前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[SELECT COUNT 区别于 COU...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Atlas
...roject { "name": "my_project", "description": "My first project with Apache Atlas" } 三、集群部署模式 集群部署模式适合中大型企业或团队使用,可以提高系统的可用性和性能。 1. 部署步骤 在多台机器上安装并启动Apache Atlas的所有服务; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在集群中创建一个项目的代码示例: php-template // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 四、混合部署模式 混合部署模式结合了单机和集群的优势,既可以提供较高的性能,又可以保证数据的安全性和可靠性。 1. 部署步骤 在单台机器上安装并启动Apache Atlas的服务,作为中央控制节点; 在多台机器上安装并启动Apache Atlas的服务,作为数据处理节点; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在混合部署中创建一个项目的代码示例: javascript // 创建中央控制节点 GET http://localhost:21000/api/v2/projects // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建数据处理节点 POST http://localhost:21000/api/v2/nodes { "hostName": "data-node-1", "port": 21001, "role": "DATA_NODE" } // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 五、微服务部署模式 微服务部署模式是近年来越来越流行的一种部署方式,可以让企业更加灵活地应对业务的变化和需求的增长。 1. 部署步骤 将Apache Atlas分解为多个微服务,例如:项目管理、数据目录、元数据存储等; 使用Docker进行容器化部署; 使用Kubernetes进行服务编排和管理; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在微服务部署中创建一个项目的代码示例: javascript // 安装并启动项目管理微服务 docker run -d --name atlas-project-management my-atlas-project-management-image // 安装并启动数据目录微服务 docker run -d --name atlas-data-directory my-atlas-data-directory-image // 安装并启动元数据存储微服务 docker run -d --name atlas-metadata-storage my-atlas-metadata-storage-image // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 总结 Apache Atlas有多种部署模式供用户选择,用户可以根据自己的需求和技术条件来选择最合适的部署方式。甭管您选择哪种部署方式,Apache Atlas都能像个小助手一样,帮助企业老铁们把数据资产打理得井井有条,妥妥地保护好这些宝贝资源。
2023-07-31 15:33:19
457
月下独酌-t
转载文章
本文详细介绍了使用gcc编译器对C语言源代码进行编译的各种选项和流程,包括从单个源文件生成可执行文件、预处理及生成汇编语言文件。文章阐述了如何创建静态库(.a文件)和共享库(.so文件),以及覆盖默认文件命名约定的方法。此外,还提及了通过gcc命令行参数提取函数原型以生成头文件的技巧。关键词:gcc编译器、源文件、目标文件、可执行文件、预处理、汇编语言、静态库、共享库、命名约定、头文件。
2023-06-29 13:05:13
53
转载
Nacos
...ication --name gatewayserver-dev-${server.env}.yaml --type yaml --label development; 2. 将新的dataId添加到Nacos服务器中 输入命令 ncs config put --group application --name gatewayserver-dev-${server.env}.yaml --content '{"server": {"env": "development"} }'; 3. 更新Nacos中的数据 最后,我们需要确保Nacos中的数据能够及时更新。具体的操作步骤如下: 1) 打开终端,输入命令 ncs config update --group application --name gatewayserver-dev-${server.env}.yaml --content '{"server": {"env": "development"} }' 更新dataId的内容; 2) 然后,我们需要等待一段时间,让Nacos服务器能够接收到更新的数据。在等待的过程中,我们可以通过监控Nacos服务器的状态,来查看数据是否已经更新完成; 3) 当数据更新完成后,我们就可以顺利地访问dataId了。 四、总结 总的来说,当我们在使用Nacos时遇到问题时,我们不应该轻易放弃,而应该积极寻找解决问题的方法。这篇内容呢,主要是围绕着“Nacos error, dataId: gatewayserver-dev-${server.env}.yaml”这个小麻烦,掰开了揉碎了讲了它的来龙去脉,还有咱们怎么把它摆平的解决之道。希望这份心得能帮到大家,让大家在使用Nacos的时候更加得心应手,畅行无阻~在未来的求学和工作中,我真心希望大家伙儿能更注重抓问题的核心本质,别只盯着表面现象浮光掠影!
2023-09-10 17:16:06
55
繁华落尽_t
DorisDB
...ader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "password", "connection": [ {"jdbcUrl": ["jdbc:mysql://source-db:3306/mydb"]} ], "table": ["mytable"] } }, "writer": { "name": "doriswriter", "parameter": { "feHost": "doris-fe:8030", "bePort": 9050, "database": "mydb", "table": "mytable" } } } ] } } 若MySQL端发生异常,如连接断开或表结构被删除,会导致上述同步任务执行失败。 2.2 同步配置错误 - 场景描述:配置文件中的参数设置不正确,例如DorisDB的FE地址、BE端口或者表名、列名等不匹配,也会导致数据无法正常同步。 2.3 网络波动或资源不足 - 场景描述:在同步过程中,由于网络不稳定或者DorisDB所在集群资源(如内存、磁盘空间)不足,也可能造成同步任务失败。 3. 排查与解决方法 3.1 查看日志定位问题 - 操作过程:首先查看DorisDB FE和BE的日志,以及数据同步工具(如DataX)的日志,通常这些日志会清晰地记录下出错的原因和详细信息。 3.2 检查数据源状态 - 理解与思考:如果日志提示是数据源问题,那么我们需要检查数据源的状态,确保其稳定可用,并且表结构、权限等符合预期。 3.3 核实同步配置 - 举例说明:假设我们在同步配置中误写了一个表名,可以通过修正并重新运行同步任务来验证问题是否得到解决。 java // 更正后的writer部分配置 "writer": { "name": "doriswriter", "parameter": { "feHost": "doris-fe:8030", "bePort": 9050, "database": "mydb", // 注意这里已更正表名 "table": ["correct_table_name"] } } 3.4 监控网络与资源状况 - 探讨性话术:对于因网络或资源问题导致的同步失败,我们可以考虑优化网络环境,或者适当调整DorisDB集群资源配置,比如增加磁盘空间、监控并合理分配内存资源。 4. 总结 面对DorisDB数据同步失败的情况,我们需要像侦探一样细致入微,从日志、配置、数据源以及运行环境等多个角度入手,逐步排查问题根源。通过实实在在的代码实例演示,咱们就能更接地气地明白各个环节可能潜藏的小问题,然后对症下药,精准地把这些小bug给修复喽。虽然解决问题的过程就像坐过山车一样跌宕起伏,但每当我们成功扫除一个障碍,就仿佛是在DorisDB这座神秘宝库里找到新的秘密通道。这样一来,我们对它的理解愈发透彻,也让我们的数据分析之旅走得更稳更顺溜,简直像是给道路铺上了滑板鞋,一路畅行无阻。
2024-02-11 10:41:40
433
雪落无痕
Greenplum
...了。 sql SELECT FROM gp_toolkit.gp_inject_fault('gp_segment_host', 'random_io_error', 1, true); 这段代码将模拟随机IO错误,从而模拟硬件故障的情况。我们可以通过这种方式来测试我们的数据恢复机制。 2.2 系统错误 系统错误也可能导致数据文件完整性检查失败。比如,操作系统要是突然罢工了,或者进程卡壳不动弹了,这就可能会让还没完成的数据操作给撂挑子,这样一来,完整性检查也就难免会受到影响啦。 sql kill -9 ; 这段代码将杀死指定PID的进程。我们可以使用这种方式来模拟系统错误。 2.3 用户错误 用户错误也是导致数据文件完整性检查失败的一个重要原因。比如,假如用户手滑误删了关键数据,或者不留神改错了数据结构,那么完整性校验这一关就过不去啦。 sql DELETE FROM my_table; 这段代码将删除my_table中的所有记录。我们可以使用这种方式来模拟用户错误。 3. 解决方案 3.1 备份与恢复 为了防止数据丢失,我们需要定期备份数据,并且要确保备份是完整的。一旦发生数据文件完整性检查失败,我们可以从备份中恢复数据。 sql pg_dumpall > backup.sql 这段代码将备份整个数据库到backup.sql文件中。我们可以使用这个文件来恢复数据。 3.2 系统监控 通过系统监控,我们可以及时发现并解决问题。比如,假如我们瞅见某个家伙的CPU占用率爆表了,那咱就得琢磨琢磨,是不是这家伙的硬件出啥幺蛾子了。 sql SELECT datname, pg_stat_activity.pid, state, query FROM pg_stat_activity WHERE datname = ''; 这段代码将显示当前正在运行的所有查询及其状态。我们可以根据这些信息来判断是否存在异常情况。 3.3 用户培训 最后,我们应该对用户进行培训,让他们了解正确的使用方法,避免因为误操作而导致的数据文件完整性检查失败。 sql DO $$ BEGIN RAISE NOTICE 'INSERT INTO my_table VALUES (1, 2)'; EXCEPTION WHEN unique_violation THEN RAISE NOTICE 'Error: INSERT failed'; END$$; 这段代码将在my_table表中插入一条新的记录。我们可以使用这个例子来教给用户如何正确地插入数据。 4. 结论 数据文件完整性检查失败是一个严重的问题,但我们并不需要害怕它。只要我们掌握了正确的知识和技能,就能够有效地应对这个问题。 通过本文的学习,你应该已经知道了一些可能导致数据文件完整性检查失败的原因,以及一些解决方案。希望这篇文章能够帮助你在遇到问题时找到正确的方向。
2023-12-13 10:06:36
530
风中飘零-t
转载文章
...o":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} {"$env":{"JSON":{} },"$page":{"env":"production"},"$context":{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39884323/article/details/110752404。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 19:12:04
257
转载
MyBatis
...ing columnName) throws SQLException { return decrypt(rs.getString(columnName)); } private String encrypt(String str) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, keySpec); byte[] encryptedBytes = cipher.doFinal(str.getBytes()); return Base64.getEncoder().encodeToString(encryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } private String decrypt(String encryptedStr) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, keySpec); byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(encryptedStr)); return new String(decryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } } 在这个TypeHandler中,我们实现了setNonNullParameter和getNullableResult方法,分别用于设置和获取字段的值。在这些方法中,我们都调用了encrypt和decrypt方法来进行加密和解密操作。 2. 配置TypeHandler 接下来,我们需要在Mybatis的配置文件中配置这个TypeHandler。举个例子,实际上我们得在那个标签区域里头,给它添个新成员。具体操作就像这样:给这个新元素设定好它对应处理的Java类型和数据库类型,就像是给它分配了特定的任务一样。代码如下: xml 这样,我们就成功地配置了这个TypeHandler。 3. 使用TypeHandler 最后,我们可以在Mybatis的映射文件中使用这个TypeHandler来处理我们的加密字段。例如,如果我们有一个User实体类,其中有两个字段(field1和field2),我们就可以在映射文件中这样配置: xml SELECT FROM users; UPDATE users SET field1 = {field1}, field2 = {field2} WHERE id = {id}; 这样,当我们在查询或更新用户的时候,就会自动调用我们刚才配置的TypeHandler来进行加密操作。 五、总结 总的来说,通过利用Mybatis的TypeHandler功能,我们可以很方便地实现多个字段的加密。虽然这个过程可能稍微有点绕,不过只要我们把这背后的原理摸透了,就能像变戏法一样,在各种场景中轻松应对,游刃有余。 六、后续工作 未来,我们可以考虑进一步优化这个TypeHandler,让它能够支持更多的加密算法和加密模式。另外,咱们还可以琢磨一下把这个功能塞进其他的平台或者工具里头,让更多的小伙伴都能享受到它的便利之处。 这就是我对于Mybatis-plus多字段如何加密不同密码的一些理解和实践,希望能够对你有所帮助。如果你有任何问题或者建议,欢迎随时给我留言。
2023-07-21 08:07:55
149
飞鸟与鱼_t
Kubernetes
...资源类型“ScopeSelector”,使得管理员能够更加精细地控制资源配额在不同范围内的应用规则。 此外,针对多租户环境下的资源隔离问题,CNCF社区的一些开源项目如OpenYurt、KubeSphere等也提供了更完善的资源配额解决方案。例如,KubeSphere 3.2版本中推出的“动态资源配额调整”功能,可根据实时监控数据自动调整Namespace级别的资源限制,有效防止资源浪费并确保服务稳定性。 同时,对于企业级用户来说,结合成本优化策略使用Kubernetes资源配额显得尤为重要。在实际场景中,通过合理设置Pod的requests和limits以配合云服务商的计费模式,并借助HPA(Horizontal Pod Autoscaler)实现动态扩容缩容,不仅能够保障服务质量,更能显著降低运维成本。 因此,持续关注Kubernetes及相关生态项目的最新进展,结合业务需求灵活运用资源配额管理机制,是提升容器化微服务架构效率与稳定性的关键举措。同时,提倡团队内部进行资源利用习惯的培养与分享,共同推进技术创新与最佳实践落地。
2023-12-27 11:05:05
133
岁月静好
转载文章
...rator = {.name = “vibrator”,.gpio = 61, //对应自己平台的gpio号.max_timeout = 100000,.active_low = 0;};static struct timed_gpio_platform_data timed_gpio_data = {.num_gpios = 1,.gpios = &vibrator,};static struct platform_device my_timed_gpio = {.name = “timed-gpio”,.id = -1,.dev = {.platform_data = &timed_gpio_data,},}; 然后在make menuconfig中选上device下的staging下的android中的相关选项 然后就可以跑一下内核来了,当内核跑起来后,就可以测试了。 因为timed gpio驱动程序为每个设备在/sys/class/timed_output/目录下建立一个子 录,设备子目录的enable文件就是控制设备的时间的。因为在platform中名称为vibrator, 所以,用以下命令可以测试: echo 10000 > /sys/class/timed_output/vibrator/enable 然后可以看下振动器在转了,也可以用示波器或者万用表来验证 接着可以 cat /sys/class/timed_output/vibrator/enable 发现enable的值一直在变小,直到为0的时候停止了转动了。 OK,底层驱动好了,那么android上层就好办多了,因为android上层几乎和平台关系不大,要改的东西很少很少。 至于android硬件抽象层,在hardware/libhardware_legacy/include/hardware_legacy/ vibrator目录下。 include <hardware_legacy/vibrator.h>include "qemu.h"include <stdio.h>include <unistd.h>include <fcntl.h>include <errno.h>define THE_DEVICE "/sys/class/timed_output/vibrator/enable"int vibrator_exists(){int fd;ifdef QEMU_HARDWAREif (qemu_check()) {return 1;}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return 0;close(fd);return 1;}static int sendit(int timeout_ms){int nwr, ret, fd;char value[20];ifdef QEMU_HARDWAREif (qemu_check()) {return qemu_control_command( "vibrator:%d", timeout_ms );}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return errno;nwr = sprintf(value, "%d\n", timeout_ms);ret = write(fd, value, nwr);close(fd);return (ret == nwr) ? 0 : -1;}int vibrator_on(int timeout_ms){/ constant on, up to maximum allowed time /return sendit(timeout_ms);}int vibrator_off(){return sendit(0);} 看到了吧 define THE_DEVICE "/sys/class/timed_output/vibrator/enable" 就是我们要操作的底层驱动的地方,只要这个和驱动配上,那么剩下的事情就木有了,直接搞定了。 其实她也是往这里写数据,android的java层就不关心她了。好了,然后可以在android启动后设置一个闹钟来测试下了,发现可以,至此android的vibrator移植成功。 突然发现了,其实以前觉得很难得东西,很不好理解的东西,在过一段时间后再回过头去看的时候才会恍然大悟。学习是个漫长的过程,是一个知识慢慢积累的过程,一口气是吃不成胖子的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/eastmoon502136/article/details/7909688。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-17 14:30:45
82
转载
Apache Pig
...r_id:int, name:chararray, email:chararray); -- 进行内联接操作 joined_data = JOIN orders BY customer_id, customers BY customer_id; -- 显示结果 DUMP joined_data; 在这个例子中,JOIN orders BY customer_id, customers BY customer_id;这句Pig Latin语句完成了两个数据集基于customer_id字段的内联接操作。 (示例二) 左外联接操作 有时,我们可能需要获取所有订单以及相关的客户信息,即使某些订单找不到对应的客户记录。 pig -- 左外联接操作 left_joined_data = JOIN orders BY customer_id LEFT, customers BY customer_id; -- 查看结果,未找到匹配项的客户信息将以null表示 DUMP left_joined_data; 4. 思考与理解过程 使用Apache Pig进行多表联接时,它的优势在于其底层自动优化JOIN算法,可以有效利用Hadoop MapReduce框架的分布式计算能力,大大提高了处理大规模数据集的效率。另外,Pig Latin这门语言的语法设计得既简单又明了,学起来超省劲儿,这样一来,开发者就能把更多的精力放在对付那些复杂的数据处理逻辑上,而不是在底层实现的细枝末节里兜圈子啦。 5. 探讨与总结 Apache Pig在处理多表联接这类复杂操作上表现出了卓越的能力,不仅简化了数据处理流程,还极大地提升了开发效率。虽然Pig确实帮我们省了不少力气,但身为数据工程师,在实际工作中咱们还是得绞尽脑汁琢磨怎么巧妙地设计JOIN条件。为啥呢?就是为了避免那些不必要的性能卡壳问题呗。同时,咱们还要灵活应变,根据实际情况挑选出最对味的数据模型和JOIN类型,让工作更加顺溜儿。 总的来说,Apache Pig以其人性化的语言风格、高效的执行引擎以及丰富的JOIN功能,在大数据处理领域展现了独特魅力。对于那些埋头苦干,热衷于从浩瀚数据海洋中挖宝的家伙们来说,真正掌握并灵活运用Pig进行多表联接,那可是让工作效率蹭蹭上涨的超级大招啊!
2023-06-14 14:13:41
457
风中飘零
Mongo
... data = {'name': 'John', 'age': 30} x = col.insert_one(data) print(x.inserted_id) 以上就是一个简单的MongoDB插入数据的例子。瞧瞧,MongoDB这玩意儿操作起来真够便捷的,不过碰上那些烧脑的数据一致性难题时,咱们就得撸起袖子,好好钻研一下MongoDB背后的工作原理和独特技术特点了。
2023-12-21 08:59:32
78
海阔天空-t
Impala
...- 示例SQL查询 SELECT FROM employees WHERE department = 'IT' ORDER BY salary DESC; 2. 逻辑优化阶段 解析后的SQL被转化为逻辑执行计划,如关系代数表达式。在此阶段,优化器会进行子查询展开、常量折叠等逻辑优化操作。 3. 物理优化阶段 进一步地,优化器会生成多种可能的物理执行计划,并计算每种计划的执行代价(如I/O代价、CPU代价)。比如,拿刚才那个查询来说吧,我们可能会琢磨两种不同的处理方法。一种呢,是先按照部门给它筛选一遍,然后再来个排序;另一种嘛,就是先不管三七二十一,先排个序再说,完了再进行过滤操作。 4. 计划选择阶段 根据各种物理执行计划的代价估算,优化器会选择出代价最低的那个计划。最终,Impala将按照选定的最优执行计划来执行查询。 04 实战示例:观察查询计划 让我们实际动手,通过EXPLAIN命令观察Impala如何优化查询: sql -- 使用EXPLAIN命令查看查询计划 EXPLAIN SELECT FROM employees WHERE department = 'IT' ORDER BY salary DESC; 运行此命令后,Impala会返回详细的执行计划,其中包括了各个阶段的操作符、输入输出以及预估的行数和代价。从这些信息中,我们可以窥见查询优化器背后的“智慧”。 05 探讨与思考 理解查询优化器的工作机制,有助于我们在编写SQL查询时更好地利用Impala的性能优势,比如合理设计索引、避免全表扫描等。同时呢,咱们也得明白这么个道理,虽然现在这查询优化器已经聪明到飞起,但在某些特定的情况下,它可能也会犯迷糊,没法选出最优解。这时候啊,就得我们这些懂业务、又摸透数据库原理的人出手了,瞅准时机,亲自上阵给它来个手工优化,让事情变得美滋滋的。 总结来说,Impala查询优化器是我们在大数据海洋中探寻宝藏的重要工具,只有深入了解并熟练运用,才能让我们的数据探索之旅更加高效顺畅。让我们一起携手揭开查询优化器的秘密,共同探索这片充满无限可能的数据世界吧!
2023-10-09 10:28:04
408
晚秋落叶
转载文章
...ge.json {"name": "checkStr","version": "1.0.0","description": "","main": "index.js","scripts": {"test": "echo \"Error: no test specified\" && exit 1"},"author": "","license": "ISC","dependencies": {"wx-server-sdk": "~2.3.1"} } 4.右键点击 云函数文件夹 checkStr 实例文件夹 点击上传并部署:云端安装依赖(不上传node_modules) 上传成功之后再右键点击当前文件夹 点击本地调试 会跳出来云函数界面 勾选本地调试 5.在页面中使用 wx.cloud.init();wx.cloud.callFunction({name: 'checkStr',data: {text: e.detail.value?e.detail.value:'1' // 这一步是处理输入框值手动清空的时候会被检测出敏感词,不知道什么原因抱歉} }).then((res) => {if (res.result.code == "200") {this.setData({sendValue: e.detail.value})} else {this.setData({sendValue: ''})wx.showToast({title: '包含敏感字哦。',icon: 'none',duration: 3000})} }) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42046201/article/details/108998434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-20 15:53:16
103
转载
DorisDB
...test' username = 'sa' password = 'abc123' conn_str = f'DRIVER={ {ODBC Driver 17 for SQL Server} };SERVER={server};DATABASE={database};UID={username};PWD={password}' 接下来,我们可以使用pyodbc模块中的$conn_str$变量来创建一个ODBC连接,并从中读取数据。例如: less import pyodbc server = 'localhost' database = 'test' username = 'sa' password = 'abc123' conn_str = f'DRIVER={ {ODBC Driver 17 for SQL Server} };SERVER={server};DATABASE={database};UID={username};PWD={password}' cnxn = pyodbc.connect(conn_str) cursor = cnxn.cursor() 查询数据 cursor.execute('SELECT FROM Customers') for row in cursor: print(row) 关闭连接 cursor.close() cnxn.close() 五、结论 总的来说,数据库版本不匹配是一个比较常见的问题,但是只要我们掌握了正确的方法,就能够很容易地解决这个问题。我希望这篇文
2023-03-28 13:12:45
430
笑傲江湖-t
Beego
...译SQL语句(例如:SELECT FROM user WHERE id=?) query.Filter("id", 1).Prepare() // 多次执行预编译后的查询 for i := 0; i < 100; i++ { query.One(&user) } 在这个例子中,Prepare()方法负责对SQL进行预编译并将其存储至缓存。 3. 预编译语句缓存失效问题及其分析 然而,在某些特定场景下,如动态生成SQL或者SQL结构发生改变时,预编译语句缓存可能无法正常发挥作用。例如: go for _, id := range ids { // ids是一个动态变化的id列表 query.Filter("id", id).One(&user) } 在这种情况下,由于每次循环内的id值不同,导致每次Filter调用后生成的SQL语句实质上并不相同,原有的预编译语句缓存就失去了意义,系统会不断地进行新的SQL编译,反而可能导致性能下降。 4. 内存泄漏问题及其解决思路 另一方面,预编译语句缓存若不加以合理管理,可能会引发内存泄漏。虽然Beego ORM这个小家伙自身已经内置了缓存回收的功能,但在那些跑得特别久的应用程序里,假如咱们预编译了一大堆SQL语句却不再用到它们,理论上这部分内存就会被白白占用,不会立马被释放掉。 为了解决这个问题,我们可以考虑适时地清理无用的预编译语句缓存,例如在业务逻辑允许的情况下,结合应用自身的生命周期进行手动清理: go o.ResetStmtCache() // 清空预编译语句缓存 同时,也可以在项目开发阶段关注并优化SQL语句的设计,尽量减少不必要的动态SQL生成,确保预编译语句缓存的有效利用。 5. 结论与思考 综上所述,虽然Beego ORM预编译语句缓存是一项强大而实用的功能,但在实际运用中仍需注意其潜在的问题和挑战。只有深入了解并妥善处理这些问题,才能真正发挥其优势,提升我们的应用性能。未来啊,等技术再进步些,加上咱们社区一块儿使劲儿,我可想看到Beego ORM里头能整出一套更牛更智能的预编译语句缓存策略来。这样一来,可就能给开发者们提供更贴心、更顺手的服务啦!
2023-01-13 10:39:29
560
凌波微步
SeaTunnel
...essors: - name: json properties: tolerant: true 然后,我们可以创建一个新的任务,用于从服务器上获取JSON数据: json { "name": "example", "sources": [ { "type": "http", "properties": { "url": "https://example.com/data.json" } } ], "sinks": [ { "type": "mysql", "properties": { "host": "localhost", "port": 3306, "username": "root", "password": "", "database": "example", "table": "data" } } ] } 最后,我们只需要运行 SeaTunnel 的命令,就可以开始同步数据了: bash ./seata-tunnel.sh run example 六、结论 总的来说,解决SeaTunnel中的JSON解析异常问题并不是一件困难的事情。只要我们掌握了正确的处理方法,就能够有效地避免这种情况的发生。同时,我们也可以利用SeaTunnel的强大功能,来处理各种复杂的JSON数据。
2023-12-05 08:21:31
339
桃李春风一杯酒-t
Hive
...你。 sql SELECT FROM my_table ORDER BY non_indexed_column; 这样的话,你需要检查你的查询语句,确保它们是正确的。 2.2 计算资源不足 Hive在处理复杂的查询时,需要大量的计算资源。如果你的Hive集群中的资源(如内存、CPU)不足以支持你的查询,那么查询就会失败。 这种情况通常发生在你的查询过于复杂,或者你的Hive集群中的节点数量不足的时候。要解决这个问题,你有两个选择:一是给你的集群添点新节点,让它更强大;二是让查询变得更聪明、更高效,也就是优化一下查询的方式。 3. 如何解决这些问题? 以下是一些可能的解决方案: 3.1 检查并修复查询语句 如果你的查询语句中有错误,你需要花时间检查它并进行修复。在动手执行查询前,有个超级实用的小窍门,那就是先翻翻Hive的元数据这个“小字典”,确保你想要捞出来的数据,是对应到正确的列和行哈。别到时候查了半天,发现找的竟然是张“错片儿”,那就尴尬啦! 3.2 优化查询 有时候,问题并不是在于查询本身,而在于你的数据。如果数据分布不均匀,或者包含了大量的重复值,那么查询可能会变得非常慢。在这种情况下,你可以考虑使用分区和聚类来优化你的数据。 3.3 增加计算资源 如果你的查询确实需要大量的计算资源,但你的集群中没有足够的资源,那么你可能需要考虑增加你的集群规模。你可以添加更多的节点,或者升级现有的节点,以提高其性能。 3.4 使用外部表 如果你的查询涉及到了大量的数据,但这些数据又不适合存储在Hive中,那么你可以考虑使用外部表。这样一来,你完全无需改动原有的查询内容,就能轻轻松松地把其他系统的查询结果搬到Hive里面去。就像是你从一个仓库搬东西到另一个仓库,连包装都不用换,直接搬运过去就OK啦! 总的来说,虽然Hive是一个强大的工具,但在使用过程中我们也可能会遇到各种各样的问题。当我们把这些难题的原因摸得门儿清的时候,就能找到真正管用的解决办法,进而更好地把Hive的功能发挥到极致。
2023-08-26 22:20:36
529
寂静森林-t
SpringCloud
...ignClient(name = "microservice-auth") public interface AuthServiceClient { @GetMapping("/me") User getAuthenticatedUser(); } // 在对应的Feign拦截器中尝试获取SecurityContext public class AuthInfoInterceptor implements RequestInterceptor { @Override public void apply(RequestTemplate template) { SecurityContext context = SecurityContextHolder.getContext(); // 在Hystrix线程隔离环境下,此处context通常为空 } } 3. 深入理解 这是因为在Hystrix的线程隔离模式下,虽然服务调用的错误恢复能力增强了,但同时也打破了原本在同一个线程上下文中流转的数据状态(如SecurityContext)。这就像是我们把活儿交给了一个刚来的新手,他确实能给干完,但却对之前老工人做到哪一步啦,现场是个啥状况完全摸不着头脑。 4. 解决方案 为了解决这个问题,我们需要将原始请求线程中的SecurityContext传递给Hystrix线程。一种可行的方法是通过实现HystrixCommand的run方法,并在其中手动设置SecurityContext: java public class AuthAwareHystrixCommand extends HystrixCommand { private final AuthServiceClient authServiceClient; public AuthAwareHystrixCommand(AuthServiceClient authServiceClient) { super(HystrixCommandGroupKey.Factory.asKey("AuthService")); this.authServiceClient = authServiceClient; } @Override protected User run() throws Exception { // 将主线程的SecurityContext传递过来 SecurityContext originalContext = SecurityContextHolder.getContext(); try { // 设置当前线程的SecurityContext SecurityContextHolder.setContext(originalContext); return authServiceClient.getAuthenticatedUser(); } finally { // 还原SecurityContext SecurityContextHolder.clearContext(); } } } 当然,上述解决方案需要针对每个FeignClient调用进行改造,略显繁琐。所以呢,更酷炫的做法就是用Spring Cloud Sleuth提供的TraceCallable和TraceRunnable这两个小神器。它们可聪明了,早早就帮咱们把线程之间传递上下文这档子事考虑得妥妥的。你只需要轻松配置一下,就一切搞定了! 5. 结论与探讨 面对SpringCloud中Feign拦截器因Hystrix线程隔离导致的SecurityContext获取问题,我们可以通过手工传递SecurityContext,或者借助成熟的工具如Spring Cloud Sleuth来巧妙解决。在实际操作中,咱们得时刻瞪大眼睛瞅瞅那些框架特性背后的门道,摸透它们的设计原理是咋回事,明白这些原理能带来哪些甜头,又可能藏着哪些坑。然后,咱就得像个武林高手那样,灵活运用各种技术手段,随时应对可能出现的各种挑战,甭管它多棘手,都能见招拆招。这种思考过程、理解过程以及不断探索实践的过程,正是开发者成长道路上不可或缺的部分。
2023-07-29 10:04:53
114
晚秋落叶_
Javascript
...ion greet(name: string): string { return Hello, ${name}!; } let greeting = greet('Alice'); console.log(greeting); 三、结合使用:构建强大的代码基础 类型保护与类型注解并非孤立存在,而是相辅相成。通过在代码中合理运用这两者,可以构建出既灵活又安全的JavaScript应用。类型保护用于确保特定条件下的类型安全,而类型注解则为整个项目提供了一种全局的类型语义,使得代码更加清晰易懂。 四、实践与工具 为了更好地利用类型保护与类型注解,开发者应结合使用静态类型检查工具,如TypeScript、ESLint等。这些工具不仅能提供强大的类型系统,还能够集成到开发流程中,如自动格式化、代码分析和错误预防,显著提高开发效率和代码质量。 五、结论 在JavaScript开发中,通过掌握和应用类型保护与类型注解,可以显著提升代码的健壮性、可读性和可维护性。结合现代开发工具的支持,开发者能够构建出更高质量、更易于维护的Web应用程序。随着技术的不断发展,了解并实践这些最佳实践,将使开发者在未来的编程旅程中受益匪浅。
2024-07-27 15:32:00
300
醉卧沙场
Greenplum
...例: sql SELECT FROM large_table ORDER BY some_column OFFSET 5000 LIMIT 10; 这个查询首先会对large_table中的所有行按照some_column排序,然后跳过前5000行,返回接下来的10行。对于海量数据而言,这个过程对资源消耗极大,可能导致分页查询失败。 3. 优化策略及案例演示 策略一:基于索引优化 如果查询字段已经存在索引,那么我们可以尝试利用索引来提高查询效率。例如,如果some_column有索引,我们可以设计更高效的查询方式: sql SELECT FROM ( SELECT , ROW_NUMBER() OVER (ORDER BY some_column) as row_num FROM large_table ) subquery WHERE row_num BETWEEN 5000 AND 5010; 注意,虽然这种方法能有效避免全表扫描,但如果索引列的选择不当或者数据分布不均匀,也可能无法达到预期效果。 策略二:物化视图 另一种优化方法是使用物化视图。对于频繁进行分页查询的场景,可以提前创建一个按需排序并包含行号的物化视图: sql CREATE MATERIALIZED VIEW sorted_large_table AS SELECT , ROW_NUMBER() OVER (ORDER BY some_column) as row_num FROM large_table; -- 然后进行查询 SELECT FROM sorted_large_table WHERE row_num BETWEEN 5000 AND 5010; 物化视图会在创建时一次性计算出结果并存储,后续查询直接从视图读取,大大提升了查询速度。不过,得留意一下,物化视图这家伙虽然好用,但也不是白来的。它需要咱们额外花心思去维护,而且呢,还可能占用更多的存储空间,就像你家衣柜里的衣服越堆越多那样。 4. 总结与思考 面对Greenplum分页查询失败的问题,我们需要从源头理解其背后的原因——大量的数据排序与传输,而解决问题的关键在于减少不必要的计算和传输。你知道吗?我们可以通过一些巧妙的方法,比如灵活运用索引和物化视图这些技术小窍门,就能让分页查询的速度嗖嗖提升,这样一来,哪怕数据量大得像海一样,也能稳稳当当地完成查询任务,一点儿都不带卡壳的。 同时,我们也应认识到,任何技术方案都不是万能的,需要结合具体业务场景和数据特点进行灵活调整和优化。这就意味着我们要在实际操作中不断摸爬滚打、积累经验、更新升级,让Greenplum这个家伙更好地帮我们解决数据分析的问题,真正做到在处理海量数据时大显身手,发挥出它那无人能敌的并行处理能力。
2023-01-27 23:28:46
430
追梦人
Nginx
...0; server_name www.example.com; location / { root /var/www/example/; index index.html index.htm; if ($http_user_agent ~ "Trident|MSIE") { rewrite ^(.) https://www.example.com$1 permanent; } } } 在这个代码中,我们首先监听了80端口,然后设置了服务器名。接着,我们指定了项目的根目录和索引文件。最后,我们使用if语句检查用户的浏览器类型。如果用户的浏览器是IE的话,我们就将其重定向到https://www.example.com。 五、总结 总的来说,通过在Nginx下部署Vue项目,并且使用Nginx的URL重写功能,我们可以很好地避免用户访问旧页面,让他们能够尽快地看到新版本的内容。虽然这事儿可能需要咱们掌握点技术,积累点经验,但只要我们把相关的知识、技巧都学到手,那妥妥地就能搞定它。 在未来的工作中,我会继续深入研究Nginx和其他相关技术,以便能够更好地服务于我的客户。我觉得吧,只有不断学习和自我提升,才能真正踩准时代的鼓点,然后设计出更棒的产品、提供更贴心的服务。你看,就像跑步一样,你得不停向前跑,才能不被大部队甩开,对不对?
2023-11-04 10:35:42
125
草原牧歌_t
Tomcat
...bute("username", "John Doe"); 四、Cookie与Session的关联 2.1 从Cookie到Session 当服务器接收到带有Cookie的请求时,可以通过Cookie中的信息找到对应的Session。如果Session不存在,Tomcat会自动创建一个新的Session。 java // 获取Session HttpSession session = request.getSession(true); // 如果不存在则创建 String userID = (String) session.getAttribute("userID"); 2.2 通过Session更新Cookie 为了保持客户端的登录状态,我们通常会在Session中存储用户信息,然后更新Cookie: java // 更新Cookie Cookie cookie = (Cookie) session.getAttribute("cookie"); cookie.setValue(userID); response.addCookie(cookie); 五、Cookie与Session的区别与选择 3.1 差异分析 Cookie数据存储在客户端,安全性较低,容易被窃取。而Session数据存储在服务器端,安全但需要更多网络开销。通常来说,那些重要的、涉及隐私的敏感信息啊,咱们最好把它们存放在Session里头,就像把贵重物品锁进保险箱一样。而那些不怎么敏感的信息呢,可以考虑用Cookie来存储,就相当于放在抽屉里,方便日常使用,但也不会影响到核心安全。 3.2 何时选择 如果你需要保持用户在长时间内的一致性(如购物车),Session是个好选择。而对于日常的简单对话标记,用Cookie就妥妥的了,因为它完全不需要咱去动用服务器端的资源。 六、总结 Cookie与Session是Web开发中的两个重要工具,理解它们的工作原理以及如何在Tomcat中使用,能帮助我们更好地构建高效、安全的Web应用。记住了啊,每一种技术都有它专属的“舞台”,就像选对了工具,才能让咱们编写的代码更酷炫、更流畅,让用户用起来爽歪歪,体验感直线飙升! 希望这篇文章能帮助你对Tomcat中的Cookie与Session有更深的理解,如果有任何疑问,欢迎随时探讨!
2024-03-05 10:54:01
190
醉卧沙场-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
hostnamectl
- 查看和修改系统的主机名和其他相关设置。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"