七八糟的指针,让事情变得更复杂。 java Map configMap = new HashMap<>(); configMap.put("key", "value"); 2. 合理使用线程池 为了避免线程池中的线程过多,我们需要根据系统的实际情况来设置线程池的最大大小,并且定期清理无用的线程。同时呢,咱最好让线程的生命期短小精悍些,别让那些跑起来没完没了的线程霸占太多的内存,这样就不至于拖慢整个系统的速度啦。 java ExecutorService executor = Executors.newFixedThreadPool(5); executor.shutdown(); 3. 正确释放对象引用 对于Nacos中的对象,我们需要确保它们在不需要的时候能够被正确地释放。比如,假设我们已经用上了try-with-resources这个神奇的语句,那么在finally部分执行完毕之后,JVM这位勤快的小助手会自动帮我们把不再需要的对象引用给清理掉。 java try (NacosClient client = NacosFactory.createNacosClient("localhost:8848")) { // 使用client } 五、总结 总的来说,Nacos作为配置中心,给我们带来了极大的便利。不过呢,在我们日常使用的过程中,千万不能对内存泄漏这个问题掉以轻心。咱得通过一些接地气的做法,比如精心设计数据结构,妥善管理线程池,还有及时释放对象引用这些招数,才能把内存泄漏这个捣蛋鬼给有效挡在门外,不让它出来惹麻烦。 以上就是我对“在客户端的微服务中访问Nacos时出现内存泄漏问题”的理解和解决方法,希望能给大家带来一些帮助。
2023-03-16 22:48:15
116
青山绿水_t
SpringBoot
...s模式支持、统一消息模型、以及跨语言客户端SDK等特性,进一步降低了用户使用门槛并提升了资源利用率。此外,通过与Kubernetes生态深度融合,RocketMQ 5.0版本实现了弹性伸缩、按需计费,为构建云上微服务架构提供了更为强大且经济高效的解决方案。 深入探讨消息中间件领域,Apache Kafka作为另一个广受欢迎的消息系统,它以其高性能、高吞吐量的特点,在流处理和实时计算场景中拥有广泛应用。而Spring Boot对Kafka也有良好的支持,开发者可以灵活选择适合自身业务需求的消息中间件工具,以满足不同场景下的技术挑战。 综上所述,无论是持续优化迭代的RocketMQ还是广泛应用的Kafka,与Spring Boot的集成已成为现代应用开发中提高系统弹性和解耦能力的重要实践。随着云原生技术和微服务架构的不断演进,消息中间件的选择与整合将更加注重性能、易用性和成本效益,从而更好地赋能企业数字化转型。
2023-12-08 13:35:20
82
寂静森林_t
Hadoop
...和处理。这种并行计算模型就像是给电脑装上了超级引擎,让数据处理速度嗖嗖地往上窜。而且更棒的是,它把数据分散存放在一整个集群的各个节点上,就像把鸡蛋放在不同的篮子里一样。这样一来,不仅能够轻松应对大规模运算,就算某个节点出个小差错,其他的节点也能稳稳接住,保证整个系统的稳定性和可扩展性杠杠的! 然而,尽管Hadoop在数据处理方面表现出色,但并非所有场景都适用。比如,在那种需要迅速反馈或者频繁做大量计算的情况下,像Spark这类流处理框架或许会是个更棒的选择。这就意味着在咱们实际操作的项目里,面对不同的需求和技术特点时,咱们得像个精明的小侦探,灵活机智地挑出最对味、最适合的数据处理武器和战术方案。 总的来说,借助Hadoop,我们能够构建出高效的数据转换和处理流程,从容应对大数据挑战。不过呢,咱们也得时刻想着把它的原理摸得更透彻些,还有怎么跟其他的技术工具灵活搭配使用。这样一来,咱就能在那些乱七八糟、变来变去的业务环境里头,发挥出更大的作用,创造更大的价值啦!
2023-04-18 09:23:00
469
秋水共长天一色
RocketMQ
...ketMQ的消息传递模型,其中生产者发布消息到特定的主题,而多个消费者订阅该主题并接收消息。这种方式允许消息广播给多个接收者,提高了系统的扩展性和灵活性。RocketMQ通过分区和消费者组的设计,实现了消息的高效分发和消费。 顺序消息 , 在需要消息处理严格按照发送顺序执行的应用场景下,RocketMQ提供的特殊消息类型。这类消息确保消息在消费者端按照发送的顺序被处理,这对于金融交易、数据库操作等对消息顺序有严格要求的场景至关重要。 事务消息 , 一种提供原子性操作的高级消息类型,RocketMQ在处理这类消息时,如果消息处理失败,会回滚整个事务,直到所有相关消息都被成功确认。这对于需要数据一致性保障的场景,如电商支付、银行转账等,非常重要。 消费者组 , RocketMQ中一组订阅相同主题的消费者集合。每个消费者组负责处理特定分区的消息,通过消费者的并发度和负载均衡策略,可以提高系统的吞吐量和处理能力。 消息确认机制 , 当消费者接收到消息后,通过向消息队列发送确认信号,表示已经成功处理。RocketMQ根据确认状态来决定是否重新投递消息,这是确保消息不丢失和系统稳定性的关键环节。 重试策略 , RocketMQ针对消费者可能的故障或网络问题,预先设定的消息投递重试次数和间隔规则。合理的重试策略可以在一定程度上恢复消息的传递,增强系统的容错性。 消费者负载均衡 , 通过消息队列的内部机制,将消息分配给多个消费者,以防止某个消费者过载,保持系统的整体性能和响应速度。RocketMQ通过分区和消费者组的配置,实现了负载均衡。 生产者确认模式 , 消费者接收到消息后,生产者等待消费者的确认,只有在确认后才认为消息已被处理。这在某些场景下可以确保消息的最终一致性。 消息持久化存储 , RocketMQ将消息存储在磁盘上,即使系统重启,也可以从持久化的存储中恢复消息,保证了数据的持久性和可靠性。
2024-06-08 10:36:42
91
寂静森林
转载文章
...式,用于描述应用程序模型(数据)与用户界面之间的关系。在Vue.js中,MVVM将数据(model)与视图(view)解耦,通过ViewModel作为桥梁,当数据变化时,视图会自动更新,反之亦然,提高了开发的简洁性和可维护性。 动态渲染 , 在前端开发中,指根据数据的变化实时更新页面内容的过程。在Vue.js中,通过模板语法和数据绑定,当数据(如 item.name )发生变化时,对应的视图部分会被重新渲染,显示最新的数据值,这种机制被称为动态渲染。
2024-05-06 12:38:02
624
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
find /path/to/search -name "filename"
- 在指定目录下递归查找文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"