前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[化工品牌]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Atlas
...积极推动项目升级与优化工作,发布了新版本以改善内存管理和扩展性。例如,新版本通过改进内部数据结构和算法,降低了在处理大规模元数据时的内存消耗,并引入了更灵活的分布式缓存策略,有效缓解了单一服务器内存压力。 同时,行业专家也在不断研究基于云原生架构下的元数据管理最佳实践,提倡采用容器化、微服务化等技术手段来分散系统负载,实现资源动态调度,从而避免因单点故障导致的服务中断。此外,结合AI和机器学习技术预测并优化元数据访问模式,也是当前研究的一个热门方向,有望在未来进一步提升Apache Atlas等元数据管理工具的性能和稳定性。 因此,对于正在使用或计划部署Apache Atlas的企业而言,除了掌握基础的故障排查和调优技巧,还应持续关注官方发布的最新动态和技术趋势,以便更好地适应快速变化的大数据环境,确保元数据管理系统的高效稳定运行。
2023-02-23 21:56:44
521
素颜如水-t
Gradle
...且高度灵活的构建自动化工具,支持Groovy或Kotlin DSL进行脚本编写。它采用声明式和命令式混合编程模型,使得开发者能够简洁而强大地定义项目构建逻辑,包括编译、打包、测试等任务,并具备先进的依赖管理和多项目构建能力。在持续集成环境中,Gradle扮演着核心角色,能有效管理复杂的构建过程和依赖关系,提升构建效率和可靠性。 依赖管理(Dependency Management) , 在软件开发中,依赖管理是指系统化地处理项目所依赖的外部库、框架和其他组件的过程。在本文中,Gradle的依赖管理机制能够自动下载、解析并维护项目所需的依赖版本,确保构建过程中使用的是正确的依赖资源。这对于持续集成环境至关重要,因为频繁的构建需要依赖库的一致性和准确性,以避免因依赖不匹配引发的问题。通过在Gradle脚本中声明项目的运行时和测试依赖,开发者可以轻松地跟踪和控制所有依赖项,从而保证构建的稳定性与高效性。
2023-07-06 14:28:07
439
人生如戏
Go-Spring
...有望获得更强大的标准化工具支持,从而减少因语法错误导致的问题。 此外,对于XML配置的最佳实践,社区内也有不少专家分享了实战经验与见解。例如,《Effective XML: 50 Specific Ways to Improve Your XML》一书就提供了许多实用技巧和策略,帮助开发者编写出既规范又易于维护的XML配置文件。而诸如《The Little Go Book》这类资源则从Go语言本身出发,详解如何在实际编程中更好地结合使用XML配置和Go-Spring等框架,实现高效且健壮的应用开发。通过不断关注此类前沿动态和技术指南,开发者能够紧跟行业趋势,将理论知识转化为实际生产力,有效应对日常开发中的各类挑战。
2023-04-04 12:42:35
472
星河万里
Consul
...术发展趋势,结合自动化工具和最佳实践,有助于提升系统的整体安全水平和运维效率。
2023-09-08 22:25:44
469
草原牧歌
Gradle
...ava的开源构建自动化工具,它使用灵活且可扩展的构建脚本语法(基于Groovy或Kotlin DSL),适用于多语言环境下的项目构建。在本文语境中,Gradle主要应用于Java和Android项目的构建过程中,以其强大的依赖管理和高效的任务执行机制帮助开发者自动管理、编译源代码以及打包项目。 依赖传递性 , 在软件开发中,依赖传递性是指一个模块直接依赖于另一个模块时,如果被依赖模块又依赖了其他模块,则这些间接依赖会自动地、透明地传递给原始模块。在Gradle环境下,当声明一个依赖时,其所有传递性依赖也会被自动处理并包含在构建产物中,除非通过exclude关键字明确排除。 Fat Jar 或 Uber Jar , 在Java应用程序打包领域,Fat Jar(也称为Uber Jar)是一种将应用的所有依赖库与主程序类文件一起打包到同一个.jar文件中的方式,使得该.jar文件成为一个自包含的、可以在没有外部依赖的情况下独立运行的应用程序包。在Gradle中,可以通过插件如Shadow插件实现Fat Jar的生成,以简化部署和运行过程,尤其是在无须额外配置类路径环境的情况下。
2023-10-25 18:00:26
454
月影清风_
Tomcat
...署场景,容器化和自动化工具(如Docker和Kubernetes)的运用,使得基于命令行的Tomcat服务管理更为便捷且标准化。借助这些工具,运维人员可以实现一键部署、滚动升级以及动态伸缩等复杂操作,有效提升了服务的稳定性和可扩展性。 因此,掌握命令行管理只是万里长征的第一步,结合最新技术和最佳实践持续深化对Tomcat乃至整个Java应用服务器生态的理解与应用,才能更好地应对云时代下快速变化的技术挑战,从而在实践中不断提升自身技术水平和工作效率。
2023-02-24 10:38:51
317
月下独酌
PostgreSQL
SQL优化工具使用不当,导致SQL执行效率低下:PostgreSQL实战解析 在数据库管理领域,PostgreSQL凭借其强大的功能和稳定性赢得了众多开发者和企业的青睐。不过,在实际操作的时候,我们偶尔会碰到这种情况:即使已经启用了SQL优化工具,查询速度还是没法让人满意,感觉有点儿不尽人意。本文要带你踏上一段趣味横生的旅程,我们会通过一系列鲜活的例子,手把手教你如何巧妙地运用SQL优化工具,从而在PostgreSQL这个大家伙里头,成功躲开那些拖慢数据库效率的低效SQL问题。 1. SQL优化工具的作用与问题引入 SQL优化工具通常可以帮助我们分析SQL语句的执行计划、索引使用情况以及潜在的资源消耗等,以便于我们对SQL进行优化改进。在实际操作中,如果咱们对这些工具的认识和运用不够熟练精通的话,那可能会出现“优化”不成,反而帮了倒忙的情况,让SQL的执行效率不升反降。 例如,假设我们在一个包含数百万条记录的orders表中查找特定用户的订单: sql -- 不恰当的SQL示例 SELECT FROM orders WHERE user_id = 'some_user'; 虽然可能有针对user_id的索引,但如果直接运行此查询并依赖优化工具盲目添加或调整索引,而不考虑查询的具体内容(如全表扫描),可能会导致SQL执行效率下降。 2. 理解PostgreSQL的查询规划器与执行计划 在PostgreSQL中,查询规划器负责生成最优的执行计划。要是我们没找准时机,灵活运用那些SQL优化神器,那么这个规划器小家伙,可能就会“迷路”,选了一条并非最优的执行路线。比如,对于上述例子,更好的方式是只选择需要的列而非全部: sql -- 更优的SQL示例 SELECT order_id, order_date FROM orders WHERE user_id = 'some_user'; 同时,结合EXPLAIN命令查看执行计划: sql EXPLAIN SELECT order_id, order_date FROM orders WHERE user_id = 'some_user'; 这样,我们可以清晰地了解查询是如何执行的,包括是否有效利用了索引。 3. 错误使用索引优化工具的案例分析 有时候,我们可能过于依赖SQL优化工具推荐的索引创建策略。例如,工具可能会建议为每个经常出现在WHERE子句中的字段创建索引。但这样做并不总是有益的,尤其是当涉及多列查询或者数据分布不均匀时。 sql -- 错误的索引创建示例 CREATE INDEX idx_orders_user ON orders (user_id); 如果user_id字段值分布非常均匀,新创建的索引可能不会带来显著性能提升。相反,综合考虑查询模式创建复合索引可能会更有效: sql -- 更合适的复合索引创建示例 CREATE INDEX idx_orders_user_order_date ON orders (user_id, order_date); 4. 结论与反思 面对SQL执行效率低下,我们需要深度理解SQL优化工具背后的原理,并结合具体业务场景进行细致分析。只有这样,才能避免因为工具使用不当而带来的负面影响。所以呢,与其稀里糊涂地全靠自动化工具,咱们还不如踏踏实实地去深入了解数据库内部是怎么运转的,既要明白表面现象,更要摸透背后的原理。这样一来,咱就能更接地气、更靠谱地制定出高效的SQL优化方案了。 总之,在PostgreSQL的世界里,SQL优化并非一蹴而就的事情,它要求我们具备严谨的逻辑思维、深入的技术洞察以及灵活应变的能力。让我们在实践中不断学习、思考和探索,共同提升PostgreSQL的SQL执行效率吧! 注:全表扫描在数据量巨大时往往意味着较低的查询效率,尤其当仅需少量数据时。
2023-09-28 21:06:07
263
冬日暖阳
转载文章
...thon能轻松操控多品牌网络设备进行配置备份、批量升级等工作。 此外,Python在网络安全领域也大显身手,诸如自动化渗透测试工具、网络流量分析系统以及恶意行为检测引擎等,均能看到Python的身影。可见,Python以其强大的可扩展性和丰富的第三方库,为各类网络相关问题提供了灵活而高效的解决方案,持续赋能现代生活和各行各业的数字化进程。
2024-01-14 10:28:12
80
转载
Linux
... 5.2图形化工具 - 可以选择安装SQL Server Management Studio(SSMS)的Linux版本,或者使用第三方工具如ssms-linux,来进行更直观的管理。 结论 6.1 总结与展望 - CentOS 7确实可以安装SQL Server 2016,尽管它已经不再是最新版本,但对于那些还在使用或需要兼容旧版本的用户来说,这是一个可行的选择。 - 未来,随着技术的迭代,SQL Server on Linux的体验会越来越完善,跨平台的数据库管理将更加无缝。 在这个快速发展的技术时代,适应变化并充分利用新的工具是关键。真心希望这篇指南能像老朋友一样,手把手教你轻松搞定在Linux大本营里安装和打理SQL Server 2016的那些事儿,让你畅游在数据库的海洋里无阻无碍。嘿,想找最潮的解决招数对吧?记得翻翻官方手册,那里有新鲜出炉的支援和超实用的建议!
2024-04-11 11:07:55
96
醉卧沙场_
转载文章
...本编辑器。 它将可视化工具集成到编辑器中,以便在不影响创作过程的情况下获得所需的帮助。 开源协议:MIT 本文转自:https://www.oschina.net/ 更多内容请点击查看原文 本篇文章为转载内容。原文链接:https://blog.csdn.net/cocacola456/article/details/53432970。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 17:23:46
136
转载
Kibana
...强大的数据分析和可视化工具叫做Kibana,它能够帮助我们更好地理解和分析数据。那么,你是否想过,Kibana在数据挖掘中有哪些具体的应用呢? 二、什么是Kibana? Kibana是一款开源的数据分析和可视化工具,它的主要功能是对存储在Elasticsearch中的数据进行搜索、查看和分析,并通过可视化的方式展示出来,便于我们更好地理解和掌握数据。 三、Kibana在数据挖掘中的应用 1. 数据分析和可视化 Kibana最强大的功能就是数据分析和可视化。用Kibana这个工具,咱们就能随心所欲地绘制各种图表,比如柱状图、折线图、饼图等等,这样一来,那些复杂到让人头大的数据就能瞬间变得一目了然,像看图画书一样简单明了。这样一来,咱们就能更直观、更接地气地摸清数据的走势和内在规律,进而更高效、更精准地挖出数据中的宝藏。 举例来说,假设我们想要对一个网站的日访问量数据进行分析。我们可以在Kibana中创建一个柱状图,然后将每日的访问量数据输入进去。这样,我们就能实实在在地瞅见每天访问量的起伏变化,一眼洞察到哪些天人气最旺、访问量蹭蹭往上涨,又有哪些天稍微冷清些、访问量有所下滑,还能摸清楚访问量整体走势的那些小秘密~ 2. 自定义查询和过滤器 Kibana还支持自定义查询和过滤器,让我们可以根据自己的需求对数据进行深入挖掘和分析。比如,如果我们好奇哪个城市在某个时间段里最受用户欢迎,访问量最大,我们只需要在Kibana这个工具里轻松设置个过滤器,就能立马得到想要的答案啦! 举例来说,假设我们有一份包含用户地理位置和访问时间的数据。在Kibana这个工具里头,我们可以捣鼓一下,先搞个过滤器,让它只显示某个时间段内的数据内容。接着再接再厉,设置第二个过滤器,这次是专门用来筛选出某个特定城市的详细信息。这样一来,数据就像被我们精准地“框选”出来了,既实用又直观。这样,我们就能掌握这个城市在那个时间段里被访问的情况,进而对这些数据进行更深层次的挖掘和分析。 3. 实时监控 Kibana还提供了一些其他的功能,例如实时监控、警报、报告等。这些功能可以帮助我们及时发现问题,提高工作效率。 举例来说,如果我们有一个在线商城,我们需要时刻关注商品销售情况。嘿,你知道吗?咱们可以在Kibana这个工具里整一个超酷的实时监控功能。这样一来,只要商品销售数量有丁点儿风吹草动,立马就能触发警报提醒我们,就像有个小雷达时刻帮咱盯着呢!这样,我们就可以及时调整销售策略,提高销售额。 四、结论 总的来说,Kibana是一款非常强大且实用的数据分析和可视化工具,它可以帮助我们在数据挖掘中节省大量时间和精力,提高工作效率。如果你还没有尝试过使用Kibana进行数据挖掘,我强烈建议你试一试。相信你一定会被它的强大功能所吸引!
2023-06-10 18:59:47
305
心灵驿站-t
Gradle
...是一个开源的构建自动化工具,主要用于Java、Android以及其他语言项目的构建过程管理。它基于Groovy(或Kotlin)编写构建脚本,并通过灵活且可扩展的构建模型支持多项目构建、依赖管理、并行构建、自定义任务等多种功能。在本文语境中,Gradle是开发者用于正确管理和打包项目依赖的核心工具。 Maven Central , Maven Central是一个由Apache软件基金会维护的开源Java构件库仓库,其中包含了大量开源Java项目的构件(JAR文件等),可供全球开发者免费获取和使用。在Gradle项目中,开发者可以通过配置远程仓库指向Maven Central,并声明所需的依赖,Gradle会自动从该仓库下载对应的构件到本地,以供项目编译和打包时使用。 依赖范围 , 在Gradle中,依赖范围是一种机制,用于定义项目依赖在不同构建阶段(如编译、测试、运行时)的作用域和传递性。例如,implementation范围的依赖只对当前模块的编译和运行有效,不会暴露给依赖此模块的其他模块;而api范围的依赖不仅对本模块有效,还会被传递给依赖此模块的其他模块;runtime范围的依赖则只在运行时提供,编译阶段不需要。这些依赖范围的概念对于合理组织和优化项目结构,以及避免依赖冲突具有重要作用。
2024-01-15 18:26:00
435
雪落无痕_
DorisDB
...采用专门的数据传输优化工具,如Google的gRPC框架,以减少网络延迟和波动对DorisDB数据同步稳定性的影响。 此外,为了帮助用户更好地理解和处理DorisDB的数据同步难题,官方文档也提供了详尽的操作指南和最佳实践,包括如何配置DataX等第三方工具进行高效稳定的数据迁移,以及在资源不足情况下进行扩容和优化的具体步骤,为解决实际生产环境中复杂多变的问题提供了有力支持。
2024-02-11 10:41:40
432
雪落无痕
Linux
...与实践,旨在通过自动化工具链、持续集成/持续部署(CI/CD)等手段,加速软件交付流程并提升产品迭代效率。在本文中,DevOps背景下Jenkins在自动化运维中的作用尤为突出。 SSH (Secure Shell) , SSH是一种网络协议,主要用于加密远程登录会话和命令执行过程,确保数据传输的安全性。文中提到的服务器生成Private Key并通过SSH实现无密码自动登录,以及Jenkins利用SSH插件配置与远程服务器进行安全连接,都是基于SSH协议实现的安全通信。 IAM Roles for EC2 instances(Amazon Web Services) , 这是AWS提供的一种服务,允许EC2实例临时获取角色相关的访问权限,而无需在实例上直接存储任何长期凭证(如SSH密钥)。在云环境中,通过IAM Roles可以动态管理对AWS资源和服务的安全访问控制,防止因密钥泄露导致的安全风险,同时简化了大规模集群环境下SSH密钥的管理和分发问题。
2023-11-22 09:47:35
184
星辰大海_
Gradle
...y语言的开源构建自动化工具,主要用于Java、Android和Kotlin等项目的构建与依赖管理。它支持高度可配置和灵活的构建脚本,允许开发者根据项目需求定制构建过程,如编译、打包、测试、部署等,并能有效地处理依赖关系,确保在打包时正确包含所有必要的库。 依赖管理 , 在软件开发中,依赖管理是指对项目所依赖的各种外部库或框架进行有效组织、版本控制和生命周期管理的过程。在Gradle中,通过dependencies块可以声明并自动下载所需的依赖包,同时处理好不同依赖之间的版本冲突、传递依赖等问题,确保项目在编译和运行时能够正确链接到所需的类库资源。 依赖分组 , 在Gradle或其他构建工具中,依赖分组是将具有相同来源或功能相关性的依赖项组织在一起的方式。例如,在Maven或Gradle的坐标系统中,一个依赖可以通过group ID(分组ID)来标识其所属的组织或项目集。依赖分组可以帮助开发者更方便地管理和引用同一分组下的多个依赖,提高代码的可读性和维护性。在Gradle中,通过指定group、name和version三个属性,可以清晰地标记和引用某个依赖分组中的特定依赖库。
2023-04-09 23:40:00
472
百转千回_t
RabbitMQ
...提前做好资源规划和优化工作。
2023-03-01 15:48:46
445
人生如戏-t
Groovy
...e是一种可扩展的自动化工作流工具,允许用户通过定义一系列步骤来构建、测试和部署软件项目。在Pipeline脚本中,可以使用Groovy编写复杂的构建逻辑,文中指出Groovy高效的日期和时间处理能力有助于提高Jenkins Pipeline的构建效率和日志分析准确性。
2023-05-09 13:22:45
503
青春印记-t
Gradle
...L语法的开源构建自动化工具。在Java开发领域中,它被广泛用于项目构建、依赖管理和自动化任务执行。通过灵活且强大的构建脚本,Gradle支持多项目构建、增量构建以及自定义构建生命周期,使得开发者能够高效地组织、配置和优化其项目的构建过程。 传递依赖(Transitive Dependency) , 在软件开发中,特别是在使用构建工具如Gradle管理项目依赖时,传递依赖是指当你直接依赖某个库时,该库会自动将其自身的所有依赖项引入到你的项目中。例如,在Gradle中声明对A库的依赖时,如果A库又依赖了B和C库,那么B和C就构成了传递依赖。虽然传递依赖简化了依赖管理,但也可能导致版本冲突等问题,因此需要进行合理的管理和控制。 Maven Central , Maven Central是Java开发中最主要的开源组件仓库之一,由Sonatype公司维护。它是Maven默认的中央仓库,包含了大量经过验证的开源Java组件及其元数据信息。开发者在使用Gradle等构建工具时,可以方便地从Maven Central下载所需的第三方库,确保项目的构建和运行具有充足的依赖支持。当在Gradle配置文件中声明远程仓库时不特别指定其他地址时,默认会去Maven Central查找依赖。
2023-12-14 21:36:07
336
柳暗花明又一村_
Go Iris
...为接口描述语言和序列化工具,以实现高效的编码解码性能。 Protocol Buffers(protobuf) , Protocol Buffers是Google开发的一种灵活、高效且与语言无关的数据序列化协议。在本文中,protobuf用于定义gRPC服务接口及请求响应数据结构,通过.proto文件编写接口定义,然后使用protoc编译器生成对应编程语言的代码,使得不同语言编写的系统间能方便、高效地交换结构化数据。 Iris , Iris是一个用Go语言编写的快速、简洁且功能丰富的Web框架,用于构建高性能的Web应用程序和APIs。在本文中,开发者介绍了如何在Iris框架中集成gRPC服务,从而实现在Web应用中便捷地调用gRPC服务,提升整个系统的灵活性和效率。
2023-04-20 14:32:44
450
幽谷听泉-t
Superset
...set配合使用的自动化工作流工具,例如Airflow和Zapier等,它们可以将Superset的数据分析结果无缝集成到企业的自动化流程中,实现从数据分析到决策执行的快速流转。同时,随着DevOps和DataOps理念的普及,掌握如何在持续集成/持续交付(CI/CD)环境中配置和管理Superset的邮件通知系统,也成为现代数据工程师必备技能之一。 总之,借助强大的数据分析工具如Superset,并结合高效的邮件通知机制,企业和团队能更好地利用数据驱动决策,及时响应市场变化,从而在瞬息万变的商业环境中保持竞争力。
2023-10-01 21:22:27
61
蝶舞花间-t
Superset
..., 在数据分析和可视化工具(如Apache Superset)中,数据源是指存储原始数据的源头位置,可以是一个关系型数据库、NoSQL数据库、大数据平台、API接口等。在本文语境下,数据源通常指代需要通过SQLAlchemy URI进行连接并从中提取数据的外部系统,以便在Superset中进一步进行数据分析与可视化展现。
2024-03-19 10:43:57
52
红尘漫步
PostgreSQL
...。一些数据库管理和优化工具开始结合机器学习算法,能够根据实际查询负载自动调整或推荐最优索引策略,从而动态适应业务需求的变化。 值得注意的是,尽管索引能显著提升查询性能,但过度依赖或不当使用也会带来存储开销和写入瓶颈等问题。因此,在制定索引策略时,不仅需要考虑最新的技术发展和特性,更应立足于具体业务场景,充分理解数据访问模式及未来发展趋势,以实现查询性能与资源消耗之间的最佳平衡。此外,定期进行索引分析与维护,结合运维监控数据进行调优,同样是确保数据库系统长期高效稳定运行的关键环节。
2023-01-07 15:13:28
430
时光倒流_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
xargs -I{} command {} < list_of_files.txt
- 对文本文件中的每一行执行命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"