前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[大小写转换功能 lower和upper方...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hive
...Hive和HDFS的应用场景不断扩展,尤其在金融、电商和云计算领域,这两者已经成为不可或缺的技术基石。例如,在某大型电商企业的实践中,Hive被广泛用于处理海量订单数据,而HDFS则负责这些数据的持久化存储。然而,就在上周,该企业遭遇了一次严重的Hive无法访问HDFS的问题,导致部分业务中断。经过排查发现,这次故障源于HDFS NameNode的内存泄漏问题,尽管技术人员迅速采取措施重启服务,但仍造成了数小时的停机时间。这一事件再次提醒我们,大数据平台的稳定性不仅依赖于技术架构的优化,还需要完善的监控和应急响应机制。 与此同时,国内多家科技公司正在积极探索Hive和HDFS的新特性。例如,阿里云推出了基于Hive的智能查询加速功能,通过引入AI算法动态优化查询路径,显著提升了查询效率。腾讯云则在HDFS的基础上开发了多租户隔离技术,为企业用户提供更加安全可靠的数据存储方案。这些创新不仅提高了系统的性能,也为用户带来了更好的使用体验。 从长远来看,Hive和HDFS的技术演进方向值得关注。一方面,随着云原生技术的普及,越来越多的企业倾向于将大数据平台迁移到云端,这将推动Hive和HDFS向更灵活、更高效的架构转型。另一方面,随着数据量的爆炸式增长,如何提升数据处理能力成为行业关注的重点。在此背景下,开源社区持续活跃,不断推出新的功能和改进版本,为开发者提供了更多选择。 此外,近年来国内外学术界对大数据技术的研究也在不断深入。例如,哈佛大学的一项研究表明,通过优化HDFS的块分布策略,可以有效减少数据冗余,提高存储利用率。而清华大学的一项研究则提出了一种基于深度学习的异常检测算法,能够在早期识别HDFS的潜在故障,为运维人员争取宝贵的时间窗口。 总之,Hive和HDFS作为大数据领域的两大支柱,其未来发展充满无限可能。无论是技术创新还是实际应用,都值得我们保持高度关注。对于企业和开发者而言,及时了解最新进展并积极拥抱变化,将是应对未来挑战的关键所在。
2025-04-01 16:11:37
105
幽谷听泉
Apache Solr
如何处理Apache Solr的分布式故障? 引言 在构建高性能、可扩展的搜索解决方案时,Apache Solr是一个不可或缺的工具。哎呀,你知道的,当我们的生意越做越大,手里的数据越来越多的时候,以前那个单打独斗的小集群可能就撑不住了。就像一个人跑步,跑得再快也总有极限;但要是换成一队人,分工合作,那可就不一样了。这时候,分布式Solr集群就成了我们的最佳选择。想象一下,就像足球场上的球员,各司其职,传球配合,效率不是一般地高嘛!这样,我们就能够更好地应对大数据时代的挑战了。然而,分布式系统并非无懈可击,它同样面临着各种故障,包括网络延迟、节点宕机、数据一致性等问题。本文旨在探讨如何有效处理Apache Solr的分布式故障,确保搜索服务的稳定性和高效性。 第一部分:理解分布式Solr的架构与挑战 在开始讨论故障处理之前,我们先简要了解一下分布式Solr的基本架构。一个典型的分布式Solr集群由多个Solr服务器组成,这些服务器通过ZooKeeper等协调服务进行通信和状态管理。哎呀,你知道的,这种设计就像是给Solr实例装上了扩音器,这样我们就能在需要的时候,把声音(也就是数据处理能力)调大了。这样做的好处呢,就是能应对海量的数据和人们越来越快的查询需求,就像饭馆里客人多了,厨师们就分工合作,一起炒菜,效率翻倍嘛!这样一来,咱们就能保证不管多少人来点菜,都能快速上桌,服务不打折! 挑战: - 网络延迟:在分布式环境中,网络延迟可能导致响应时间变长。 - 节点故障:任何节点的宕机会影响集群的整体性能。 - 数据一致性:保持集群内数据的一致性是分布式系统的一大挑战。 - 故障恢复:快速而有效地恢复故障节点是维持系统稳定的关键。 第二部分:故障检测与响应 1. 监控与警报系统 在分布式Solr集群中,监控是关键。哎呀,用Prometheus或者Grafana这些小玩意儿啊,简直太方便了!你只需要轻轻一点,就能看到咱们的Solr集群在忙啥,比如CPU是不是快扛不住了,内存是不是快要溢出来了,或者是那些宝贝索引大小咋样了。这不就跟咱家里的监控摄像头似的,随时盯着家里的动静,心里有数多了!哎呀,你得留个心眼儿啊!要是发现啥不对劲儿,比如电脑的处理器忙个不停,或者是某个索引变得特别大,那可得赶紧动手,别拖着!得立马给咱的监控系统发个信号,让它提醒咱们,好让我们能快刀斩乱麻,把问题解决掉。这样子,咱们的系统才能健健康康地跑,不出幺蛾子。 代码示例: python from prometheus_client import CollectorRegistry, Gauge, push_to_gateway registry = CollectorRegistry() gauge = Gauge('solr_cpu_usage', 'CPU usage in percent', registry=registry) gauge.set(75) push_to_gateway('localhost:9091', job='solr_monitoring', registry=registry) 这段代码展示了如何使用Prometheus将Solr CPU使用率数据推送到监控系统。 2. 故障检测与隔离 利用ZooKeeper等协调服务,可以实现节点的健康检查和自动故障检测。一旦检测到节点不可用,可以自动隔离该节点,避免其影响整个集群的性能。 第三部分:数据恢复与重建 1. 快照与恢复 在Solr中,定期创建快照是防止数据丢失的有效手段。一旦发生故障,可以从最近的快照中恢复数据。哎呀,你知道的,这个方法可是大大提高了数据恢复的速度!而且呢,它还能帮咱们守住数据,防止那些无法挽回的损失。简直就像是给咱的数据上了双保险,既快又稳,用起来超安心的! 代码示例: bash curl -X PUT 'http://localhost:8983/solr/core1/_admin/persistent?action=CREATE&name=snapshot&value=20230701' 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
138
风中飘零
SpringBoot
...,都需要高效且稳定的处理方式。哎呀,你知道Spring Boot这个Java Web框架吗?它可是个超级好用的小工具!为什么这么说呢?因为它超级简洁,上手快,部署起来也特别方便,所以很多搞程序的大佬们都特别喜欢用它来开发项目。就像是你去超市买菜,选了个特别省事儿的购物车,推起来既轻松又快捷,Spring Boot就是那个购物车,让你的编程之旅更顺畅,效率更高!本文将详细讲解如何使用Spring Boot进行文件上传,包括配置、编码示例以及一些最佳实践。 1. 配置文件上传 在开始之前,确保你的项目中包含了必要的依赖。通常,Spring Boot会自动配置文件上传功能,但为了明确和控制,我们可以通过application.properties或application.yml文件来设置文件上传的目录和大小限制。 properties application.properties spring.servlet.multipart.max-file-size=2MB spring.servlet.multipart.max-request-size=10MB upload.path=/path/to/upload/files 这里,我们设置了单个文件的最大大小为2MB,整个请求的最大大小为10MB,并指定了上传文件的保存路径。 2. 创建Controller处理文件上传 接下来,在你的Spring Boot项目中创建一个控制器(Controller)来处理文件上传请求。下面是一个简单的例子: java import org.springframework.core.io.InputStreamResource; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.multipart.MultipartFile; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; @Controller public class FileUploadController { @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { try { // 检查文件是否存在 if (file.isEmpty()) { return ResponseEntity.badRequest().body("Failed to upload empty file."); } // 获取文件名和类型 String fileName = file.getOriginalFilename(); String contentType = file.getContentType(); // 保存文件到指定路径 File targetFile = new File(upload.path + fileName); Files.copy(file.getInputStream(), Paths.get(targetFile.getAbsolutePath())); return ResponseEntity.ok("File uploaded successfully: " + fileName); } catch (IOException e) { return ResponseEntity.internalServerError().body("Failed to upload file: " + e.getMessage()); } } } 3. 测试文件上传功能 在完成上述配置和编码后,你可以通过Postman或其他HTTP客户端向/upload端点发送一个包含文件的POST请求。确保在请求体中正确添加了文件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
86
寂静森林
转载文章
...者可能对大数据存储与处理领域的最新进展和相关技术动态产生兴趣。实际上,随着数据量的持续增长和技术迭代,HDFS也在不断发展以适应更复杂的应用场景。 近期,Apache Hadoop 3.3.0版本发布,引入了一系列新功能和改进。例如,HDFS现在支持EC(Erasure Coding)策略的进一步优化,能够在保证数据可靠性的同时,显著降低存储开销。此外,NameNode的高可用性和故障切换机制得到增强,确保了大规模集群的稳定运行。 另一方面,为应对云原生时代的挑战,Hadoop社区正积极将HDFS与Kubernetes等容器编排平台进行整合。如Open Data Hub项目就提供了在Kubernetes上部署HDFS及整个Hadoop生态系统的解决方案,使企业能够更加灵活高效地构建和管理基于云的大数据服务。 同时,对于那些寻求超越HDFS局限性的用户,可以关注到像Apache Hudi、Iceberg这样的开源项目,它们在HDFS之上构建了事务性数据湖存储层,支持ACID事务、时间旅行查询等功能,极大地丰富了大数据处理的可能性。 总之,掌握HDFS是理解和使用大数据技术的基础,而关注其演进路径以及相关的创新技术和解决方案,则有助于我们在实际应用中更好地利用HDFS及其生态系统的力量,解决日益复杂的数据管理和分析需求。
2023-12-05 22:55:20
279
转载
转载文章
...E是一个字典结构,将字符或特殊键与对应的虚拟键码关联起来。例如,在文中提到的VK_CODE A 等于0x41,表示字母\ A\ 在系统内部被识别为0x41这个特定数值,程序通过调用keybd_event函数并传入对应虚拟键码来模拟按下或释放该键。 win32api模块 , win32api是Python的一个库,提供了对Windows API(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
55
转载
Go Gin
...何使用Gin进行实时处理 一、为什么选择Gin? 作为一个后端开发者,我一直在寻找一款高效且易于上手的Web框架。在接触过Express、Spring Boot等框架之后,我终于找到了Go语言中的Gin。Gin以其轻量级、高性能以及丰富的功能吸引了我的注意。特别是当我打算搭建一个能快速处理事情的系统时,Gin的表现直接把我给惊艳到了! 思考过程 说实话,在决定用Gin之前,我也纠结过一段时间。其实呢,Go语言虽然是个静态类型的编程语言,跑起来那速度杠杠的,谁用谁知道!不过呢,它的小生态也是个绕不开的话题,跟Java或者Python比起来,相关的工具、库啊,还有社区里的人气就稍微逊色那么一点点啦。嘿,我刚去瞅了瞅Gin的官网,看了几个案例之后,真是有点被圈粉了!这框架不光跑得飞快,连文档都整得明明白白的,一看就懂。还有那个社区,感觉特别热闹,大家都很积极地交流分享,这种氛围真的超棒!尤其是那种对反应速度要求特别高、分分钟得赶紧干活的场合,Gin这家伙还真挺靠谱的! --- 二、快速入门 搭建基本框架 首先,我们需要安装Gin库。如果你已经安装了Go环境,那么只需运行以下命令即可: bash go get -u github.com/gin-gonic/gin 接下来,我们来写一个最简单的HTTP服务程序: go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() r.GET("/ping", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{ "message": "pong", }) }) r.Run(":8080") // 启动服务器监听8080端口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...语言方式编写用于异构处理器的与设备无关的代码。 DPC++ DPC++(Data Parallel C++)是一种单源语言,可以将主机代码和异构加速器内核写在同一个文件当中,在主机中调用DPC++程序,计算由加速器执行。DPC++代码简洁且效率高,并且是开源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
322
转载
HessianRPC
...程调用框架,在企业级应用中扮演着重要角色,而数据库连接池作为其核心组件之一,直接影响系统的可靠性和扩展能力。最近,某知名电商公司在一次促销活动中遭遇了严重的数据库连接池故障,导致订单处理延迟甚至部分服务中断。这一事件再次提醒我们,即使是最基础的技术模块,一旦配置不当或监控缺失,也可能成为系统瓶颈。 据内部人士透露,此次故障的主要原因在于连接池的回收策略设置过于保守,未能及时释放空闲连接,加之高峰时段请求激增,使得可用连接迅速耗尽。尽管该公司事后紧急调整了相关参数,并引入了更智能的负载均衡算法,但损失的用户体验和经济成本已难以挽回。这起事故引发了业内对数据库连接池最佳实践的重新审视。 实际上,类似的案例并非孤例。早在2022年,某大型金融科技公司也因连接池配置不当导致交易系统瘫痪。事后调查显示,其问题根源同样在于对连接池生命周期管理的忽视。专家指出,现代分布式系统的设计应更加注重自动化运维能力,例如通过AI驱动的监控平台实时检测连接池状态,预测潜在风险,并提前采取措施。此外,开源社区也在积极完善相关工具,如HikariCP等高性能连接池库,提供了更为精细的配置选项和诊断功能。 对于开发者而言,除了掌握基本的连接池配置知识外,还需要结合实际业务场景进行压力测试,模拟各种极端情况,从而制定更具弹性的策略。同时,定期回顾和优化系统架构也是必不可少的一环。正如一位资深架构师所言:“技术迭代日新月异,但安全与稳定始终是底线。”在未来,随着更多智能化技术的应用,相信这类问题将逐步得到缓解,为企业创造更大的价值。
2025-05-14 16:14:51
71
风轻云淡
ElasticSearch
...。如果你要做一个搜索功能,不知道如何选型,那你可以参考一下本文。 1. 可选方案 如果你需要做一个搜索功能,这时候你可能会想到很多实现方法: 比如你的底层数据库用的是sql数据库(比如mysql):你可能会想到在对应字段上使用field1 like '%?%',?即用户输出的关键词 比如你的底层数据库用的是mongo:你可能会想到在对应字段上使用db.collection.find({ "field1": { $regex: /aaa/ } })做查询,aaa即用户输入的关键词 比如你的底层数据库用的是elasticsearch:那厉害了,专业全文搜索神奇,全文搜索或搜索相关的需求使用elasticsearch绝对是最合适的选择 比如你的底层数据库用的是hive、impala、clickhouse等大数据计算引擎:鸟枪换炮,其实用作全文索引和搜索的场景并不合适,你可能依旧会使用sql数据库那样用like做交互 2. 方案选择 调研之后,可能会发现对于数据量相对大一点的搜索场景,在当下流行的数据库或计算引擎中,elasticsearch是其中最合适的解决方案。 无论是sql的like、还是mongo的regex,在线上环境下,数据量较多的情况下,都不是很高效的查询,甚至有的公司的dba会禁止在线上使用类似的查询语法。 与elasticsearch是“亲戚”的,大家还常提到lucene、solr,但是无论从现在的发展趋势还是公司运维人才的储备(不得不说当下的运维人才中,对es熟悉的人才会更多一些),elasticsearch是相对较合适的选择。 一些大数据计算引擎,其实更多的适合OLAP场景。当然也完全可以使用,因为比如clickhouse、starrocks等的查询速度已经发展的非常快。但你会发现在中文分词搜索上,实现起来有一定困扰。 所以,如果你不差机器,首选方案还是elasticsearch。 3. elasticsearch的适用场景 3.1 经典的日志搜索场景 提到elasticsearch不得不提到它的几个好朋友: 一些公司里经常用elasticsearch来收集日志,然后用kibana来展示和分析。 展开来说,举个例子,你的app打印日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
540
admin-tim
转载文章
...的运动控制器件,专门应用于激光加工领域,通过内部包含的两个电机和两个振镜片,实现对激光束在XY平面内的快速、精确偏转控制。在本文中,ZMC420SCAN控制器通过专用接口连接并控制激光振镜头,利用振镜轴接口提供的两路通道信号分别调整振镜片X、Y方向的角度,从而精确控制激光打在工件上的位置。 ECAT/RTEX总线 , ECAT(EtherCAT)与RTEX是两种高性能实时工业以太网通信协议。在本文提到的ZMC420SCAN运动控制器中,它们被用于实现多轴设备间的高效、同步数据交换。ECAT基于以太网技术,具备极低的通信延迟和高精度的数据传输特性;而RTEX作为一种高速实时网络技术,同样能确保控制器与伺服驱动器之间的高速、稳定通讯,以满足高精度运动控制的需求。 PWM模拟量输出 , PWM(Pulse Width Modulation,脉宽调制)是一种将数字信号转换为模拟信号的技术,常用于电机控制、电源管理等领域。在ZMC420SCAN控制器中,外部通用输出口具有PWM输出功能,可用于精细调节激光发生器的能量输出。通过改变PWM信号的占空比(即高电平时间相对于周期的比例),可以连续且精确地控制激光功率大小,适应不同的加工需求。同时,控制器还支持12位精度的模拟量输入输出,进一步提升了激光能量控制的精度。
2023-12-04 17:33:09
339
转载
转载文章
...truts上传、下载功能结合 /20171105_shiyan_upanddown/src/nuc/sw/action/DocDownloadAction.java package nuc.sw.action;import java.io.InputStream;import org.apache.struts2.ServletActionContext;import com.opensymphony.xwork2.ActionSupport;public class DocDownloadAction extends ActionSupport { private String downPath;//返回InputStream流方法public InputStream getInputStream() throws Exception{ downPath = new String(downPath.getBytes("ISO8859-1"),"utf-8");//默认从WebAPP根目录下取资源return ServletActionContext.getServletContext().getResourceAsStream(downPath);}public String getDownPath(){return downPath;}public void setDownPath(String downPath){this.downPath=downPath;}public String getDownloadFileName(){//downPath.subString是截取downPath的一部分String downFileName=downPath.substring(7);try{downFileName = new String(downFileName.getBytes("iso8859-1"),"utf-8");//downFileName=new String(downFileName.getBytes(),"utf-8");}catch(Exception e){e.printStackTrace();}return downFileName;}@Overridepublic String execute() throws Exception { return SUCCESS;} } /20171105_shiyan_upanddown/src/nuc/sw/action/DocUploadAction.java package nuc.sw.action;import java.io.BufferedInputStream;import java.io.BufferedOutputStream;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.IOException;import java.io.InputStream;import java.io.OutputStream;import java.util.Date;import org.apache.struts2.ServletActionContext;import com.opensymphony.xwork2.ActionSupport;public class DocUploadAction extends ActionSupport {private String name;private File[] upload;private String[] uploadContentType;private String[] uploadFileName;private String savePath;private Date createTime;public String getName() {return name;}public void setName(String name) {this.name = name;}public File[] getUpload() {return upload;}public void setUpload(File[] upload) {this.upload = upload;}public String[] getUploadContentType() {return uploadContentType;}public void setUploadContentType(String[] uploadContentType) {this.uploadContentType = uploadContentType;}public String[] getUploadFileName() {return uploadFileName;}public void setUploadFileName(String[] uploadFileName) {this.uploadFileName = uploadFileName;}public String getSavePath() {return savePath;}public void setSavePath(String savePath) {this.savePath = savePath;}public Date getCreateTime(){ createTime=new Date();return createTime;}public static void copy(File source,File target){ InputStream inputStream=null;OutputStream outputStream=null;try{inputStream=new BufferedInputStream(new FileInputStream(source));outputStream=new BufferedOutputStream(new FileOutputStream(target));byte[] buffer=new byte[1024];int length=0;while((length=inputStream.read(buffer))>0){outputStream.write(buffer, 0, length);} }catch(Exception e){e.printStackTrace();}finally{if(null!=inputStream){try {inputStream.close();} catch (IOException e2) {e2.printStackTrace();} }if(null!=outputStream){try{outputStream.close();}catch(Exception e2){e2.printStackTrace();} }} }@Overridepublic String execute() throws Exception { for(int i=0;i<upload.length;i++){ String path=ServletActionContext.getServletContext().getRealPath(this.getSavePath())+"\\"+this.uploadFileName[i];File target=new File(path);copy(this.upload[i],target);}return SUCCESS;} } /20171105_shiyan_upanddown/src/nuc/sw/action/LoginAction.java package nuc.sw.action;import java.util.regex.Pattern;import com.opensymphony.xwork2.ActionContext;import com.opensymphony.xwork2.ActionSupport;public class LoginAction extends ActionSupport {//属性驱动校验private String username;private String password;public String getUsername() {return username;}public void setUsername(String username) {this.username = username;}public String getPassword() {return password;}public void setPassword(String password) {this.password = password;}//手动检验@Overridepublic void validate() {// TODO Auto-generated method stub//进行数据校验,长度6~15位 if(username.trim().length()<6||username.trim().length()>15||username==null) {this.addFieldError("username", "用户名长度不合法!");}if(password.trim().length()<6||password.trim().length()>15||password==null) {this.addFieldError("password", "密码长度不合法!");} }//登陆业务逻辑public String loginMethod() {if(username.equals("chenghaoran")&&password.equals("12345678")) {ActionContext.getContext().getSession().put("user", username);return "loginOK";}else {this.addFieldError("err","用户名或密码不正确!");return "loginFail";} }//手动校验validateXxxpublic void validateLoginMethod() {//使用正则校验if(username==null||username.trim().equals("")) {this.addFieldError("username","用户名不能为空!");}else {if(!Pattern.matches("[a-zA-Z]{6,15}", username.trim())) {this.addFieldError("username", "用户名格式错误!");} }if(password==null||password.trim().equals("")) {this.addFieldError("password","密码不能为空!");}else {if(!Pattern.matches("\\d{6,15}", password.trim())) {this.addFieldError("password", "密码格式错误!");} }} } /20171105_shiyan_upanddown/src/nuc/sw/interceptor/LoginInterceptor.java package nuc.sw.interceptor;import com.opensymphony.xwork2.Action;import com.opensymphony.xwork2.ActionContext;import com.opensymphony.xwork2.ActionInvocation;import com.opensymphony.xwork2.ActionSupport;import com.opensymphony.xwork2.interceptor.AbstractInterceptor;public class LoginInterceptor extends AbstractInterceptor {@Overridepublic String intercept(ActionInvocation arg0) throws Exception {// TODO Auto-generated method stub//判断是否登陆,通过ActionContext访问SessionActionContext ac=arg0.getInvocationContext();String username=(String)ac.getSession().get("user");if(username!=null&&username.equals("chenghaoran")) {return arg0.invoke();//放行}else {((ActionSupport)arg0.getAction()).addActionError("请先登录!");return Action.LOGIN;} }} /20171105_shiyan_upanddown/src/struts.xml <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.1.7//EN""http://struts.apache.org/dtds/struts-2.1.7.dtd"><struts><constant name="struts.i18n.encoding" value="utf-8"/><package name="default" extends="struts-default"><interceptors><interceptor name="login" class="nuc.sw.interceptor.LoginInterceptor"></interceptor></interceptors> <action name="docUpload" class="nuc.sw.action.DocUploadAction"><!-- 使用fileUpload拦截器 --><interceptor-ref name="fileUpload"><!-- 指定允许上传的文件大小最大为50000字节 --><param name="maximumSize">50000</param></interceptor-ref><!-- 配置默认系统拦截器栈 --><interceptor-ref name="defaultStack"/><!-- param子元素配置了DocUploadAction类中savePath属性值为/upload --><param name="savePath">/upload</param><result>/showFile.jsp</result><!-- 指定input逻辑视图,即不符合上传要求,被fileUpload拦截器拦截后,返回的视图页面 --><result name="input">/uploadFile.jsp</result></action> <action name="docDownload" class="nuc.sw.action.DocDownloadAction"><!-- 指定结果类型为stream --><result type="stream"><!-- 指定下载文件的文件类型 text/plain表示纯文本 --><param name="contentType">application/msword,text/plain</param><!-- 指定下载文件的入口输入流 --><param name="inputName">inputStream</param><!-- 指定下载文件的处理方式与文件保存名 attachment表示以附件形式下载,也可以用inline表示内联即在浏览器中直接显示,默认值为inline --><param name="contentDisposition">attachment;filename="${downloadFileName}"</param><!-- 指定下载文件的缓冲区大小,默认为1024 --><param name="bufferSize">40960</param></result></action><action name="loginAction" class="nuc.sw.action.LoginAction" method="loginMethod"><result name="loginOK">/uploadFile.jsp</result><result name="loginFail">/login.jsp</result><result name="input">/login.jsp</result></action> </package></struts> /20171105_shiyan_upanddown/WebContent/login.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>登录页</title><s:head/></head><body><s:actionerror/><s:fielderror fieldName="err"></s:fielderror><s:form action="loginAction" method="post"> <s:textfield label="用户名" name="username"></s:textfield><s:password label="密码" name="password"></s:password><s:submit value="登陆"></s:submit></s:form></body></html> /20171105_shiyan_upanddown/WebContent/showFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>显示上传文档</title></head><body><center><font style="font-size:18px;color:red">上传者:<s:property value="name"/></font><table width="45%" cellpadding="0" cellspacing="0" border="1"><tr><th>文件名称</th><th>上传者</th><th>上传时间</th></tr><s:iterator value="uploadFileName" status="st" var="doc"><tr><td align="center"><a href="docDownload.action?downPath=upload/<s:property value="doc"/>"><s:property value="doc"/> </a></td><td align="center"><s:property value="name"/></td><td align="center"><s:date name="createTime" format="yyyy-MM-dd HH:mm:ss"/></td></tr></s:iterator></table></center></body></html> /20171105_shiyan_upanddown/WebContent/uploadFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>多文件上传</title></head><body><center><s:form action="docUpload" method="post" enctype="multipart/form-data"><s:textfield name="name" label="姓名" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:submit value="确认上传" align="center"/></s:form></center></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34101492/article/details/78811741。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-12 20:53:42
141
转载
Hadoop
...化也为Hadoop的应用带来了新挑战。随着《个人信息保护法》等法律法规在全球范围内的实施,企业在处理敏感数据时必须更加谨慎。在这种背景下,如何在保证数据安全的同时实现高效的大数据分析成为了一个亟待解决的问题。一些公司正在探索使用加密技术和联邦学习等方法,以确保数据在传输和处理过程中不被泄露。 另一方面,尽管Hadoop本身仍在持续迭代更新,但社区的关注点已经开始向边缘计算转移。边缘计算能够有效缓解中心化数据中心的压力,特别是在物联网设备数量激增的情况下。通过在靠近数据源的地方进行预处理,不仅可以降低延迟,还能减少带宽消耗。这为Hadoop未来的发展指明了一条新的路径。 总之,虽然Hadoop面临诸多挑战,但凭借其成熟的技术体系和广泛的应用基础,它仍然是许多企业和组织不可或缺的选择。未来,Hadoop可能会与其他新兴技术深度融合,共同推动大数据产业的进步。
2025-03-26 16:15:40
98
冬日暖阳
Netty
...件驱动的Java网络应用框架,简直是程序员的福音。话说回来,再厉害的工具也不是全能的啊,在那种超高并发、必须稳如老狗的场景里,总免不了会出点幺蛾子。今天咱们就来聊聊Netty是如何帮我们实现故障恢复的。 说到故障恢复,其实很多人可能会觉得这是个很玄乎的事情。但其实,Netty在这方面做得相当出色。它的设计思路非常人性化,既考虑了性能,也兼顾了稳定性。咱们可以从以下几个方面入手,看看它是怎么做到的。 --- 二、为什么需要故障恢复? 首先,咱们得明白一个问题:为什么我们需要故障恢复?在现实世界中,网络环境复杂多变,服务器宕机、网络抖动、数据丢失等情况随时随地可能发生。如果我们的程序没有应对这些问题的能力,那后果简直不堪设想! 想象一下,你正在做一个在线支付系统,用户刚输入完支付信息,结果服务器突然挂了,这笔交易失败了。哎呀,这要是让用户碰上了,那可真是抓狂了!所以啊,咱们得想点办法,给系统加点“容错”的本事,不然出了问题用户可就懵圈了。说白了,故障恢复不就是干这个的嘛,就是为了不让小问题变成大麻烦! Netty在这方面做得非常到位。它有一套挺管用的招数,就算网络突然“捣乱”或者出问题了,也能尽量把损失降到最低,然后赶紧恢复到正常状态,一点儿都不耽误事儿。接下来,咱们就一步步拆解这些机制。 --- 三、Netty的故障恢复机制 3.1 异常处理与重试机制 首先,咱们来看看Netty最基础的故障恢复手段:异常处理与重试机制。 Netty提供了一种优雅的方式来处理异常。好比说呗,当客户端和服务器之间的连接突然“闹别扭”了,Netty就会立刻反应过来,自动给我们发个提醒,就像是“叮咚!出问题啦!”这样,咱们就能赶紧去处理这个小麻烦了。具体代码如下: java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...管理和存储数据的逻辑方法和物理布局。它不仅包括数据元素本身,还包括这些元素之间的关系以及对这些元素进行操作的一系列规则和算法。在文章中,作者强调了数据结构是编程中必不可少的基础知识,通过选择合适的数据结构可以提高程序运行效率,并与各种检索算法和索引技术密切相关。 面向对象的程序设计(OOP) , 面向对象的程序设计是一种以“对象”为核心,将现实世界中的实体抽象为类,通过封装、继承和多态等机制来构建软件系统的编程范式。在文中,作者提到面向对象的程序设计语言正是基于选择合适数据结构这一核心思想而发展起来的,体现了数据结构对于系统构造的重要影响。 哈希表(Hash Table) , 哈希表是一种特殊的数据结构,它使用哈希函数将输入(通常是字符串或其他类型的数据)转化为数组的索引,以此实现数据的快速存取。在本文中,哈希表作为考研复习阶段需要掌握的一种重要数据结构被提及,它是通过计算哈希码解决键值对高效查找问题的关键技术,在Java等编程语言中广泛应用,如JDK中的HashMap类就是一种哈希表的实现。 图(Graph) , 图是一种非线性的数据结构,由顶点(或称为节点)和边组成,用于表示对象之间的关系。在文章里,作者提到了在学习数据结构的过程中会遇到更复杂的概念,如图数据结构,它可以用来模拟实际生活中的许多复杂关系,如社交网络、交通路线等,并且涉及诸如最短路径算法等相关算法的学习与应用。 深度优先遍历(DFS, Depth-First Search) , 深度优先遍历是一种在图论和树形结构中常用的搜索算法策略。在执行过程中,该算法首先访问一个顶点,然后尽可能深地探索其邻接顶点,直到到达无法继续深入的顶点(即叶子节点或已访问过的节点),之后回溯至前一个顶点并尝试探索其他未访问的邻接顶点。在文中,深度优先遍历被列为了学习数据结构时需要掌握的基本算法之一,适用于多种与树和图相关的数据结构处理场景。
2023-09-12 23:35:52
135
转载
ZooKeeper
...xception如何处理:ZooKeeper中的实践与探索 一、初识ZooKeeper与CommitQueueFullException 大家好啊!今天咱们聊聊ZooKeeper这个分布式协调工具,它就像是一个超级管家,帮我们管理分布式系统中的各种事务。不过呢,在使用过程中,我们可能会遇到一些问题,比如CommitQueueFullException。哎呀,乍一听这事儿还挺唬人是吧?但其实呢,它就是在说ZooKeeper的那个内部消息队列已经爆满了,忙不过来了,所以没法再接着处理新的请求啦! 作为一个开发者,我第一次看到这个错误的时候,心里是有点慌的:“完蛋啦,是不是我的代码有问题?”但后来我慢慢发现,其实它并不是那么可怕,只要我们理解了它的原理,并且知道怎么应对,就能轻松解决这个问题。 那么,CommitQueueFullException到底是怎么回事呢?简单来说,ZooKeeper内部有一个请求队列,用来存储客户端发来的各种操作请求(比如创建节点、删除节点等)。嘿嘿,想象一下,这就好比一个超挤的电梯,已经装满了人,再有人想挤进去肯定会被拒之门外啦!ZooKeeper也一样,当它的小“队伍”排满了的时候,新来的请求就别想加塞儿了,直接就被它无情地“拒绝”了,然后还甩给你一个“异常”的小牌子,意思是说:“兄弟,这儿真的装不下了!”这种情况通常发生在高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
11
林中小径
Redis
...持多种数据结构,比如字符串、哈希表、列表等等。最重要的是,它提供了原子性的操作指令,比如SETNX(Set if Not Exists),这让我们能够轻松地实现分布式锁! 让我给你们讲个小故事:有一次我尝试用数据库来做分布式锁,结果发现性能特别差劲,查询锁状态的SQL语句每次都要扫描整个表,效率低得让人抓狂。换了Redis之后,简直像开了挂一样,整个系统都丝滑得不行!Redis这玩意儿不光跑得快,还自带一堆黑科技,像什么过期时间、消息订阅啥的,这些功能简直就是搞分布式锁的神器啊! 所以,如果你也在纠结选什么工具来做分布式锁,强烈推荐试试Redis!接下来我会结合实际案例给你们展示具体的操作步骤。 --- 3. 实现分布式锁的基本思路 首先,我们要明确分布式锁需要满足哪些条件: 1. 互斥性 同一时刻只能有一个客户端持有锁。 2. 可靠性 即使某个客户端崩溃了,锁也必须自动释放,避免死锁。 3. 公平性 排队等待的客户端应该按照请求顺序获取锁。 4. 可重入性(可选) 允许同一个客户端多次获取同一个锁。 现在我们就来一步步实现这些功能。 示例代码 1:最基本的分布式锁实现 python import redis import time def acquire_lock(redis_client, lock_key, timeout=10): 尝试加锁,设置过期时间为timeout秒 result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_lock(redis_client, lock_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
59
寂静森林
转载文章
...均属于DML范畴。 字符集 (Charset) , 在计算机编程和数据库管理中,字符集是指一个系统支持的一组字符及其编码规则。在MySQL中,创建数据库或表时可以指定默认的字符集,例如“utf8”,确保数据库能够正确存储和处理不同语言环境下的文本信息,避免乱码问题出现。 事务控制语言 (TCL) , 事务控制语言是SQL的一个子集,主要用于管理和控制数据库事务的开始、提交、回滚等操作。在文章提到的MySQL操作中,虽然没有直接给出TCL相关的具体命令,但指出TCL包括了如COMMIT(提交事务)、ROLLBACK(回滚事务)等指令,这些指令对于维护数据库的原子性和一致性至关重要。 数据查询语言 (DQL) , 数据查询语言主要关注从数据库中检索数据,并可能对检索结果进行排序、筛选或分组等操作。在本文示例中,使用SELECT语句实现数据查询即为DQL的具体应用,它可以按照用户指定的条件从数据库表中提取所需数据,并且可以通过JOIN、WHERE、GROUP BY、ORDER BY等子句丰富查询功能。
2024-02-16 12:44:07
545
转载
转载文章
...有问世,要实现这样的功能,要么是改web.config,要么是用flash,要么是用一些第三方控件,然而这些解决问题的方法要么很麻烦,比如改配置,要么不稳定,比如文件上G以后,上传要么死掉,要么卡住,通过设置web.config并不能很好的解决这些问题。 这是一个Html5统治浏览器的时代,在这个新的时代,这种问题已被简化并解决,我们可以利用Html5分片上传的技术,那么Plupload则是一个对此技术进行封装的前端脚本库,这个库的好处是可以自动检测浏览器是否支持html5技术,不支持再检测是否支持flash技术,甚至是sliverlight技术,如果支持,就使用检测到的技术。 那么这个库到哪里下载,怎么搭建呢,比较懒的童鞋还是用Install-Package Plupload搞定吧,一个命令搞定所有事 Plupload支持的功能这里就不细说了,什么批量上传,这里我没有用到,主要是感觉它支持的事件非常丰富,文件选取后的事件,文件上传中的事件(可获得文件的上传进度),文件上传成功的事件,文件上传失败的事件,等等 我的例子主要是上传一个单个文件,并显示上传的进度条(使用jQuery的一个进度条插件) 下面的例子主要是为文件上传交给 UploadCoursePackage.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
128
转载
转载文章
...重背包,用多重背包的方法做;也可以看成总共有2n个物品,用一般背包的方法做 //方法1include <bits/stdc++.h>using namespace std;int c[1005],w[1005];//重量 能量int f[10005];int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)cin>>c[i]>>w[i];for(int i=1;i<=n;i++)for(int j=m;j>=c[i];--j){for(int k=1;k<=2&&kc[i]<=j;k++){f[j]=max(f[j],f[j-c[i]k]+w[i]k);} }cout<<f[m]<<endl;return 0;}//方法2include<bits/stdc++.h>using namespace std;const int N=1e3+5;int a[2N],b[2N],dp[N],n,m;int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];a[i+n]=a[i],b[i+n]=b[i];}for(int i=1;i<=2n;i++){for(int j=m;j>=a[i];j--){dp[j]=max(dp[j],dp[j-a[i]]+b[i]);} }cout<<dp[m]<<'\n';return 0;} E: 最大素数 题目描述 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输入 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输出 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 搜索 这里用的bfs,优先搜索当前最大的数,如果这个数已经是素数那么就是答案 我说不清楚,参考代码吧 include <bits/stdc++.h>using namespace std;bool isprime(int n){//素数判断if(n<2)return 0;for(int i=2;i<=(int)sqrt(n);++i)if(n%i==0)return 0;return 1;}struct node {string s;int len;bool operator<(const node &q)const{if(len!=q.len)return len<q.len;return s<q.s;} };bool check(string str){int m=0;for(int i=0;i<str.size();i++){m=m10+str[i]-'0';}return isprime(m);}bool flag;map<string,bool>vis;string s;void bfs(){priority_queue<node>q;q.push({s,s.size()});while(!q.empty()){node k=q.top();q.pop();if(vis[k.s])continue;vis[k.s]=1;if(check(k.s)){cout<<k.s<<endl;flag=1;return ;}for(int i=0;i<k.s.size();i++){//去掉第i个字符string s1=k.s.substr(0,i)+k.s.substr(i+1);q.push({s1,s1.size()});} }}int main(){cin>>s;bfs();if(!flag)puts("No result.");return 0;} F: 最大计分 题目描述 小米和小花在玩一个删除数字的游戏。 游戏规则如下: 首先随机写下N个正整数,然后任选一个数字作为起始点,从起始点开始从左往右每次可以删除一个数字,但是必须满足下一个删除的数字要小于上一个删除的数字。每成功删除一个数字计1分。 请问对于给定的N个正整数,一局游戏过后可以得到的最大计分是多少? 输入 单组输入。 第1行输入一个正整数N表示数字的个数(N<=10^3)。 第2行输入N个正整数,两两之间用空格隔开。 输出 对于给定的N个正整数,一局游戏过后可以得到的最大计分值。 最长下降子序列 将数组逆转就等价于求最长上升子序列长度 include <bits/stdc++.h>using namespace std;int arr[1005];int main(){int n;cin>>n;for(int i=0;i<n;i++)cin>>arr[i];reverse(arr,arr+n);vector<int>stk;stk.push_back(arr[0]);for (int i = 1; i < n; ++i) {if (arr[i] > stk.back())stk.push_back(arr[i]);elselower_bound(stk.begin(), stk.end(), arr[i]) = arr[i];}cout << stk.size() << endl;return 0;} G: 密钥 题目描述 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输入 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输出 将N划分为K个整数后的最大乘积。 搜索 include <bits/stdc++.h>using namespace std;define ll long longll n;ll ans;void dfs(ll sum,ll m,int res){if(res==1){ans=max(ans,summ);return ;}int num=(int)log10(m)+1;//m的位数int k=10;for(int i=1;i<=num-res+1;i++){//保证剩余的数至少还有res-1位dfs(sum(m%k),m/k,res-1);k=10;}return ;}int main(){cin>>n;dfs(1ll,n,n%10);cout<<ans<<endl;return 0;} H: X星大学 题目描述 X星大学新校区终于建成啦! 新校区一共有N栋教学楼和办公楼。现在需要用光纤把这N栋连接起来,保证任意两栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
469
转载
转载文章
...,等于硬盘1个柱面的大小255 x 63 x 512 = 8MB,所以第一个分区是从扇区16065开始的。 USB-ZIP和USB-FDD会将U盘的第一个扇区格式化成DOS.PBR而不是DOS.MBR。 USB-FDD和USB-ZIP的来历:软盘的容量小,没有分区结构,所以软盘是没有MBR的,整个软盘只有一个分区,第一个扇区就是PBR;FDD和ZIP模式在DOS下启动后U盘的盘符是A。 1.2 GRUB - GRUB又叫OS Loader;在Android系统上,kernelflinger是OS Loader的一个EFI应用 - GRUB镜像组成:GRUB.MBR(boot.img), 硬盘扇区offset 1 到offset 62放置GRUB的core.img,/boot分区的boot/grub/grub.cfg 1.3 创建USB-FDD或者USB-ZIP格式U盘步骤 1)Android上:dd if=/dev/zero of=/dev/block/sda bs=512 count=4 2)Windows上:快速格式化该U盘,这个U盘就只有PBR扇区而没有MBR扇区 2 Windows安装 2.1 BIOS设置 进入BIOS设置,一般有Del、Enter、Esc等键。 2.2 Windows ISO刻录方法 Windows上的Universal USB Installer工具软件:刻录操作系统ISO文件到U盘 Linux下将操作系统ISO文件刻录到U盘:dd if=xxx.iso of=/dev/sda 注意使用的是整个磁盘,所以用的是sda而不是sda1 2.3 Windows GHO镜像安装方法 - 比较常见 1) 制作PE启动U盘 2) 下载Windows ISO镜像后(番茄花园),解压出来,里面包含GHO文件,拷贝到PE启动U盘的GHO文件夹(或者提前将文件.gho拷贝入待装系统的电脑D盘根目录)。 3) 插入PE启动U盘到电脑USB 2.0口,选择从U盘启动,启动到PE界面后,选ghost方式安装,ghost镜像的后缀名.gho。 2.4 Printer 1)HP LaserJet M1005 MFP 2)Nantian PR9 并口-OKI仿真驱动 2.5 Disable Driver Signature bcdedit /set testsigning on bcdedit /set testsigning off 3 Windows网络 3.1 CMD方式配置IP地址 :: netsh: Network Shell @echo off if [%1] == [] ( echo "Usage:" echo "WIN_IP.bat static" echo "WIN_IP.bat dhcp" echo "WIN_IP.bat speed" goto :EOF ) if %1 == static ( call :static_ip ) else if %1 == dhcp ( call :dhcp_ip ) else if %1 == speed ( call :nic_speed ) goto :EOF :: get interface name, use the following command :: getmac /V /FO LIST :static_ip set name="Ethernet" set ip=192.168.0.100 set mask=255.255.255.0 :: gwmetric=1 echo "setting static ip address..." netsh interface ipv4 set address %name% static %ip% %mask% none 1 :: netsh interface ipv4 set dns %name% static 114.114.114.114 :: netsh interface ipv4 add dns %name% 8.8.8.8 goto :EOF :dhcp_ip set name="Ethernet" echo "setting dhcp..." netsh interface ipv4 set address %name% dhcp netsh interface ipv4 set dns %name% dhcp goto :EOF :nic_speed wmic NIC where NetEnabled=true get Name, Speed 3.2 DNS查询流程 1) 现有的DNS缓存 ipconfig /displaydns 2) 查询hosts文件 C:\Windows\System32\drivers\etc\hosts 3) 请求发往DNS服务器 ipconfig /all 3.3 firewall appwiz.cpl msconfig wf.msc Inbound Rules and Outbound Rules Enable 4 File and Printer Sharing (Echo Request - ICMPv4-Out) netsh advfirewall firewall add rule name="UDP ports" protocol=UDP dir=in localport=8080 action=allow https://github.com/DynamoRIO/drmemory/wiki/Downloads 3.4 Multicast - Windows组播client需要使用setsockopt()设置IP_ADD_MEMBERSHIP(加入指定的组播组)才能接收组播server发送的数据。 - 组播MAC地址是指第一个字节的最低位是1的MAC地址。 - 组播MAC地址的前3个字节固定为01:00:5e,后3个字节使用组播IP的后23位。例如239.192.255.251的MAC地址为01:00:5e:40:ff:fb。 - Windows 10 Wireshark要抓取SOME/IP组播报文,需要使用SocketTool工具监听239.192.255.251:30490,然后Wireshark才会显示组播报文,否则不显示(Windows netmon不需要任何设置,就可以抓到全部报文)。 netsh interface ip show joins Win 10 PowerShell: Get-NetAdapter | Format-List -Property ifAlias,PromiscuousMode In Linux, map IP addr to multicast MAC is function ip_eth_mc_map(), kernel eventually calls driver ndo_set_rx_mode() to set multicast MAC to NIC RX MAC filter table. 3.5 NAT 查看当前机器的NAT端口代理表: netsh interface portproxy show all 1) 第三方软件PortTunnel。 2) ICS(Internet Connection Sharing)是NAT的简化版。 3) showcase: USB Reverse Tethering 3.6 route命令用法 route [-f] [-p] [command [destination] [mask netmask] [gateway] [metric metric] [if interface]] route print ::增加一条到192.168.0.10/24网络的路由,网关是192.168.0.1,最后一个if参数是数字,可以使用route print查询,类似于Android的NetId。 route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 metric 1 if 11 ::删除192.168.0.10这条路由 route delete 192.168.0.0 3.7 VLAN PowerShell Get-NetAdapter PowerShell Set-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" -DisplayValue 24 PowerShell Reset-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" 3.8 WiFi AP 1) get password netsh wlan show profiles netsh wlan show profiles name="FAST_ABCD" key=clear 2) enable Soft AP netsh wlan show drivers ::netsh wlan set hostednetwork mode=allow netsh wlan set hostednetwork mode=allow ssid=myWIFI key=12345678 netsh wlan start hostednetwork ::netsh wlan stop hostednetwork 3.9 Malicious software Task Manager Find process name, open file location, remove xxx.exe, rename empty xxx.txt to xxx.exe 4 Office 4.1 Excel Insert Symbol More Symbols Wingdings 2 4.2 Outlook 4.2.1 邮箱清理 点击 自己的邮件名字 Data File Properties(数据文件属性) Folder Size(文件夹大小) Server Data(服务器数据) 从左下角“导航选项”中切换到“日历” View(视图) Change View(更改视图) List(列表) 删除“日历”中过期的项目。 Calendar (Left Bottom) - View (Change View to Calendar) - Choose Menu Month 4.2.2 TCAM filter rule Home - ... - Rules - Create Rule (Manage Rules & Alerts) - Title 4.3 Powerpoint画图 插入 - > 形状 Insert - > Shapes 4.4 Word 升级目录 [References][Update Table] 5 Sprax EA 5.1 Basic Design - Toolbox Message/Argument/Return Value Publish - Save - Save to Clipboard 5.2 Advanced Copy/Paste - Copy to Clipboard - Full Structure for Duplication Copy/Paste - Paste Package from Clipboard 6 USB Win7 CMD: wmic path Win32_PnPSignedDriver | find "Android" wmic path Win32_PnPSignedDriver | find "USB" :: similar to Linux lsusb wmic path Win32_USBControllerDevice get Dependent 7 Abbreviations CAB: Capacity Approval Board NPcap: Nmap Packet Capture wmic: Windows Management Instrumentation Command-line 本篇文章为转载内容。原文链接:https://blog.csdn.net/zoosenpin/article/details/118596813。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 16:27:10
271
转载
转载文章
...s");//获取文件大小//response.setHeader("fSize",String.valueOf(fSize));response.setHeader("fName",file_Name);//定义断点long pos = 0,last = fSize-1,sum = 0;//判断前端需不需要分片下载if (null != request.getHeader("Range")){response.setStatus(HttpServletResponse.SC_PARTIAL_CONTENT);String numRange = request.getHeader("Range").replaceAll("bytes=","");String[] strRange = numRange.split("-");if (strRange.length == 2){pos = Long.parseLong(strRange[0].trim());last = Long.parseLong(strRange[1].trim());//若结束字节超出文件大小 取文件大小if (last>fSize-1){last = fSize-1;} }else {//若只给一个长度 开始位置一直到结束pos = Long.parseLong(numRange.replaceAll("-","").trim());} }long rangeLenght = last-pos+1;String contentRange = new StringBuffer("bytes").append(pos).append("-").append(last).append("/").append(fSize).toString();response.setHeader("Content-Range",contentRange);// response.setHeader("Content-Lenght",String.valueOf(rangeLenght));os = new BufferedOutputStream(response.getOutputStream());is = new BufferedInputStream(new FileInputStream(file));is.skip(pos);//跳过已读的文件(重点,跳过之前已经读过的文件)byte[] buffer = new byte[1024];int lenght = 0;//相等证明读完while (sum < rangeLenght){lenght = is.read(buffer,0, (rangeLenght-sum)<=buffer.length? (int) (rangeLenght - sum) :buffer.length);sum = sum+lenght;os.write(buffer,0,lenght);}log.info("下载完成");}finally {if (is!= null){is.close();}if (os!=null){os.close();} }} } 启动成功 Vue <html xmlns:th="http://www.thymeleaf.org"><head><meta charset="utf-8"/><title>狂神说Java-ES仿京东实战</title><link rel="stylesheet" th:href="@{/css/style.css}"/></head><body class="pg"><div class="page" id="app"><div id="mallPage" class=" mallist tmall- page-not-market "><!-- 头部搜索 --><div id="header" class=" header-list-app"><div class="headerLayout"><div class="headerCon "><!-- Logo--><h1 id="mallLogo"><img th:src="@{/images/jdlogo.png}" alt=""></h1><div class="header-extra"><!--搜索--><div id="mallSearch" class="mall-search"><form name="searchTop" class="mallSearch-form clearfix"><fieldset><legend>天猫搜索</legend><div class="mallSearch-input clearfix"><div class="s-combobox" id="s-combobox-685"><div class="s-combobox-input-wrap"><input v-model="keyword" type="text" autocomplete="off" value="java" id="mq"class="s-combobox-input" aria-haspopup="true"></div></div><button type="submit" @click.prevent="searchKey" id="searchbtn">搜索</button></div></fieldset></form><ul class="relKeyTop"><li><a>狂神说Java</a></li><li><a>狂神说前端</a></li><li><a>狂神说Linux</a></li><li><a>狂神说大数据</a></li><li><a>狂神聊理财</a></li></ul></div></div></div></div></div><el-button @click="download" id="download">下载</el-button><!-- <el-button @click="concurrenceDownload" >并发下载测试</el-button>--><el-button @click="stop">停止</el-button><el-button @click="start">开始</el-button>{ {fileFinalOffset} }{ {contentList} }<el-progress type="circle" :percentage="percentage"></el-progress></div><!--前端使用Vue,实现前后端分离--><script th:src="@{/js/axios.min.js}"></script><script th:src="@{/js/vue.min.js}"></script><!-- 引入样式 --><link rel="stylesheet" href="https://unpkg.com/element-ui/lib/theme-chalk/index.css"><!-- 引入组件库 --><script src="https://unpkg.com/element-ui/lib/index.js"></script><script>new Vue({ el: 'app',data: {keyword: '', //搜索关键字results: [] ,//搜索结果percentage: 0, // 下载进度filesCurrentPage:0,//文件开始偏移量fileFinalOffset:0, //文件最后偏移量stopRecursiveTags:true, //停止递归标签,默认是true 继续进行递归contentList: [], // 文件流数组breakpointResumeTags:false, //断点续传标签,默认是false 不进行断点续传temp:[],fileMap:new Map(),timer:null, //定时器名称},methods: {//根据关键字搜索商品信息searchKey(){var keyword=this.keyword;axios.get('/search/JD/search/'+keyword+"/1/10").then(res=>{this.results=res.data;//绑定数据console.log(this.results)console.table(this.results)})},//停止下载stop(){//改变递归标签为falsethis.stopRecursiveTags=false;},//开始下载start(){//重置递归标签为true 最后进行合并this.stopRecursiveTags=true;//重置断点续传标签this.breakpointResumeTags=true;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
547
转载
转载文章
... 锁定用户账号方法一[root@hehe ~] passwd -l test3 锁定用户账号方法二[root@hehe ~] usermod -U test2 解锁用户账号方法一[root@hehe~] passwd -u test3 解锁用户账号方法二查看账户有没有被锁:passwd -S [用户名] 3.删除无用的账号 [root@hehe ~] userdel test1[root@hehe~] userdel -r test2 4.锁定账号文件passwd,shadow [root@hehe ~] chattr +i /etc/passwd /etc/shadow 锁定文件,包括root也无法修改[root@hehe ~] chattr -i /etc/passwd /etc/shadow 解锁文件[root@hehe ~] lsattr /etc/passwd /etc/shadow查看文件状态属性 举个例子: 二.密码安全控制: 1.设置密码有效期: 1.[root@localhost ~] chage -M 60 test3 这种方法适合修改已经存在的用户12.[root@localhost ~] vim /etc/login.defs 这种适合以后添加新用户PASS_MAX_DAYS 30 1.这个方法适用于早就已经存在的用户: 2.这个方法适用于新用户 2.要求用户下次登录时改密码: [root@hehe ~] chage -d 0 [用户名] 强制要求用户下次登陆时修改密码 三.命令历史限制与自动注销 1.命令历史限制: 1.减少记录的命令条数 减少记录命令的条数:1.[root@hehe ~] vim /etc/profile 进入配置文件修改限制命令条数。适合新用户HISTSIZE=200 修改限制命令为200条,系统默认是1000条profile [root@lhehe ~] source /etc/ 刷新配置文件,使文件立即生效2.[root@hehe~] export HISTSIZE=200 适用于当前(之后)用户[root@hehe~] source /etc/profile [root@hehe ~] source /etc/profile 刷新配置文件,使文件立即生效 1.减少记录命令的条数(适用之前的用户): 2.注销时自动清空命令历史 3. 注销时自动清空命令:[root@hehe ~] vim ~/.bash_logout(临时清除,重启缓存的话还在)echo "" > ~/.bash_history(永久删除)history是查你使用过的命令 2.终端自动注销: 1.闲置600秒后自动注销 闲置600秒后自动注销:[root@hehe ~]vim .bash_profile 进入配置文件export TMOUT=600 全局声明超过60秒闲置后自动注销终端[root@hehe ~] source .bash_profile [root@hehe ~] echo $TMOUT[root@hehe ~] export TMOUT=600 如果不在配置文件输入这条命令,那么是对当前用户生效[root@hehe ~]vim .bash_profile export TMOUT=600 注释掉这条命令,就不会自动注销了 四.PAM安全认证 1.su的命令的安全隐患 1.,默认情况下,任何用户都允许使用su命令,有机会反复尝试其他用户(如root) 的登录密码,带来安全风险; 2.为了加强su命令的使用控制,可借助于PAM认证模块,只允许极个别用户使用su命令进行切换。 2.什么是PAM 1.PAM(Pluggable Authentication Modules)可插拔式认证模块 2.是一种高效而且灵活便利的用户级别的认证方式; 3.也是当前Linux服务器普遍使用的认证方式。 4.PAM提供了对所有服务进行认证的中央机制,适用于login,远程登陆,su等应用 5.系统管理员通过PAM配置文件来制定不同的应用程序的不同认证策略 3.PAM认证原理 1.PAM认证一般遵循的顺序: Service (服务) --> PAM (配置文件) --> pam_.so;, 2.PAM认证首先要确定哪一项应用服务,然后加载相应的PAM的配置文件(位于/etc/pam.d下),最后调用认 模块(位于/lib64/security/下)进行安全认证。 3.用户访问服务器的时候,服务器的某一个服务程序把用户的请求发送到PAM模块进行认证。不同的应用程序所对应的PAM模块也是不同的。 4.如果想查看某个程序是否支持PAM认证,可以用ls命令进行查看/etc/pam.d/。 ls /etc/pam.d/ | grep su 5.PAM的配置文件中的每一行都是一个独立的认证过程,它们按从上往下的顺序依次由PAM模块调用。 4.PAM安全认证流程 控制类型也称做Control Flags,用于PAM验证类型的返回结果 用户1 用户2 用户3 用户4 auth required 模块1 pass fail pass pass auth sufficient 模块2 pass pass fail pass auth required 模块3 pass pass pass fail 结果 pass fail pass pass 4 五.限制使用su命令的用户(pam-wheel认证模块) 1.su命令概述: 通过su命令可以非常方便切换到另一个用户,但前提条件是必须知道用户登录密码。对于生产环境中的Linux服务器,每多一个人知道特权密码,安全风险就多一分。于是就多了一种折中的办法,使用sudo命令提升执行权限,不过需要由管理员预先进行授权, 指定用户使用某些命令: 2. su命令的用途以及用法: 用途:以其他用户身份(如root)执行授权命令用法:sudo 授权命令 3.配置su的授权(加入wheel组)(pam_wheel认证模块:): 进入授权命令:1.visudo 或者 vim /etc/sudoers语法格式:1.用户 主机名=命令程序列表2.用户 主机名=(用户)命令程序列表-l:列出用户在主机上可用的和被禁止的命令;一般配置好/etc/sudoers后,要用这个命令来查看和测试是不是配置正确的;-v:验证用户的时间戳;如果用户运行sudo后,输入用户的密码后,在短时间内可以不用输入口令来直接进行sudo操作;用-v可以跟踪最新的时间戳;-u:指定以以某个用户执行特定操作;-k:删除时间戳,下一个sudo命令要求用求提供密码; 1.首先创建3个组 2.vim /etc/pam.d/su把第六行注释去掉保存退出 1. 以上两行是默认状态(即开启第一行,注释第二行),这种状态下是允许所有用户间使用su命令进行切换的 2.两行都注释也是运行所有用户都能使用su命令,但root下使用su切换到其他普通用户需要输入密码: 3.如果第–行不注释,则root 使用su切换普通用户就不需要输入密码( pam_ rootok. so模块的主要作用是使uid为0的用户,即root用户能够直接通过认证而不用输入密码。) 4.如果开启第二行,表示只有root用户和wheel1组内的用户才可以使用su命令。 5.如果注释第一行,开启第二行,表示只有whee1组内的用户才能使用su命令,root用户也被禁用su命令。 3.将liunan加入到wheel之后,hehe就有了使用su命令的权限 4.使用pam_wheel认证后,没有在wheel里的用户都不能再用su 5.whoami命令确定当前用户是谁 4.配置/etc/sudoers文件(授权用户较多的时候使用): visudo单个授权visudo 或者 vim /etc/sudoers记录格式:user MACHINE=COMMANDS可以使用通配符“ ”号任意值和“ !”号进行取反操作。%组名代表一整个组权限生效后,输入密码后5分钟可以不用重新输入密码。例如:visudo命令下user kiro=(root)NOPASSWD:/usr/sbin/useradd,PASSWD:/usr/sbin/usermod代表 kiro主机里的user用户,可以无密码使用useradd命令,有密码使用usermod/etc/sudoers多个授权Host_Alias MYHOST= localhost 主机别名:主机名、IP、网络地址、其他主机别名!取反Host_Alias MAILSVRS=smtp,pop(主机名)User_Alias MYUSER = kiro,user1,lisi 用户别名:包含用户、用户组(%组名(使用引导))、还可以包含其他其他已经用户的别名User_Alias OPERATORS=zhangsan,tom,lisi(需要授权的用户)Cmnd_Alias MYCMD = /sbin/,/usr/bin/passwd 命令路劲、目录(此目录内的所有命令)、其他事先定义过的命令别名Cmnd_Alias PKGTOOLS=/bin/rpm,/usr/bin/yum(授权)MYUSER MYHOST = NOPASSWD : MYCMDDS 授权格式sudo -l 查询目前sudo操作查看sudo操作记录需启用Defaults logfile配置默认日志文件: /var/log/sudosudo -l 查看当前用户获得哪些sudo授权(启动日志文件后,sudo操作过程才会被记录) 1.首先用visudo 或者 vim /etc/sudoers进入,输入需要授权的命令 2.切换到taojian用户,因为设置了它不能使用创建用户的命令所以无法创建 六.开关机安全控制 1.调整BIOS引导设置 1.将第一引导设备设为当前系统所在硬盘2.禁止从其他设备(光盘、U盘、网络)引导系统3.将安全级别设为setup,并设置管理员密码 2.GRUB限制 1.使用grub2-mkpasswd-pbkdf2生成密钥2.修改/etclgrub.d/00_header文件中,添加密码记录3.生成新的grub.cfg配置文件 方法一: 通常情况下在系统开机进入GRUB菜单时,按e键可以查看并修改GRUB引导参数,这对服务器是一个极大的威胁。可以为GRUB菜单设置一个密码,只有提供正确的密码才被允许修改引导参数。grub2-mkpasswd-pbkdf2 根据提示设置GRUB菜单的密码PBKDF2 hash of your password is grub.pbkd..... 省略部分内容为经过加密生成的密码字符串cp /boot/grub2/grub.cfg /boot/grub2/grub.cfg.bak 8cp /etc/grub.d/00_header /etc/grub.d/00_header.bak 9vim /etc/grub.d/00_headercat << EOFset superusers="root" 设置用户名为rootpassword_pbkdf2 root grub.pbkd2..... 设置密码,省略部分内容为经过加密生成的密码字符串EOF16grub2-mkconfig -o /boot/grub2/grub.cfg 生成新的grub.cfg文件重启系统进入GRUB菜单时,按e键将需要输入账号密码才能修改引导参数。 方法二: 1.一步到位2.grub2-setpassword 七.终端以及登录控制 1.限制root只在安全终端登录 安全终端配置文件在 /etc/securetty 2..禁止普通用户登录 1.建立/etc/nologin文件 2.删除nologin文件或重启后即恢复正常 vim /etc/securetty在端口前加号拒绝访问touch /etc/nologin 禁止普通用户登录rm -rf /etc/nologin 取消禁止 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 1.一款密码分析工具,支持字典式的暴力破解2.通过对shadow文件的口令分析,可以检测密码强度3.官网网站:http://www.openwall.com/john/ 2.安装弱口令账号 1.获得Linux/Unix服务器的shadow文件2.执行john程序,讲shadow文件作为参数 3.密码文件的暴力破解 1.准备好密码字典文件,默认为password.lst2.执行john程序,结合--wordlist=字典文件 九.网络端口扫描 1.NMAP 1.—款强大的网络扫描、安全检测工具,支持ping扫描,多端口检测等多种技术。2.官方网站: http://nmap.orgl3.CentOS 7.3光盘中安装包,nmap-6.40-7.el7.x86_64.rpm 2.格式 NMAP [扫描类型] [选项] <扫描目标....> 安装NMAP软件包rpm -qa | grep nmapyum install -y nmapnmap命令常用的选项和扫描类型-p:指定扫描的端口。-n:禁用反向DNS 解析 (以加快扫描速度)。-sS:TCP的SYN扫描(半开扫描),只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
100
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
timeout 5 command
- 执行命令并在5秒后强制终止。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"