前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[智能指针 Smart Pointer ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
...经网络模型,推动人工智能技术的发展与落地应用。 此外,Python生态系统的完善也是其备受欢迎的原因之一。例如,FastAPI作为一款基于Python的现代Web框架,因其高性能、易用性和对异步编程的良好支持,在今年Stack Overflow开发者调查中被评为“最受开发者喜爱”的Web框架之一。 同时,Python社区活跃,各类教程、开源项目和在线课程丰富多样,为初学者提供了良好的入门资源,也为资深开发者提供了持续进阶的平台。例如,由Guido van Rossum等大牛主推的《流畅的Python》一书,深入解读Python特性和最佳实践,帮助开发者更好地理解和运用Python进行高效开发。 综上所述,无论是在最新技术趋势下的人工智能领域,还是在成熟稳定的Web后端开发,Python都展现出了强大的生命力和发展潜力,值得广大开发者关注与投入。通过持续学习和实战,开发者能够借助Python解决更多实际问题,实现从理论到实战的跨越。
2023-09-07 13:41:24
323
晚秋落叶_
Beego
...过精细化的参数配置和智能的连接管理策略显著降低了数据库连接耗尽的风险。 同时,阿里巴巴集团技术团队也在其官方博客上分享了一篇关于数据库连接池调优的文章,结合实战经验介绍了在分布式系统中如何通过动态调整连接池大小、合理设置超时时间以及优化SQL查询等手段来解决“连接池耗尽”这一棘手问题。 此外,针对云原生环境下的数据库服务,Kubernetes社区也提出了相关的解决方案。例如,通过Horizontal Pod Autoscaler(HPA)自动扩缩数据库连接池规模,配合Service Mesh实现更细粒度的流量控制和熔断机制,从而有效避免因瞬时流量高峰导致的数据库连接资源耗尽。 综上所述,理解并妥善解决数据库连接池耗尽问题已成为现代应用开发与运维的重要课题,需要开发者紧跟业界最新动态和技术发展趋势,灵活运用多种策略进行综合优化。
2023-08-08 14:54:48
554
蝶舞花间-t
Tomcat
...Kubernetes智能地分配和调度资源,以满足应用的需求,同时优化资源利用率。 - 弹性伸缩:基于应用的实际负载,Kubernetes能够自动调整资源分配,确保服务的稳定性和响应速度。 应用场景与实践 在实际应用部署中,Kubernetes提供了以下几种关键功能: - 持续集成与持续部署(CI/CD):通过与Jenkins、GitLab CI等工具集成,Kubernetes支持自动化构建、测试和部署流程,加速软件交付周期。 - 服务发现与负载均衡:Kubernetes内置的服务发现机制使得不同服务之间的通信更加灵活,而负载均衡则确保了请求能够均匀分布到集群中的各个实例上,提高系统的整体性能和可用性。 - 滚动更新与灰度发布:Kubernetes支持在不中断服务的情况下更新应用版本,通过逐步替换旧实例为新实例,实现平稳的灰度发布过程。 - 故障隔离与恢复:通过Kubernetes的Pod和Namespace概念,可以隔离并恢复单个服务或组件,即使整个系统出现故障,也能迅速恢复关键服务。 结论 随着云计算和微服务架构的普及,Kubernetes已成为现代应用部署和管理的首选工具。通过提供自动化、高可用性和资源优化等功能,Kubernetes显著提升了开发和运维团队的生产力,帮助企业快速响应市场变化,提供更高质量的服务。随着技术的不断发展,Kubernetes将持续演进,为企业带来更多的创新可能。 --- 通过上述内容,我们可以看到Kubernetes在现代应用管理中的重要作用。它不仅简化了复杂的应用部署流程,还提供了强大的自动化和管理能力,帮助企业实现高效、可靠的现代化应用部署。随着云原生技术的不断发展,Kubernetes将继续成为推动企业数字化转型的关键力量。
2024-08-02 16:23:30
108
青春印记
转载文章
...训练,让怪物行为更加智能和真实。 同时,针对场景互动要素的重要性,知名游戏开发者网站Gamasutra近期分享了一篇名为“创建沉浸式游戏环境:场景交互设计的关键原则”的深度解析。文中强调了动态场景与玩家行为之间的反馈循环,以及通过物体状态变化增强游戏叙事和挑战性的方式方法,对于提升类似闯关游戏中灯光开关、陷阱触发等互动机制设计具有指导意义。 此外,在游戏开发社区Reddit上,一则关于“Unity Physics and Collision Detection in 2D Games(Unity在2D游戏中的物理系统与碰撞检测)”的讨论帖热度不减,众多开发者就如何优化子弹飞行轨迹、角色移动与场景障碍物的碰撞检测等问题展开了深入交流,这些实战经验对于进一步完善本文所描述的射击游戏Demo中子弹碰撞与销毁逻辑提供了宝贵参考。 综上所述,以上延伸阅读资源均为 Unity 游戏开发领域的最新研究与实践经验,不仅有助于深化理解本文提及的游戏设计与实现要点,还能帮助读者紧跟行业前沿趋势,为实际项目开发提供有力支持。
2024-03-11 12:57:03
770
转载
HessianRPC
...C框架的设计理念、性能指标以及在实际项目中的应用案例,有助于开发者根据业务需求选择最适合的解决方案。 3. 分布式系统架构设计实践:深入探讨如何在复杂分布式环境下合理使用HessianRPC及其他RPC框架。比如,如何优化服务注册发现机制以应对服务节点动态变化;如何结合负载均衡策略提高整体系统的可用性;如何借助熔断器、降级策略来保证在异常情况下服务的稳定性等。 4. 异常处理最佳实践:除了HessianURLException之外,实际开发中还可能会遇到其他各种类型的异常。理解并掌握一套完善的异常处理机制和策略,如采用责任链模式进行异常统一处理、通过日志记录及监控预警机制快速定位问题,都是提升系统健壮性的关键手段。 总之,在分布式系统开发领域,对HessianRPC的深入理解和灵活运用是构建高性能服务的基础,而紧跟行业发展趋势,不断吸取新的技术和经验,则是保持技术竞争力的重要途径。
2023-10-16 10:44:02
532
柳暗花明又一村
Saiku
...期,随着大数据和商业智能(BI)技术的持续火爆,越来越多的企业开始重视数据驱动决策的重要性,并寻求高效易用的数据分析解决方案。 实际上,Saiku因其直观的图形化操作界面以及无需编程即可进行复杂数据分析的能力,受到了众多企业和数据分析师的青睐。据Gartner最新报告指出,现代BI和数据分析平台正向自助服务模式转型,使得业务用户能够更加独立地进行深度数据探索,而Saiku恰好顺应了这一潮流。 此外,开源社区对于Saiku的支持也在不断加强,开发者们正在积极贡献代码,以优化性能、扩展功能并集成更多数据源支持。最近一次版本更新中,Saiku增强了对云原生环境的支持,简化了部署流程,并提升了处理大规模数据集时的响应速度,这无疑为大数据时代下的企业级应用提供了更有力的支撑。 综上所述,在数字化转型浪潮下,掌握像Saiku这样的现代化数据分析工具,不仅有助于企业提升决策效率,更能帮助企业从海量数据中提炼出具有战略价值的信息,从而实现业务增长和竞争力提升。因此,深入研究和熟练运用Saiku,已成为广大数据从业者提升自身核心竞争力的关键技能之一。
2023-10-04 11:41:45
105
初心未变
转载文章
...变为大数据分析、人工智能预测等高科技方式,而如何在高科技辅助下,依然坚守人性、法律与道德底线,实现对恐怖主义的有效打击,也是值得我们深入探讨和研究的问题。通过回顾像《第六计》这样的经典影视作品,不仅可以领略到艺术表现手法的魅力,更可以激发我们在现实中面对危机时思考更为周全、深邃的战略布局与决策智慧。
2023-05-10 09:20:27
619
转载
PostgreSQL
...多个键和指向子节点的指针。查询时,数据库引擎可以从根节点开始,通过比较查询条件与节点中的键值,迅速定位到目标数据所在的页或行,从而极大地提高检索效率。尤其适用于支持范围查询和等值查询场景。 表达式索引 , 表达式索引是根据某个计算表达式的值来创建的索引。在PostgreSQL中,可以针对表中某一列的函数结果或者多列之间的复杂运算结果建立索引。例如,文章中的例子是基于员工出生日期计算出年龄并创建索引,这样在执行按年龄筛选的SQL查询时,数据库可以直接利用这个索引来加速检索过程。 并发创建索引 , 并发创建索引是PostgreSQL提供的一种高级特性,允许在不阻塞其他读写操作的情况下创建索引。使用CONCURRENTLY关键字创建索引时,系统会启动一个后台任务来构建索引,避免了在大型应用或繁忙生产环境中因创建索引导致的长时间锁定表和业务中断问题,确保了服务的连续性和稳定性。
2023-06-04 17:45:07
410
桃李春风一杯酒_
Mongo
...ngoDB驱动程序是指针对特定编程语言(如Node.js)编写的库,使得该语言的应用程序能够与MongoDB数据库进行交互,包括连接数据库、执行查询、更新数据等操作。例如,Node.js环境中的mongodb库就是一个实现了与MongoDB通信功能的驱动程序,它提供了API供开发者调用,实现异步地连接和操作MongoDB数据库。
2024-03-10 10:44:19
167
林中小径_
ActiveMQ
...并掌握如何监控这些性能指标是非常必要的。 2. 消息堆积与延迟 它们是什么? 首先,让我们来了解一下消息堆积和延迟这两个概念。 - 消息堆积:指的是消息从生产者发送到消费者接收之间的时间差变大,导致队列中的消息数量不断增加。这种情况通常发生在消费者的处理能力不足以应对生产者的发送速率时。 - 延迟:是指消息从生产者发送到消费者接收到这条消息之间的总时间。延迟包括了网络传输时间、处理时间和队列等待时间等。 想象一下,如果你正在等公交车,而公交车却迟迟不来(消息堆积),或者虽然来了但你需要等很长时间才能上车(延迟),这肯定会让你感到沮丧。这就跟分布式系统里的事儿一样,要是消费者手慢点,消息堆积起来,整个系统就得遭殃,性能直线下降。 3. 如何监控消费者性能? 现在我们知道了消息堆积和延迟的重要性,那么接下来的问题就是:如何有效地监控它们呢? 3.1 使用JMX监控 ActiveMQ提供了Java Management Extensions (JMX) 接口,允许我们通过编程方式访问和管理其内部状态。这里有一个简单的例子,展示如何使用JMX来获取当前队列中的消息堆积情况: java import javax.management.MBeanServer; import javax.management.ObjectName; import java.lang.management.ManagementFactory; public class ActiveMQMonitor { public static void main(String[] args) throws Exception { MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); ObjectName name = new ObjectName("org.apache.activemq:type=Broker,brokerName=localhost"); // 获取队列名称 String queueName = "YourQueueName"; ObjectName queueNameObj = new ObjectName("org.apache.activemq:type=Queue,destinationName=" + queueName); // 获取消息堆积数 Integer messageCount = (Integer) mbs.getAttribute(queueNameObj, "EnqueueCount"); System.out.println("Current Enqueue Count for Queue: " + queueName + " is " + messageCount); } } 3.2 日志分析 除了直接通过API访问数据外,我们还可以通过分析ActiveMQ的日志文件来间接监控消费者性能。比如说,我们可以通过翻看日志里的那些报错和警告信息,揪出隐藏的问题,然后赶紧采取行动来优化一下。 4. 优化策略 既然我们已经掌握了如何监控消费者性能,那么接下来就需要考虑如何优化它了。下面是一些常见的优化策略: - 增加消费者数量:当发现消息堆积时,可以考虑增加更多的消费者来分担工作量。 - 优化消费者逻辑:检查消费者处理消息的逻辑,确保没有不必要的计算或等待,尽可能提高处理效率。 - 调整消息持久化策略:根据业务需求选择合适的消息持久化级别,既保证数据安全又不过度消耗资源。 5. 结语 持续改进 监控消费者性能是一个持续的过程。随着系统的不断演进,新的挑战也会随之而来。因此,我们需要保持灵活性,随时准备调整我们的监控策略和技术手段。希望这篇文章能给你带来一些启示,让你在面对类似问题时更加从容不迫! --- 好了,以上就是我对于“监控消费者性能:消息堆积与延迟分析”的全部分享。希望能给你一些启发,让你的项目变得更高效、更稳当!要是你有任何问题或者想深入了解啥的,尽管留言,咱们一起聊一聊。
2024-10-30 15:36:10
83
山涧溪流
转载文章
...,图片分类功能。AI智能垃圾分类主要通过构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别重点处理图片分类问题。 采用深圳市垃圾分类标准,输出该物品属于可回收物、厨余垃圾、有害垃圾和其他垃圾分类。 垃圾分类-数据分析和预处理 整体数据探测 分析数据不同类别分布 分析图片长宽比例分布 切分数据集和验证集 数据可视化展示(可视化工具 pyecharts,seaborn,matplotlib) 代码结构 ├── data│ ├── garbage-classify-for-pytorch│ │ ├── train│ │ ├── train.txt│ │ ├── val│ │ └── val.txt│ └── garbage_label.txt├── analyzer│ ├── 01 垃圾分类_一级分类 数据分布.ipynb│ ├── 02 垃圾分类_二级分类 数据分析.ipynb│ ├── 03 数据加载以及可视化.ipynb│ ├── 03 数据预处理-缩放&裁剪&标准化.ipynb│ ├── garbage_label_40 标签生成.ipynb├── models│ ├── alexnet.py│ ├── densenet.py│ ├── inception.py│ ├── resnet.py│ ├── squeezenet.py│ └── vgg.py├── facebook│ ├── app_resnext101_WSL.py│ ├── facebookresearch_WSL-Images_resnext.ipynb│ ├── ResNeXt101_pre_trained_model.ipynb├── checkpoint│ ├── checkpoint.pth.tar│ ├── garbage_resnext101_model_9_9547_9588.pth├── utils│ ├── eval.py│ ├── json_utils.py│ ├── logger.py│ ├── misc.py│ └── utils.py├── args.py├── model.py├── transform.py├── garbage-classification-using-pytorch.py├── app_garbage.py data: 训练数据和验证数据、标签数据 checkpoint: 日志数据、模型文件、训练过程checkpoint中间数据 app_garbage.py:在线预测服务 garbage-classification-using-pytorch.py:训练模型 models:提供各种pre_trained_model ,例如:alexlet、densenet、resnet,resnext等 utils:提供各种工具类,例如;重新flask json 格式,日志工具类、效果评估 facebook: 提供facebook 分类器神奇的分类预测和数据预处理 analyzer: 数据分析和数据预处理模块 transform.py:通过pytorch 进行数据预处理 model.py: resnext101 模型集成以及调整、模型训练和验证函数封装 resnext101网络架构 pre_trained_model resnext101 网络架构原理 基于pytorch 数据处理、resnext101 模型分类预测 在线服务API 接口 垃圾分类-训练 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--lr 0.001 \--optimizer adam \--start_epoch 1 \--epochs 10 \--num_classes 40 model_name 模型名称 lr 学习率 optimizer 优化器 start_epoch 训练过程断点重新训练 num_classes 分类个数 垃圾分类-评估 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--evaluate \--resume checkpoint/checkpoint.pth.tar \--num_classes 40 model_name 模型名称 evaluate 模型评估 resume 指定checkpoint 文件路径,保存模型以及训练过程参数 垃圾分类-在线预测 python app_garbage.py \--model_name resnext101_32x16d \--resume checkpoint/garbage_resnext101_model_2_1111_4211.pth model_name 模型名称 resume 训练模型文件路径 模型预测 命令行验证和postman 方式验证 举例说明:命令行模式下预测 curl -X POST -F file=@cat.jpg http://ip:port/predict 最后,我们从0到1教大家掌握如何进行垃圾分类。通过本学习,让你彻底掌握AI图像分类技术在我们实际工作中的应用。 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 本篇文章为转载内容。原文链接:https://blog.csdn.net/shenfuli/article/details/103008003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 23:48:11
518
转载
Hive
...,这一融合也为未来的智能决策支持系统奠定了基础,能够基于历史数据洞察和实时数据反馈,为企业提供更加精准的决策依据。 结论与展望 Apache Hive与Apache Flink的融合,不仅拓展了大数据处理的边界,还为应对日益增长的数据实时处理需求提供了新的解决方案。未来,随着技术的不断进步与优化,这一融合方案有望在更多领域发挥关键作用,推动大数据处理技术向更加高效、智能的方向发展。通过结合Hive的强大数据仓库功能与Flink的实时处理能力,企业将能够更加灵活地应对复杂多变的数据环境,实现数据驱动的业务创新与增长。
2024-09-13 15:49:02
35
秋水共长天一色
转载文章
...报告进行了实时监测和智能分析,有效提升了漏洞管理效率并降低了潜在风险。 同时,随着Web技术的快速发展,HTML5标准的普及以及各类网站结构的复杂化,如何更精准高效地从海量网页中提取关键数据成为一个亟待解决的问题。例如,Mozilla最近发布的一篇博客文章详细介绍了其如何借助类似Jsoup的开源库优化Firefox浏览器的安全更新通告系统,通过精确筛选和解析HTML页面中的特定元素,实现了对安全漏洞信息的自动化获取和分类。 此外,针对网络安全领域,国内外众多安全研究团队正积极研发新型的信息抽取模型,结合机器学习、深度学习等先进技术,提升对网页内容的理解能力,以便更快更准确地定位高危漏洞。近日,在Black Hat USA 2023大会上,就有专家演示了利用强化学习方法训练出的智能爬虫,成功在大量网页中挖掘出尚未被广泛认知的隐蔽性安全漏洞。 综上所述,无论是基于Jsoup的传统HTML解析技术,还是结合AI前沿发展的智能信息抽取手段,都在不断推动网络安全监控和漏洞管理领域的进步,为构建更加安全可靠的网络环境提供了有力支持。
2023-07-19 10:42:16
296
转载
Kubernetes
...科技的飞速发展,人工智能(AI)正逐渐渗透到云计算的每一个角落,其中Kubernetes与AI的结合被视为推动云计算迈向更高层次的关键力量。Kubernetes作为容器编排领域的领导者,其与AI的融合不仅提升了云平台的灵活性和效率,还为开发者提供了更多创新的可能性。 Kubernetes的AI赋能 Kubernetes的AI赋能主要体现在以下几个方面: 1. 资源调度优化:AI技术可以分析历史数据,预测工作负载需求,从而优化Kubernetes的资源分配,减少资源浪费,提高服务器利用率。 2. 自动扩缩容:基于AI算法,Kubernetes可以根据实时的工作负载动态调整集群规模,确保服务的高可用性和性能。 3. 故障检测与预防:AI模型可以通过学习历史事件,识别潜在的系统故障模式,提前预警,减少宕机风险,提升系统稳定性。 4. 智能运维:借助AI,Kubernetes可以自动化执行复杂的运维任务,如自动修复错误、优化性能、更新软件等,显著减轻运维团队的工作负担。 实际案例与趋势 近年来,许多大型科技公司都在积极探索Kubernetes与AI的融合应用。例如,Google Cloud Platform(GCP)通过与AI技术的结合,为Kubernetes用户提供了更智能的管理工具和服务,如AutoML,帮助用户更高效地构建和部署机器学习模型。此外,AWS的Amazon Elastic Container Service (ECS)也通过集成AI功能,增强了其在自动化部署和运维方面的能力。 随着AI技术的不断进步和成熟,Kubernetes与AI的结合将带来更多的可能性。未来,我们或许可以看到更加智能、自动化的云平台,能够自主地进行资源管理、故障检测、服务优化等,为用户提供更加高效、稳定的云计算体验。 结语 Kubernetes与AI的融合是云计算领域的一大创新,它不仅提高了云平台的智能化水平,也为开发者提供了更多创新的空间。随着技术的持续发展,这一领域的潜力还有待进一步挖掘,未来值得期待。
2024-09-05 16:21:55
61
昨夜星辰昨夜风
Kylin
...项性能优化改进,包括智能Cube推荐、实时Cube构建以及增强的多表JOIN能力等。这些功能升级为Kylin Cube设计提供了更多可能性,并有助于进一步提高大数据查询效率。阅读该解析文章将帮助您紧跟项目发展步伐,利用最新技术优势优化现有解决方案。 2. 企业级大数据查询优化实战案例分享:某知名电商平台近日公开分享了一篇关于其运用Apache Kylin进行Cube设计优化的实战经验。文章详述了他们如何结合业务特点选择维度、度量及分区策略,成功提升了订单数据分析查询速度近30%。通过借鉴这一案例,您可以了解如何将理论知识转化为实际操作,解决自身业务中的查询性能瓶颈问题。 3. 深度探讨:大规模数据预计算模型的挑战与应对策略:一篇由行业专家撰写的深度分析文章,从宏观角度剖析了当前预计算模型面临的挑战,如存储成本、更新频率与查询响应之间的平衡问题,并引用了Apache Kylin Cube作为实例进行详细解读。阅读该文可加深对预计算模型内在机制的理解,为优化Kylin Cube设计提供更全面的视角和思路。 通过以上延伸阅读,您不仅能跟进Apache Kylin的最新进展,还能从实操案例和行业深度分析中汲取宝贵经验,从而更好地驾驭Kylin Cube设计优化,持续提升查询性能。
2023-05-22 18:58:46
45
青山绿水
转载文章
...,使这些工具能够更加智能地辅助用户进行复杂系统的分析与优化。 此外,对于企业级服务而言,云架构部署与流程优化成为了行业热点。阿里云、AWS等国际主流云服务商近期陆续发布了新的架构设计与管理工具,助力企业更高效地构建、管理和展示其云上系统的整体架构,这也从侧面印证了像Freedgo Design这类提供云架构绘制功能的在线制图网站在未来市场中的重要地位。 综上所述,无论是从在线协作绘图工具的技术演进,还是从数据建模和云架构设计的专业需求出发,Freedgo Design所代表的一类在线制图服务不仅顺应了当下工作方式的变化潮流,而且在不断提升自身的功能性和智能化水平,以满足各行业对图形化表达和系统设计日趋精细化的要求。
2023-04-03 21:03:06
106
转载
转载文章
... DEBUG系列十:Smartforms debug DEBUG系列十一:GGB1 debug Debug系列十二:QRFC 队列 debug 本篇文章为转载内容。原文链接:https://blog.csdn.net/senlinmu110/article/details/122086258。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 21:25:44
142
转载
Shell
...于访问文件系统的抽象指针。它是一个非负整数,通过文件描述符,程序可以对相应的文件进行读写等操作。在文中提到的示例二中,由于Shell脚本打开了大量文件但没有关闭对应的文件描述符,使得这些资源没有得到释放,进而间接引发内存问题,因为每个打开的文件描述符都会占用一定的系统资源。 引用计数机制 , 引用计数是一种内存管理技术,用于跟踪对象被引用的次数。当引用计数为零时,表示该对象不再被任何地方引用,此时可以安全地回收其占用的内存资源。在文章提及的Bash 5.1版本的新特性中,引入了对数组元素的引用计数机制,这意味着Shell脚本在处理数组时能更精确地控制内存分配,减少不必要的字符串复制带来的内存消耗,有助于防止因无效数据保留而导致的“内存泄漏”现象。
2023-01-25 16:29:39
71
月影清风
Kylin
...期,随着大数据和人工智能技术的迅猛发展,越来越多的企业和机构开始关注如何高效处理海量数据。Apache Kylin作为一款优秀的开源分布式分析引擎,其性能和应用价值得到了广泛认可。最近,国内某大型电商平台利用Kylin实现了对用户行为数据的实时分析,大幅提升了个性化推荐系统的准确性和响应速度,从而显著提高了用户满意度和购买转化率。 此外,国外也有不少企业采用了Kylin来优化其业务流程。例如,美国的一家知名社交媒体公司通过引入Kylin,成功解决了复杂查询响应慢的问题,使得数据分析团队能够更快地获取洞察,为产品迭代和市场决策提供了有力支持。该公司还开源了一些改进Kylin性能的技术方案,供社区成员共同参考和使用,推动了Kylin生态系统的持续发展。 为了更好地理解Kylin在实际应用中的表现,不妨参考一些最新的技术论坛和博客文章。比如,一篇名为《Kylin在电商场景下的最佳实践》的文章,详细介绍了如何通过合理配置和优化Kylin,实现对大规模交易数据的高效处理。另一篇《Kylin与Spark集成的性能对比研究》则深入探讨了Kylin与其他大数据组件的协同工作效果,为读者提供了丰富的实证数据和案例分析。 这些最新动态不仅展示了Kylin在不同行业的广泛应用前景,也反映了开源社区在推动技术进步方面的重要作用。通过不断学习和借鉴这些实践经验,我们可以更好地掌握Kylin的使用技巧,充分发挥其在大数据分析中的潜力。
2024-12-31 16:02:29
29
诗和远方
SpringBoot
...数据类型转换变得更加智能,减少了类型冲突的可能性。 此外,跨域资源共享(CORS)和API版本管理也是当前热点话题。CORS的合理配置可以有效防止数据在不同域间的意外转换,而API版本控制则能确保前后端数据结构的一致性,降低误解和错误。 对于那些已经面临“0”问题的开发者,参考Google Cloud的《RESTful API设计最佳实践》和GitHub上的相关开源项目,学习如何在设计和实现上避免这类问题,不失为明智之举。同时,定期更新技术和知识,紧跟行业动态,才能在实践中游刃有余。
2024-04-13 10:41:58
83
柳暗花明又一村_
转载文章
...现代CMS正朝着更加智能化、模块化和API化的方向发展。例如,头部CMS已经开始整合人工智能功能,提供智能内容推荐、自动化SEO优化等功能,极大提升了用户体验和搜索引擎友好度。 同时,安全性成为各CMS开发者关注的重点。织梦DedeCMS等系统也在不断提升系统的安全防护能力,通过指纹验证、漏洞修复等方式保障用户数据安全。然而,用户在使用过程中仍需定期更新系统及插件以应对不断出现的安全挑战。 此外,响应式设计和多终端适配也成为衡量一款CMS是否与时俱进的重要指标。织梦DedeCMS等产品已实现对移动端的全面支持,确保无论是在桌面端还是移动设备上,都能为用户提供一致且优质的浏览体验。 综上所述,作为国内开源CMS领域的佼佼者,织梦DedeCMS在保持其核心优势的同时,也面临着适应新技术变革、提升用户体验、强化安全防护等一系列挑战。未来,织梦DedeCMS如何紧跟行业发展趋势,持续创新升级,将决定其在国内乃至全球市场的长远竞争力。对于广大用户而言,在选择和使用织梦DedeCMS时,既要看到其当前的优势特点,也要关注其在新环境下的发展动态和技术革新,以实现网站的高效建设和运维。
2023-09-24 09:08:23
279
转载
Tomcat
...le的主界面,各种性能指标也都会一目了然地出现在你眼前。 如果连接失败,请检查控制台是否有错误提示。常见的问题包括端口被占用、防火墙阻塞、配置文件错误等。根据错误信息逐条排查,相信最终会找到问题所在。 5. 总结与反思 折腾了半天,终于解决了Tomcat JMX监控无法连接的问题。这个过程虽然有些曲折,但也让我学到了不少知识。比如说,我搞懂了JMX到底是怎么运作的,还学会了怎么设置防火墙和端口,甚至用JConsole来排查问题也变得小菜一碟了。 当然,每个人遇到的具体情况可能都不一样,所以在解决问题的过程中,多查阅官方文档、搜索社区问答是非常必要的。希望这篇文章能帮助大家少走弯路,更快地解决类似问题。
2025-02-15 16:21:00
103
月下独酌
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
find /path/to/search -name "filename"
- 在指定路径下查找文件名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"