前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL分布式数据库解决方案]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...。 另外,针对大规模分布式系统中的定时任务调度,Apache Eagle和Apollo等开源项目也提供了强大的解决方案。例如,Apollo拥有丰富的定时任务调度策略以及灵活的分片、依赖处理机制,能够有效应对高并发场景下的定时任务管理需求。 与此同时,云原生环境下的Kubernetes CronJob也是一个值得关注的方向。CronJob作为Kubernetes的一部分,可以根据Cron表达式在集群中调度容器化的定时任务,实现了与容器编排平台的高度集成。 此外,在深入研究定时任务原理时,可以追溯到操作系统级别的定时器和调度算法,如Linux系统的timerfd和POSIX信号定时器机制,这些底层技术为上层应用提供精确且高效的定时服务。 总之,随着技术的演进与发展,Java定时任务的实现方式日趋丰富多样,开发者应根据实际应用场景选择最适合的技术方案,同时关注社区前沿动态,以确保所采用的定时任务技术始终与时俱进。
2023-10-27 18:50:19
344
转载
Golang
...像武侠小说里那种为了解决江湖大难题豁出去了的大侠一样! 记得我第一次接触Go时,简直被它的简洁震撼到了。不像Java那么啰嗦,也不像Python那样慢吞吞,Go简直就是为高并发而生的!每次看到它的协程(goroutine)和通道(channel),我就忍不住想:这不就是为我这种喜欢高效开发的人量身定制的语言嘛! 所以,今天咱们就来聊聊如何用Go语言构建一个高性能的服务器。嘿,别担心!我可不会整那些枯燥的理论大餐,咱们这就撸起袖子一起敲代码吧。来吧,跟着我,看看Go这小子到底是怎么一步步帮咱们搞定问题的,超有趣的! --- 2. 高性能服务器的核心要素 说到高性能服务器,其实核心无非就几个点:并发处理、内存管理、网络优化和代码结构。Go在这几个方面都有独到的优势,接下来咱们一个个拆解来看。 2.1 并发处理:协程的力量 先说并发处理吧。Go最大的特点之一就是协程(goroutine)。嘿,你知道为啥大家都说协程比线程“瘦”吗?就是因为它真的省空间啊!打个比方,一个协程的“小背包”(也就是栈内存)才不到2KB,可传统线程那背包大得吓人,动不动就几十KB起步,甚至能到上百KB。这差距,简直是一个小巧玲珑的手拿包和一个超大登山包的区别! 举个例子,假设我们要做一个聊天服务器,每秒钟需要处理上千个用户的请求。要是用那种老式的多线程方式,创建和销毁线程的代价大得会让你的服务器累得直不起腰,简直要崩溃了!但用Go的话,完全可以轻松应对: go package main import ( "fmt" "net/http" ) func handleRequest(w http.ResponseWriter, r http.Request) { fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:]) } func main() { http.HandleFunc("/", handleRequest) fmt.Println("Server started at :8080") err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } } 这段代码虽然简单,但它背后却隐藏着Go的魔力。嘿,你有没有试过访问这个地址:http://localhost:8080/username?当你这么做的时候,Go 这家伙就会偷偷摸摸地给你派来一个小帮手——一个协程,专门负责处理你的请求。而且更贴心的是,它完全不用你去管什么线程池那些听起来就头大的复杂玩意儿,简直是太省心了吧! 当然了,光靠协程还不够。为了确保程序的健壮性,我们需要合理地利用通道(channel)来进行通信。比如下面这个简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
在当今云计算和大数据时代,C10K、C1000K乃至C10M级别的并发连接问题愈发凸显。随着容器化、微服务架构的广泛应用,单一服务器节点承载的并发压力持续增大。近期,Linux内核社区针对高并发场景下的性能优化展开了深入研究与实践。 例如,Linux 5.11版本引入了eBPF(Extended Berkeley Packet Filter)的重大改进,使得XDP(eXpress Data Path)能够更高效地处理网络数据包,进一步缩短数据路径,减少系统开销。同时,eBPF也被广泛应用于追踪分析、流量控制等高级功能,为解决大规模并发问题提供了全新的思路。 此外,硬件技术也在不断跟进以适应高并发需求。Intel推出的第三代至强可扩展处理器中包含了对DPDK(Data Plane Development Kit)的深度优化支持,通过集成高性能网卡与CPU间的智能加速引擎,有效提升了数据包处理效率,降低了延迟。 而在软件层面,Google开源的gVisor项目提供了一种轻量级的用户态沙箱容器运行时环境,它能显著降低上下文切换带来的开销,对于解决大规模并发连接挑战具有积极意义。 综上所述,面对日益增长的并发连接挑战,无论是操作系统内核的底层优化,还是硬件技术的革新升级,以及创新的软件解决方案,都在合力推动着现代数据中心向更高并发、更低延迟的目标迈进。对于技术人员来说,紧跟这些发展趋势并将其应用到实际工作中,将有助于构建更加稳定、高效的大型分布式系统。
2023-04-11 18:25:52
260
转载
转载文章
... } OK,尽管这样解决了问题,但我不说大家也很容易想到,这个解决方案的可扩展性很差,如果日后我们需要再添加韩文版、日文版,就不得不反复修改枚举和GreetPeople() 方法,以适应新的需求。 在考虑新的解决方案之前,我们先看看 GreetPeople 的方法签名: public void GreetPeople(string name, Language lang); 我们仅看 string name,在这里,string 是参数类型,name 是参数变量,当我们赋给 name 字符串“Liker”时,它就代表“Liker”这个值;当我们赋给它“李志中”时,它又代表着“李志中”这个值。然后,我们可以在方法体内对这个 name 进行其他操作。哎,这简直是废话么,刚学程序就知道了。 如果你再仔细想想,假如 GreetPeople() 方法可以接受一个参数变量,这个变量可以代表另一个方法,当我们给这个变量赋值 EnglishGreeting 的时候,它代表着 EnglsihGreeting() 这个方法;当我们给它赋值ChineseGreeting 的时候,它又代表着 ChineseGreeting() 法。我们将这个参数变量命名为 MakeGreeting,那么不是可以如同给 name 赋值时一样,在调用 GreetPeople()方法的时候,给这个MakeGreeting 参数也赋上值么(ChineseGreeting 或者EnglsihGreeting 等)?然后,我们在方法体内,也可以像使用别的参数一样使用MakeGreeting。但是,由于 MakeGreeting 代表着一个方法,它的使用方式应该和它被赋的方法(比如ChineseGreeting)是一样的,比如:MakeGreeting(name); 好了,有了思路了,我们现在就来改改GreetPeople()方法,那么它应该是这个样子了: public void GreetPeople(string name, MakeGreeting) { MakeGreeting(name); } 注意到 ,这个位置通常放置的应该是参数的类型,但到目前为止,我们仅仅是想到应该有个可以代表方法的参数,并按这个思路去改写 GreetPeople 方法,现在就出现了一个大问题:这个代表着方法的 MakeGreeting 参数应该是什么类型的? 说明:这里已不再需要枚举了,因为在给MakeGreeting 赋值的时候动态地决定使用哪个方法,是 ChineseGreeting 还是 EnglishGreeting,而在这个两个方法内部,已经对使用“Good Morning”还是“早上好”作了区分。 聪明的你应该已经想到了,现在是委托该出场的时候了,但讲述委托之前,我们再看看MakeGreeting 参数所能代表的 ChineseGreeting()和EnglishGreeting()方法的签名: public void EnglishGreeting(string name) public void ChineseGreeting(string name) 如同 name 可以接受 String 类型的“true”和“1”,但不能接受bool 类型的true 和int 类型的1 一样。MakeGreeting 的参数类型定义应该能够确定 MakeGreeting 可以代表的方法种类,再进一步讲,就是 MakeGreeting 可以代表的方法的参数类型和返回类型。 于是,委托出现了:它定义了 MakeGreeting 参数所能代表的方法的种类,也就是 MakeGreeting 参数的类型。 本例中委托的定义: public delegate void GreetingDelegate(string name); 与上面 EnglishGreeting() 方法的签名对比一下,除了加入了delegate 关键字以外,其余的是不是完全一样?现在,让我们再次改动GreetPeople()方法,如下所示: public delegate void GreetingDelegate(string name);public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} 如你所见,委托 GreetingDelegate 出现的位置与 string 相同,string 是一个类型,那么 GreetingDelegate 应该也是一个类型,或者叫类(Class)。但是委托的声明方式和类却完全不同,这是怎么一回事?实际上,委托在编译的时候确实会编译成类。因为 Delegate 是一个类,所以在任何可以声明类的地方都可以声明委托。更多的内容将在下面讲述,现在,请看看这个范例的完整代码: public delegate void GreetingDelegate(string name);class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}private static void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);}static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} } 我们现在对委托做一个总结:委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If … Else(Switch)语句,同时使得程序具有更好的可扩展性。 1.1.2 将方法绑定到委托 看到这里,是不是有那么点如梦初醒的感觉?于是,你是不是在想:在上面的例子中,我不一定要直接在 GreetPeople() 方法中给 name 参数赋值,我可以像这样使用变量: static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} 而既然委托 GreetingDelegate 和类型 string 的地位一样,都是定义了一种参数类型,那么,我是不是也可以这么使用委托? static void Main(string[] args){GreetingDelegate delegate1, delegate2;delegate1 = EnglishGreeting;delegate2 = ChineseGreeting;GreetPeople("Liker", delegate1);GreetPeople("李志中", delegate2);Console.ReadLine();} 如你所料,这样是没有问题的,程序一如预料的那样输出。这里,我想说的是委托不同于 string 的一个特性:可以将多个方法赋给同一个委托,或者叫将多个方法绑定到同一个委托,当调用这个委托的时候,将依次调用其所绑定的方法。在这个例子中,语法如下: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting; delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.ReadLine();} 实际上,我们可以也可以绕过GreetPeople 方法,通过委托来直接调用EnglishGreeting 和ChineseGreeting: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting; delegate1("Liker");Console.ReadLine();} 说明:这在本例中是没有问题的,但回头看下上面 GreetPeople() 的定义,在它之中可以做一些对于 EnglshihGreeting 和 ChineseGreeting 来说都需要进行的工作,为了简便我做了省略。 注意这里,第一次用的“=”,是赋值的语法;第二次,用的是“+=”,是绑定的语法。如果第一次就使用“+=”,将出现“使用了未赋值的局部变量”的编译错误。我们也可以使用下面的代码来这样简化这一过程: GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting; 既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”: static void Main(string[] args){GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.WriteLine();delegate1 -= EnglishGreeting;GreetPeople("李志中", delegate1);Console.ReadLine();} 让我们再次对委托作个总结: 使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。 1.2 事件的由来 1.2.1 更好的封装性 我们继续思考上面的程序:上面的三个方法都定义在 Programe 类中,这样做是为了理解的方便,实际应用中,通常都是 GreetPeople 在一个类中,ChineseGreeting 和 EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将 GreetingPeople() 放在一个叫 GreetingManager 的类中,那么新程序应该是这个样子的: namespace Delegate{public delegate void GreetingDelegate(string name);public class GreetingManager{public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} }class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.GreetPeople("Liker", EnglishGreeting);gm.GreetPeople("李志中", ChineseGreeting);} }} 我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了: // Good Morning, Liker 早上好, 李志中 // 现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码: static void Main(string[] args){GreetingManager gm = new GreetingManager();GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting;gm.GreetPeople("Liker", delegate1);} 输出: Good Morning, Liker 早上好, Liker 到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到 GreetManager 类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager 类,像这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} } 现在,我们可以这样使用这个委托变量: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker", gm.delegate1);} 输出为: Good Morning, Liker 早上好, Liker 尽管这样做没有任何问题,但我们发现这条语句很奇怪。在调用gm.GreetPeople 方法的时候,再次传递了gm 的delegate1 字段, 既然如此,我们何不修改 GreetingManager 类成这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name){if (delegate1 != null) // 如果有方法注册委托变量{ delegate1(name); // 通过委托调用方法} }} 在客户端,调用看上去更简洁一些: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker"); //注意,这次不需要再传递 delegate1 变量} 尽管这样达到了我们要的效果,但是还是存在着问题:在这里,delegate1 和我们平时用的string 类型的变量没有什么分别,而我们知道,并不是所有的字段都应该声明成public,合适的做法是应该public 的时候public,应该private 的时候private。 我们先看看如果把 delegate1 声明为 private 会怎样?结果就是:这简直就是在搞笑。因为声明委托的目的就是为了把它暴露在类的客户端进行方法的注册,你把它声明为 private 了,客户端对它根本就不可见,那它还有什么用? 再看看把delegate1 声明为 public 会怎样?结果就是:在客户端可以对它进行随意的赋值等操作,严重破坏对象的封装性。 最后,第一个方法注册用“=”,是赋值语法,因为要进行实例化,第二个方法注册则用的是“+=”。但是,不管是赋值还是注册,都是将方法绑定到委托上,除了调用时先后顺序不同,再没有任何的分别,这样不是让人觉得很别扭么? 现在我们想想,如果delegate1 不是一个委托类型,而是一个string 类型,你会怎么做?答案是使用属性对字段进行封装。 于是,Event 出场了,它封装了委托类型的变量,使得:在类的内部,不管你声明它是public还是protected,它总是private 的。在类的外部,注册“+=”和注销“-=”的访问限定符与你在声明事件时使用的访问符相同。我们改写GreetingManager 类,它变成了这个样子: public class GreetingManager{//这一次我们在这里声明一个事件public event GreetingDelegate MakeGreet;public void GreetPeople(string name){MakeGreet(name);} } 很容易注意到:MakeGreet 事件的声明与之前委托变量 delegate1 的声明唯一的区别是多了一个 event 关键字。看到这里,在结合上面的讲解,你应该明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个进行了封装的委托类型的变量而已。 为了证明上面的推论,如果我们像下面这样改写Main 方法: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.MakeGreet = EnglishGreeting; // 编译错误1gm.MakeGreet += ChineseGreeting;gm.GreetPeople("Liker");} 会得到编译错误: 1.2.2 限制类型能力 使用事件不仅能获得比委托更好的封装性以外,还能限制含有事件的类型的能力。这是什么意思呢?它的意思是说:事件应该由事件发布者触发,而不应该由事件的客户端(客户程序)来触发。请看下面的范例: using System;class Program{static void Main(string[] args){Publishser pub = new Publishser();Subscriber sub = new Subscriber();pub.NumberChanged += new NumberChangedEventHandler(sub.OnNumberChanged);pub.DoSomething(); // 应该通过DoSomething()来触发事件pub.NumberChanged(100); // 但可以被这样直接调用,对委托变量的不恰当使用} }/// <summary>/// 定义委托/// </summary>/// <param name="count"></param>public delegate void NumberChangedEventHandler(int count);/// <summary>/// 定义事件发布者/// </summary>public class Publishser{private int count;public NumberChangedEventHandler NumberChanged; // 声明委托变量//public event NumberChangedEventHandler NumberChanged; // 声明一个事件public void DoSomething(){// 在这里完成一些工作 ...if (NumberChanged != null) // 触发事件{ count++;NumberChanged(count);} }}/// <summary>/// 定义事件订阅者/// </summary>public class Subscriber{public void OnNumberChanged(int count){Console.WriteLine("Subscriber notified: count = {0}", count);} } 上面代码定义了一个NumberChangedEventHandler 委托,然后我们创建了事件的发布者Publisher 和订阅者Subscriber。当使用委托变量时,客户端可以直接通过委托变量触发事件,也就是直接调用pub.NumberChanged(100),这将会影响到所有注册了该委托的订阅者。而事件的本意应该为在事件发布者在其本身的某个行为中触发,比如说在方法DoSomething()中满足某个条件后触发。通过添加event 关键字来发布事件,事件发布者的封装性会更好,事件仅仅是供其他类型订阅,而客户端不能直接触发事件(语句pub.NumberChanged(100)无法通过编译),事件只能在事件发布者Publisher 类的内部触发(比如在方法pub.DoSomething()中),换言之,就是NumberChanged(100)语句只能在Publisher 内部被调用。大家可以尝试一下,将委托变量的声明那行代码注释掉,然后取消下面事件声明的注释。此时程序是无法编译的,当你使用了event 关键字之后,直接在客户端触发事件这种行为,也就是直接调用pub.NumberChanged(100),是被禁止的。事件只能通过调用DoSomething() 来触发。这样才是事件的本意,事件发布者的封装才会更好。 就好像如果我们要定义一个数字类型,我们会使用int 而不是使用object 一样,给予对象过多的能力并不见得是一件好事,应该是越合适越好。尽管直接使用委托变量通常不会有什么问题,但它给了客户端不应具有的能力,而使用事件,可以限制这一能力,更精确地对类型进行封装。 说 明:这里还有一个约定俗称的规定,就是订阅事件的方法的命名,通常为“On 事件名”,比如这里的OnNumberChanged。 1.3 委托的编译代码 这时候,我们注释掉编译错误的行,然后重新进行编译,再借助 Reflactor 来对 event 的声明语句做一探究,看看为什么会发生这样的错误: 可以看到,实际上尽管我们在GreetingManager 里将 MakeGreet 声明为public,但是,实际上MakeGreet 会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager 类的外面以赋值的方式访问,从而验证了我们上面所做的推论。 我们再进一步看下MakeGreet 所产生的代码: // private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量 [MethodImpl(MethodImplOptions.Synchronized)] public void add_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value); } [MethodImpl(MethodImplOptions.Synchronized)] public void remove_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value); } // 现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate 类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册。实际上也就是:“+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。 在add_MakeGreet()方法内部,实际上调用了System.Delegate 的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。 我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候: // public delegate void GreetingDelegate(string name); // 当编译器遇到这段代码的时候,会生成下面这样一个完整的类: // public class GreetingDelegate:System.MulticastDelegate { public GreetingDelegate(object @object, IntPtr method); public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result); public virtual void Invoke(string name); } // 1.4 .NET 框架中的委托和事件 1.4.1 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些! 假设我们有个高档的热水器,我们给它通上电,当水温超过95 度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。 现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做 temperature;当然,还有必不可少的给水加热方法 BoilWater(),一个发出语音警报的方法 MakeAlert(),一个显示水温的方法,ShowMsg()。 namespace Delegate{/// <summary>/// 热水器/// </summary>public class Heater{/// <summary>/// 水温/// </summary>private int temperature;/// <summary>/// 烧水/// </summary>public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){MakeAlert(temperature);ShowMsg(temperature);} }}/// <summary>/// 发出语音警报/// </summary>/// <param name="param"></param>private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);}/// <summary>/// 显示水温/// </summary>/// <param name="param"></param>private void ShowMsg(int param){Console.WriteLine("Display:水快开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater ht = new Heater();ht.BoilWater();} }} 1.4.2 Observer 设计模式简介 上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。 这时候,上面的例子就应该变成这个样子: /// <summary>/// 热水器/// </summary>public class Heater{private int temperature; private void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;} }}/// <summary>/// 警报器/// </summary>public class Alarm{private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }/// <summary>/// 显示器/// </summary>public class Display{private void ShowMsg(int param){Console.WriteLine("Display:水已烧开,当前温度:{0}度。", param);} } 这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器? 在继续进行之前,我们先了解一下Observer 设计模式,Observer 设计模式中主要包括如下两类对象: Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是 temprature 字段,当这个字段的值快到100 时,会不断把数据发给监视它的对象。 Observer:监视者,它监视Subject,当 Subject 中的某件事发生的时候,会告知Observer,而Observer 则会采取相应的行动。在本范例中,Observer 有警报器和显示器,它们采取的行动分别是发出警报和显示水温。 在本例中,事情发生的顺序应该是这样的: 1. 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。 2. 热水器知道后保留对警报器和显示器的引用。 3. 热水器进行烧水这一动作,当水温超过 95 度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。 类似这样的例子是很多的,GOF 对它进行了抽象,称为 Observer 设计模式:Observer 设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer 模式是一种松耦合的设计模式。 1.4.3 实现范例的Observer 设计模式 我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。 namespace Delegate{public class Heater{private int temperature;public delegate void BoilHandler(int param);public event BoilHandler BoilEvent;public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){if (BoilEvent != null){ BoilEvent(temperature); // 调用所有注册对象的方法} }} }}public class Alarm{public void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }public class Display{public static void ShowMsg(int param) // 静态方法{ Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.BoilEvent += alarm.MakeAlert; // 注册方法heater.BoilEvent += (new Alarm()).MakeAlert; // 给匿名对象注册方法heater.BoilEvent += Display.ShowMsg; // 注册静态方法heater.BoilWater(); // 烧水,会自动调用注册过对象的方法} }} 输出为: // Alarm:嘀嘀嘀,水已经 96 度了: Alarm:嘀嘀嘀,水已经 96 度了: Display:水快烧开了,当前温度:96 度。 // 省略... // 1.4.4 .NET 框架中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.NET Framework 中的事件模型和上面的不同?为什么有很多的EventArgs 参数? 在回答上面的问题之前,我们先搞懂 .NET Framework 的编码规范: 1. 委托类型的名称都应该以 EventHandler 结束。 2. 委托的原型定义:有一个void 返回值,并接受两个输入参数:一个Object 类型,一个EventArgs 类型(或继承自EventArgs)。 3. 事件的命名为委托去掉 EventHandler 之后剩余的部分。 4. 继承自 EventArgs 的类型应该以EventArgs 结尾。 再做一下说明: 1. 委托声明原型中的Object 类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm 的MakeAlert)可以通过它访问触发事件的对象(Heater)。 2. EventArgs 对象包含了Observer 所感兴趣的数据,在本例中是temperature。 上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer 端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。 现在我们改写之前的范例,让它符合.NET Framework的规范: using System;using System.Collections.Generic;using System.Text;namespace Delegate{public class Heater{private int temperature;public string type = "RealFire 001"; // 添加型号作为演示public string area = "China Xian"; // 添加产地作为演示public delegate void BoiledEventHandler(Object sender, BoiledEventArgs e);public event BoiledEventHandler Boiled; // 声明事件// 定义 BoiledEventArgs 类,传递给 Observer 所感兴趣的信息public class BoiledEventArgs : EventArgs{public readonly int temperature;public BoiledEventArgs(int temperature){this.temperature = temperature;} }// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBoiled(BoiledEventArgs e){if (Boiled != null){Boiled(this, e); // 调用所有注册对象的方法} }public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){// 建立BoiledEventArgs 对象。BoiledEventArgs e = new BoiledEventArgs(temperature);OnBoiled(e); // 调用 OnBolied 方法} }}public class Alarm{public void MakeAlert(Object sender, Heater.BoiledEventArgs e){Heater heater = (Heater)sender; // 这里是不是很熟悉呢?// 访问 sender 中的公共字段Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);Console.WriteLine();} }public class Display{public static void ShowMsg(Object sender, Heater.BoiledEventArgs e) // 静态方法{Heater heater = (Heater)sender;Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);Console.WriteLine();} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.Boiled += alarm.MakeAlert; //注册方法heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法heater.BoilWater(); //烧水,会自动调用注册过对象的方法} }} } 输出为: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Display:China Xian - RealFire 001: Display:水快烧开了,当前温度:96 度。 // 省略 ... 1.5 委托进阶 1.5.1 为什么委托定义的返回值通常都为 void ? 尽管并非必需,但是我们发现很多的委托定义返回值都为 void,为什么呢?这是因为委托变量可以供多个订阅者注册,如果定义了返回值,那么多个订阅者的方法都会向发布者返回数值,结果就是后面一个返回的方法值将前面的返回值覆盖掉了,因此,实际上只能获得最后一个方法调用的返回值。可以运行下面的代码测试一下。除此以外,发布者和订阅者是松耦合的,发布者根本不关心谁订阅了它的事件、为什么要订阅,更别说订阅者的返回值了,所以返回订阅者的方法返回值大多数情况下根本没有必要。 1.5.2 如何让事件只允许一个客户订阅? 少数情况下,比如像上面,为了避免发生“值覆盖”的情况(更多是在异步调用方法时,后面会讨论),我们可能想限制只允许一个客户端注册。此时怎么做呢?我们可以向下面这样,将事件声明为private 的,然后提供两个方法来进行注册和取消注册: public class Publishser{private event GeneralEventHandler NumberChanged; // 声明一个私有事件// 注册事件public void Register(GeneralEventHandler method){NumberChanged = method;}// 取消注册public void UnRegister(GeneralEventHandler method){NumberChanged -= method;}public void DoSomething(){// 做某些其余的事情if (NumberChanged != null){ // 触发事件string rtn = NumberChanged();Console.WriteLine("Return: {0}", rtn); // 打印返回的字符串,输出为Subscriber3} }} 注意上面,在UnRegister()中,没有进行任何判断就使用了NumberChanged -= method 语句。这是因为即使method 方法没有进行过注册,此行语句也不会有任何问题,不会抛出异常,仅仅是不会产生任何效果而已。 注意在Register()方法中,我们使用了赋值操作符“=”,而非“+=”,通过这种方式就避免了多个方法注册。 1.7 委托和方法的异步调用 通常情况下,如果需要异步执行一个耗时的操作,我们会新起一个线程,然后让这个线程去执行代码。但是对于每一个异步调用都通过创建线程来进行操作显然会对性能产生一定的影响,同时操作也相对繁琐一些。.NET 中可以通过委托进行方法的异步调用,就是说客户端在异步调用方法时,本身并不会因为方法的调用而中断,而是从线程池中抓取一个线程去执行该方法,自身线程(主线程)在完成抓取线程这一过程之后,继续执行下面的代码,这样就实现了代码的并行执行。使用线程池的好处就是避免了频繁进行异步调用时创建、销毁线程的开销。当我们在委托对象上调用BeginInvoke()时,便进行了一个异步的方法调用。 事件发布者和订阅者之间往往是松耦合的,发布者通常不需要获得订阅者方法执行的情况;而当使用异步调用时,更多情况下是为了提升系统的性能,而并非专用于事件的发布和订阅这一编程模型。而在这种情况下使用异步编程时,就需要进行更多的控制,比如当异步执行方法的方法结束时通知客户端、返回异步执行方法的返回值等。本节就对 BeginInvoke() 方法、EndInvoke() 方法和其相关的 IAysncResult 做一个简单的介绍。 我们先看这样一段代码,它演示了不使用异步调用的通常情况: class Program7{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();int result = cal.Add(2, 5);Console.WriteLine("Result: {0}\n", result);// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 上面代码有几个关于对于线程的操作,如果不了解可以看一下下面的说明,如果你已经了解可以直接跳过: 1. Thread.Sleep(),它会让执行当前代码的线程暂停一段时间(如果你对线程的概念比较陌生,可以理解为使程序的执行暂停一段时间),以毫秒为单位,比如Thread.Sleep(1000),将会使线程暂停1 秒钟。在上面我使用了它的重载方法,个人觉得使用TimeSpan.FromSeconds(1),可读性更好一些。 2. Thread.CurrentThread.Name,通过这个属性可以设置、获取执行当前代码的线程的名称,值得注意的是这个属性只可以设置一次,如果设置两次,会抛出异常。 3. Thread.IsThreadPoolThread,可以判断执行当前代码的线程是否为线程池中的线程。 通过这几个方法和属性,有助于我们更好地调试异步调用方法。上面代码中除了加入了一些对线程的操作以外再没有什么特别之处。我们建了一个Calculator 类,它只有一个Add 方法,我们模拟了这个方法需要执行2 秒钟时间,并且每隔一秒进行一次输出。而在客户端程序中,我们使用result 变量保存了方法的返回值并进行了打印。随后,我们再次模拟了客户端程序接下来的操作需要执行2 秒钟时间。运行这段程序,会产生下面的输出: // Client application started! Method invoked! Main Thread: Add executed 1 second(s). Main Thread: Add executed 2 second(s). Method complete! Result: 7 Main Thread: Client executed 1 second(s). Main Thread: Client executed 2 second(s). Main Thread: Client executed 3 second(s). Press any key to exit... // 如果你确实执行了这段代码,会看到这些输出并不是一瞬间输出的,而是执行了大概5 秒钟的时间,因为线程是串行执行的,所以在执行完 Add() 方法之后才会继续客户端剩下的代码。 接下来我们定义一个AddDelegate 委托,并使用BeginInvoke()方法来异步地调用它。在上面已经介绍过,BeginInvoke()除了最后两个参数为AsyncCallback 类型和Object 类型以外,前面的参数类型和个数与委托定义相同。另外BeginInvoke()方法返回了一个实现了IAsyncResult 接口的对象(实际上就是一个AsyncResult 类型实例,注意这里IAsyncResult 和AysncResult 是不同的,它们均包含在.NET Framework 中)。 AsyncResult 的用途有这么几个:传递参数,它包含了对调用了BeginInvoke()的委托的引用;它还包含了BeginInvoke()的最后一个Object 类型的参数;它可以鉴别出是哪个方法的哪一次调用,因为通过同一个委托变量可以对同一个方法调用多次。 EndInvoke()方法接受IAsyncResult 类型的对象(以及ref 和out 类型参数,这里不讨论了,对它们的处理和返回值类似),所以在调用BeginInvoke()之后,我们需要保留IAsyncResult,以便在调用EndInvoke()时进行传递。这里最重要的就是EndInvoke()方法的返回值,它就是方法的返回值。除此以外,当客户端调用EndInvoke()时,如果异步调用的方法没有执行完毕,则会中断当前线程而去等待该方法,只有当异步方法执行完毕后才会继续执行后面的代码。所以在调用完BeginInvoke()后立即执行EndInvoke()是没有任何意义的。我们通常在尽可能早的时候调用BeginInvoke(),然后在需要方法的返回值的时候再去调用EndInvoke(),或者是根据情况在晚些时候调用。说了这么多,我们现在看一下使用异步调用改写后上面的代码吧: using System.Threading;using System;public delegate int AddDelegate(int x, int y);class Program8{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);IAsyncResult asyncResult = del.BeginInvoke(2, 5, null, null); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}int rtn = del.EndInvoke(asyncResult);Console.WriteLine("Result: {0}\n", rtn);Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 此时的输出为: // Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Main Thread: Client executed 3 second(s). Result: 7 Press any key to exit... // 现在执行完这段代码只需要3 秒钟时间,两个for 循环所产生的输出交替进行,这也说明了这两段代码并行执行的情况。可以看到Add() 方法是由线程池中的线程在执行, 因为Thread.CurrentThread.IsThreadPoolThread 返回了True,同时我们对该线程命名为了Pool Thread。另外我们可以看到通过EndInvoke()方法得到了返回值。有时候,我们可能会将获得返回值的操作放到另一段代码或者客户端去执行,而不是向上面那样直接写在BeginInvoke()的后面。比如说我们在Program 中新建一个方法GetReturn(),此时可以通过AsyncResult 的AsyncDelegate 获得del 委托对象,然后再在其上调用EndInvoke()方法,这也说明了AsyncResult 可以唯一的获取到与它相关的调用了的方法(或者也可以理解成委托对象)。所以上面获取返回值的代码也可以改写成这样: private static int GetReturn(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;int rtn = del.EndInvoke(asyncResult);return rtn;} 然后再将int rtn = del.EndInvoke(asyncResult);语句改为int rtn = GetReturn(asyncResult);。注意上面IAsyncResult 要转换为实际的类型AsyncResult 才能访问AsyncDelegate 属性,因为它没有包含在IAsyncResult 接口的定义中。 BeginInvoke 的另外两个参数分别是AsyncCallback 和Object 类型,其中AsyncCallback 是一个委托类型,它用于方法的回调,即是说当异步方法执行完毕时自动进行调用的方法。它的定义为: // public delegate void AsyncCallback(IAsyncResult ar); // Object 类型用于传递任何你想要的数值,它可以通过IAsyncResult 的AsyncState 属性获得。下面我们将获取方法返回值、打印返回值的操作放到了OnAddComplete()回调方法中: using System.Threading;using System;using System.Runtime.Remoting.Messaging;public delegate int AddDelegate(int x, int y);class Program9{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);string data = "Any data you want to pass.";AsyncCallback callBack = new AsyncCallback(OnAddComplete);del.BeginInvoke(2, 5, callBack, data); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();}static void OnAddComplete(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;string data = (string)asyncResult.AsyncState;int rtn = del.EndInvoke(asyncResult);Console.WriteLine("{0}: Result, {1}; Data: {2}\n", Thread.CurrentThread.Name, rtn, data);} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 它产生的输出为: Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Pool Thread: Result, 7; Data: Any data you want to pass. Main Thread: Client executed 3 second(s). Press any key to exit... 这里有几个值得注意的地方: 1、我们在调用BeginInvoke()后不再需要保存IAysncResult 了,因为AysncCallback 委托将该对象定义在了回调方法的参数列表中; 2、我们在OnAddComplete()方法中获得了调用BeginInvoke()时最后一个参数传递的值,字符串“Any data you want to pass”; 3、执行回调方法的线程并非客户端线程Main Thread,而是来自线程池中的线程Pool Thread。另外如前面所说,在调用EndInvoke()时有可能会抛出异常,所以在应该将它放到try/catch 块中,这里就不再示范了。 1.8 总结 我们详细地讨论了C中的委托和事件,包括什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义。拥有了本章的知识,相信你以后遇到委托和事件时,将不会再有所畏惧。 本篇文章为转载内容。原文链接:https://blog.csdn.net/beyonddeg/article/details/53528482。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:02:19
80
转载
转载文章
...视化操作,二是后台的数据库管理。网管对前台的管理和维护工作包括保障网络链路通畅、处理MIS终端的突发事件以及对操作员的管理、培训等,这是网管们日常做得最多、最辛苦的功课;然而MIS系统架构中同等重要的针对数据库的管理、维护和优化工作,现实中似乎并没有得到网管朋友的足够重视,看起来这都是程序员的事,事实上,一个网管如果能在MIS设计期间就数据表的规范化、表索引优化、容量设计、事务处理等诸多方面与程序员进行卓有成效的沟通和协作,那么日常的前台管理工作将会变得大为轻松,因为在某种意义上,数据库管理系统就相当于操作系统,在系统中占有同样重要的位置。 这正是SQL SERVER等数据库管理系统和dBASEX、ACCESS等数据库文件系统的本质区别,所以,对数据库管理系统操作能力的强弱在某种程度上也折射出了网管的水平——个人认为,称得上优秀的Admin,至少应该是一个称职的DBA(数据库管理员)。 下面以SQL SERVER(下称 SQLS)为例,将数据库管理中难于理解的“索引原理”问题给各位朋友作一个深入浅出的介绍。其他的数据库管理系统如Oracle、Sybase等,朋友们可以融会贯通,举一反三。 一、数据表的基本结构 建立数据库的目的是管理大量数据,而建立索引的目的就是提高数据检索效率,改善数据库工作性能,提高数据访问速度。对于索引,我们要知其然,更要知其所以然,关键在于认识索引的工作原理,才能更好的管理索引。 为认识索引工作原理,首先有必要对数据表的基本结构作一次全面的复习。 SQLS当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候,SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。 SQLS规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...ket往后台发送日志数据,在这里我们是要做基于SparkStreaming做实时在线统计。那么数据就需要放进消息系统(Kafka)中,我们的Spark Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
转载文章
...是什么?为了取得真实数据,本刊用了2个月的时间进行深入调查与采访,希望这篇文章能在岁末年初之际,为大家带来深入的思考。 细分市场,其实软件从业人员除了程序员外,还囊括了很多的相关职业和角色,例如技术推广人、项目负责人、技术总监等,因此,凡与软件技术相关的工作或职业,都属于本专题关注之列。 程序员薪资调查报告 “软件人,今天薪资值多少?”大型网络调查活动从2004年10月初开始,在各大软件门户站点都开展了热点调查,截止11月底,在两个月的时间里,有近13000人参与并积极讨论了这个话题。 2004年,软件业人员结构处于什么分层? 2004年,开发人员实际收入多少? 2004年,开发人员使用最多的技术是什么? 2004年,影响收入的决定性因素到底是什么? …… 围绕以上种种问题,本刊设计了相关的调查与采访题目,在分析与统计开发者基本薪资情况下,还针对被调查者的专业背景、技术、软技能、公司福利以及影响薪资的关键因素做了相应的调查。 下面就让我们进入此次调查的数据现场。 2004年中国开发者平均月薪3500元 49%的开发者月薪不足3000,54%年薪不足4万(见表1、表2)。经历软件泡沫的投资家、管理者在对待员工的薪水上更为谨慎,但对开发者而言心理上却产生比较大的落差,在大环境如此的情况下,处于弱势的开发群体需要学会如何去适应环境,调整心态。 程序员占据大壁江山,升任技术总监者凤毛麟角 从本次的调查数据来看,程序员在所有调查者中占据主流,人数为一半还多,高级程序员也占了20%,这也是为什么开发者薪资普遍不高的主要原因之一。曾经业界大为盛行的国内缺乏高层次的软件人才的说法,这里似乎可以提供实在而有力的数据支持(见表3、表4)。 另外,从本次调查还得到了一个趋势:在做了3-5年的程序开发工作后,开始产生一定的人员分流现象。从有一定技术能力的程序员开始,到根据自己兴趣与爱好的二次择业,有相当部分的人员脱离编码一线,开始跨入技术主管、项目经理、技术支持、市场推广等角色。 不满者过半,普遍认为薪水太低 调查显示只有4%的人对薪水比较满意,近64%的人认为自己的薪水与社会同等能力开发人员相比偏低,这可以看出软件泡沫对开发人员造成的心理落差依然存在。人们普遍认为,软件业比较浮燥,所处其中的人也比较浮燥,但现在软件产业的发展越来越趋于理性和平和,只有先调整好自己的心态,平和地从基本功练起,薪水的价值才可能越来越得到不断提升。 软件开发,让女性走开 表5数据表明,开发者世界是一块绝对属于男性的天地,被调查者中有97%的人员属于男性。记者在采访中不止一次地发现,在软件公司中工作的女性很少,而从事一线编码工作的女性则是少之更少。一方面,软件开发这种技术创新与高挑战性、高压力的工作,男性更易于取得成果。另一方面,也有一部分中小企业对女性程序员不重视,甚至同工不同酬,也让一些希望就职此行业的女性永远地离开了这块阵地。 北京、上海、深圳、杭州成为程序员的最爱 地域对软件人员的薪资有很大的影响。北京以其政治、文化的优势集中了近19%的软件开发者,上海、深圳各占13%、10%,而杭州,以其良好的自然环境、人文环境及政府环境也吸引了5%的软件人才(见表6)。数据表明,拥有高校资源的城市先天性地占据着开发人才的绝对优势。而且,各项调查数据显示,地域也已不再是限制开发者流动的主要因素,尤其对于技术高手,他们几乎可以自由地在各大城市间来来往往。 情人虽好,糟糠之妻难下堂 哪些人在投资it企业,被调查者所在公司的规模如何?根据采访,几乎绝大多数的被调查者都将外企列在了第一选择,青睐之情溢于言表,但毕竟高高的门坎以及各种复杂因素,致使这些意愿大部分都难以实现。反而是那些遭到诸多抱怨的民营企业,尤其是占据31%的最高市场份额、员工数不足50人、管理不规范的中小软件公司,容纳了52%的开发者队伍。 c/c++、java成为翘楚,c实力强劲 调查显示,c/c++、java已是中国开发者的最爱,delphi依然延续着它的传奇之路,而c表现出了强大的后劲,相信这个微软公司推崇备至的开发利器在未来几年会如vb一样赢得开发者的信赖。 人气最旺的2大领域——企业信息化、通信 企业信息化、通信、通用软件开发、系统集成四大领域集中了目前开发者的大多数。加入wto之后,中国企业要与世界接轨,e化是必然的趋势,况且通信这个新兴行业以其门槛高、薪水高也吸引了许多开发者。企业信息化作为传统行业向网络化迈进的必然过程,容纳着很多软件人。另外,从市场角度看,移动、游戏开发、信息全三大热点领域对开发者也同样有极强诱惑力。 本科、计算机专业、部属院校大学毕业者成为中流砥柱 软件开发,并非只有计算机专业的人才能胜任,调查显示,有近40%的开发者是从其它相关或无关专业转行而来,但不可否认的是,占据60%者仍然为科班出身者。另外,尽管从来就崇尚高中毕业生就能成为软件天才,但这样的神话毕竟只是少数,支撑中国软件业的仍然是大学教育程度以上者。参与调查者中86%具有大专以上学历,另有8%的人具有硕士学历,数据表明中国开发者的整体教育水平较高。 综合实力的三大法宝:阅历、技术与沟通 59%的开发者从业期间做过的项目不超过5个,61%的人沟通能力较差,而近76%的开发者对自己比较自信,认为自己能力不弱于公司其它人员甚至更强。根据调查,在影响软件人薪资的因素中,阅历、技术强弱是决定性因素。另外,信息化时代普遍重视团队与项目整体实力,沟通能力成为影响程序员个人发展的一个重要因素。 软件人主体正处青春期 “程序员是吃青春饭的”,这个论断在本次调查中从另外一个角度得到验证。58%的软件开发者年龄不到25岁,48%的人在本领域工作时间不到3年,这些软件生力军未来5年必将成为引导中国软件发展潮流的主力军(见表18、表19)。另外,根据调查与采访,年龄在35岁左右的第二代软件人,现在已经成长为企业或项目的管理者,在各大软件公司担当着成熟、理性、有主见的软件开发带头人的角色。 待遇与福利走向正规化 有63%的公司会根据员工表现主动加薪(见表20),近80%的公司会为员工提供基本福利,如养老、医疗保险、住房补助、午餐补助等(见表21)。培训作为提升开发人员专业技能和实力的直接手段,越来越得到更多公司的重视。根据调查,项目奖金和固定假期基本成为以项目方式运作的公司的固定法宝,以鼓励和保障员工的士气和工作积极性。越来越多的中国软件企业,开始迈向规范化管理之路。 技术与眼光是决定薪水的至关要素 绝大部分被调查者都认为技术能力是决定薪资的最关键因素。但在采访过程中,却有更多的技术总监甚至公司总经理一级,认为短期内决定一个开发者薪水的因素中技术能力确实非常关键,但从长期来看,能对开发者的薪水带来长期且持久影响的,却不只是技术能力,更多的则是他本人对业界的了解度,即眼光是否开阔。这是一个很重要的信号,如果只在技术点上打转的人,除非是技术天才型,决大多数必须从综合能力等各方面来加强,而绝非技术这一点。可以说,在加强自身技术实力的前提下,开阔的视野、一定的沟通能力、自我管理与团队管理能力都对个人的发展起到至关重要的作用。(见表22) 现状解析:五维度立体定位开发者的薪资水平 结合以上调查结果以及本刊记者的深入采访,从宏观角度来看,有五个要素立体性地将软件人定位在了一定的薪资水平上。 这五个要素分别是:眼光技术、角色定位、公司性质、行业领域、地域因素。除第一、二要素是以个体原因占主体外,其他三个关键要素都取决于社会、产业、企业或公司本身的发展情况,但这些要素也不是一成不变的,在一定程度上,都是双向选择。 眼光技术是关键 一级:眼光与阅历 二级:核心技术 三级:专业与沟通 眼光开阔者得高薪 被采访者:王永刚 个人背景:软件公司cto 对于“决定薪资的最关键因素是什么”这个问题,王永刚用“是否适合职位”来回答,这一点与很多认为技术能力强就可以拿高薪的观点很不一样。他认为,多数职位分工不同,即便技术能力强但不适合职位,一样拿不到理想的薪水。他们公司在给员工定职定薪时,会与权威的咨询公司合作,从分析职位工作职责,到该职位所要求的人员素质,再到应聘员工对该职位的理解以及实际的工作情况,进行综合考虑。 专业与技术产生核心竞争力 被采访者:孙勇 个人背景:高级程序员,linux下c/c++开发 工作四年来,孙勇一直从事linux下使用c/c++进行的嵌入式开发,四年中跳过两次槽。跳槽前后的薪水变化很有意思,跳槽前月薪低年薪高,跳槽后月薪高但年薪却降了很多,原因是第一家公司项目奖金、年终分红很多,而第二家公司却没有其他方面的奖励机制。 孙勇自认为跳槽太过频繁,这样对自己技术能力的发展会产生较多的负面影响。在他看来,一个人薪资的高低终究取决于自己技术的核心竞争力,变动太大可能会造成技术上的不连续。所以孙勇说,未来五年内自己会沉浸于技术不考虑其它,目的只有一个,就是让自己更专业、更核心! 专家分析:眼光专业与核心竞争力是定位软件人层级的第一法码,其包含着很多的综合因素:专业背景、阅历、经验值、能力高下等等。趋势全球研发及资讯执行副总裁国屏认为,“技术很重要,但更重要的是市场和文化的配合。在个人的发展过程中,学习也会起到重要的作用。此外,还必须认同企业文化,具备技术、对工作、对解决问题的热情”。此外,学习能力和沟通能力也是专家们认为重要度很高的2个要素。当然,这其中,作为前提“最重要的还是兴趣,缘于自身对程序开发的热爱”,8848公司cto张研如是说。 角色大挪移 一级指标:cto、项目承包人 二级指标:架构师、部门主管/项目主管 三级指标:普通开发人员 从个人发展的角度和过程来看,这个指标应该是倒向。但从业界普遍的认识,无论是能力、阅历还是收入待遇,人们普遍对一级指标中的人员更多持赞赏态度。 被采访者:张齐生 个人背景:技术总监 起初,我只是在一家软件公司作java程序员,后来随着项目的进展以及工作时间的推移,自己的技术能力、项目管理能力也逐步加强,从最初的开发人员做到项目主管,2003年底的时候做到技术总监,工资范围也从最初的4000元到8000元,再到技术总监的万元,角色的改变确实带来了很多附加价值,当然,这个职位要求你带来的价值也会更多。 专家分析:出现这种工资结构是正常的。因为架构师、cto一般都是从普通开发人员过来的,具有深厚的业界开发经验和背景。联合信息集团移动应用开发部总经理熊军认为,开发人员必须“对自己能力的认识有一个准确的职业定位。认识自己,才能准确地职业定位,有了准确的职业定位,才能有短期、中期和长期的发展方向和动力。” 8848公司cto张研表示反对“学而优则士”、“不想当将军的士兵就不是好士兵”此类说法。同样,csdn网站、《程序员》杂志社总经理蒋涛也不建议所有程序员都向管理道路发展,因为相比之下,项目经理和cto必定具有一些独特的素质,比如沟通能力、项目管理能力,组织能力、计划能力以及产品和技术的眼光等,这些素质并不是每一个人都具备的。 公司对对碰 一级指标:外资、合资、民营大型it公司 二级指标:合资、中小软件公司 三级指标:国企、事业单位 采访中,有位叫王岩的资深开发人员一再强调,如果可能,一定要进外企。本次调查中,微软亚洲研究院,ibm研究院等外企几乎成了大部分开发人员所向往的圣地。 外企是我第一选择 被采访者:李文山 个人背景:技术支持 上海交大毕业的李文山,在校时就已经参与了很多社团活动,因此也见识了不少各种企业人员的做事风格与思想状态。外企大公司前沿的技术科研、严谨负责的处事态度都给他留下了深刻的印象。当然,丰富的培训、优厚的待遇、放心的福利也是必须考虑的因素。用他的话说,“身边全是一级的牛人,自己的发展自然就有了保障”。 中小软件企业机会多 被采访者:刘洋 个人背景:项目经理+程序员 天天加班加点,见到刘洋时他一脸的菜色,但心情不错。毕业不到一年,他就凭技术能力与管理能力当上了项目经理。虽然下面员工流动率高,但刘洋的薪水却是老板亲自钦点,比起毕业的同班同学绰绰有余。从项目最初的客户谈判、到中间执行,再到最后的交工,刘洋什么都做过,因此也锻炼得几乎成了全能手。对于未来,他希望公司业务做大后,能再规范一些,当然,随着公司的成长,自己上升的空间也很大。 三企走遍 被采访者:阿蒙(vchome.net) 个人背景:6年,通信行业,珠海 我很幸运,毕业时就进了美资软件公司,从事系统软件的开发工作,主要应用c/c++、x86汇编、mips汇编、ddk、sdk等技术,年薪四万多。在这家外企工作两年后,技术与处事能力大有提高,但开始心生厌倦,总觉得外面的世界很精彩。后来有一家从事通信软件产品开发的公司,答应年薪翻倍,一年后可走上管理层,怦然心动后就去新公司报到了。一年后,如愿以偿地走上管理层,两年后,技术管理能力以及行业业务能力有了质的飞跃,也越来越发现这个行业有前途,于是与朋友开始策划开公司,资金融到后就轰轰烈烈地创业了。没日没干了一年,由于资金与市场的原因,公司over,只好灰溜溜地去一家香港合资公司继续打工,仍做管理层。 我的感觉是,外企有一整套规章制度,薪金制度也较为完善,工作考评有客观的数值:月工作计划与总结、季度工作考核、上司的总体评价等,这些考核都很详细,细到完成的代码量、文档数、提过什么建议等等。国内企业也有计划与考核,但更多的是主观态度,而对工作的效果与过程并不具体细化,人际关系、表达能力等往往起着很微妙的关键作用。当然国内企业也有很多优点,比如制度灵活。 专家点评:人才的争夺,一方面是卯足了劲准备抢占有利地势和环境的个人开发者,另一方面,企业间的人才争夺战越演越烈。在此情况下,为了吸引国内的高素质人才,不少外企纷纷在中国开设研究院,走“曲线救国”道路。根据一份猎头资料,摩托罗拉研发中心、松下电器中国研究开发公司、ibm中国研究中心、朗讯公司贝尔实验室、微软中国研究院都是猎取高级科研、管理人才的大头。外企与外企、外企与国企、国企与民企,这个三角关系,虽然在早几年优劣非常明显,但现在,这种差距正在明显缩小。具体适合哪个企业,围城内外其实也并不是三重天(见下页表23)。 热点行业易淘金 一级推荐:移动开发、游戏开发 二级推荐:安全领域、企业信息化 三级推荐:通用软件、系统平台、项目开发等 专家点评:出现这种趋势主要是由市场对软件人才的供求决定的,因为目前在移动和游戏领域开发人员确实比较少,所以相对而言,他们的薪资较高,这就是所谓的“奇货可居”。但是,目前市场在成长,这些新兴或热点领域的开发人员数量也在逐渐增加,当达到一个平衡点时,他们的工资也会随之下降,这主要由市场对人才的供求关系决定。不建议开发人员轻易放弃自己原有的开发领域花大量时间和精力投向自己不熟悉的领域。 所以,熊军认为:这两个行业方向的长线发展看好,也需要更多的开发人员,但是年轻人都要根据自己的兴趣爱好、思维模式、技术能力选择更适合自己的行业方向,而且也有很多更有潜力的方向,建议年轻人从长远考虑。 地域火拼 一级指标:北京、上海 二级指标:深圳、杭州、广州 三级指标:成都、武汉、大连等 绝大多数的软件从业人员集中在北京、上海、广州和深圳四大城市,其中尤以北京的人数最为集中,但在另一项相关的调查中,上海却是程序员最向往的城市。在本次收入调查中,北京、上海的工资较高。武汉稍低于成都。 地域不同,薪资有别 被采访者:青润 个人背景:5年,电信行业、软件企业服务 我本人在北京、上海、深圳、成都四地都曾工作过。我基本上这样认为,对于刚刚大学毕业的软件人员,工资情况是这样:成都1500-2000元/月,上海2000元/月,深圳2000-2500元/月,北京2000-2500元/月。工作几年后,以成都系数为1来计,上海和其他地方为1.3-1.5倍于成都的收入。差异主要也是因为生活成本造成的。 相比而言,北京具有王者气氛,有着俯瞰全国的实力和影响力。上海是经济驱动的城市。深圳对人的友好度最好,它的优点是有各种各样的新技术公司,缺点是缺乏大公司的支撑。好山好水的成都,虽起步了很多软件公司,但大都在出川后倒下了,或者只是长居四川,足少出户,感觉比较舒适和懒散。 安逸的成都竞争的北京 被采访者:夏桅 个人背景:。net开发人员 夏桅毕业之后就来到北京从事软件开发工作。但他时常怀念起成都的生活,那里的山,那里的水,还有怡然自得的成都人都给他留下了深刻的印象。 但夏桅还是不后悔。一方面,安逸的环境对自己发展不利,适度的竞争可以发掘自身的潜力。而且,眼界开阔了,薪水也高不少。当然,在北京的生活绝对说不上舒服,但机会多,可有多种选择,极大地改观了自己的现状。 一眼可以看到头的武汉,但我喜欢 被采访者:刘如宁 个人背景:大学教师、项目主管 在武汉工作了10多年,刘如宁感觉还是比较惬意。比收入,武汉可能还不如成都,更别提北京和上海,但武汉的生活成本比较低,几块钱就够一天的伙食了。在高校担当大学教师的刘如宁,科研任务不重,而且还有足够的时间去外面承接项目,用自己喜欢的软件开发技术赚取外快。“我不是一个特别喜欢接受挑战的人,这种做自己喜欢的事情、宁静而富裕的生活,我还是比较满足”,有房、有车,生活安定富足的刘如宁如是说。 专家点评:比“营利”,必须是一个闭环。有收入比较,还得有支出比较,两者对比后才是最终收获。在地域这个问题上,大城市,确实收入比较高,但相对的,生活成本也较高。 趋势全球研发及资讯执行副总裁梁国屏表示,趋势的薪资结构体系在全世界都是一样的,具体数值要根据各地的市场来调整。比如一个经理,他的等级可能是10,那么不论在中国、日本还是美国,他的等级都是10.但这个等级的薪水具体是多少,就要看当地的市场了,趋势会和当地的薪资调查单位合作,来确定系数,然后计算出具体的薪水。 除薪水外,地域的附加价值会更重要一些。第一,对于技术发展比较迅速的it业,在大城市,整体的环境和氛围相对会好一些,例如在北京和上海等地,几乎每天都会有技术论坛、开发者大会、大厂商的开发日、各领域大师的巡回讲座等。其次,作的机会也会比较多,因为集中了各种类型的公司和企业,总会找到适合你条件的合适职位和选择。第三,可以参与比较大的技术团体,形成独特的生活与社交圈。用8848公司cto张研的话来说,“如果周围都是高手,你不是高手也难”,所以地域对人影响最大的是提供了一个环境,其次才是机会和薪水。 对此,telelogic公司北方区总经理任群力建议说,“如果开发人员能够善于利用互联网,并有决心多学习,这种地域差异会得到弱化。” 我拿青春赌明天 在本次专题组织中,大部分被采访人都明确表示,自己会在软件业领域一直奋斗下去,因为从中得到了很多的快乐与激情。但明天是否一定会更好,这需要从两个角度去考虑:一是从个人角度讲,年轻的软件人一定要有个人职业的规划,而且这种规划要从自己特点或专长出发,与当前业界相适应。另外,更重要的是,个人发展到什么程度,还需要同整个软件大环境和社会环境挂钩。 个人职业要规划 现在广州做了4年delphi/c行业开发、年薪10万的王旋说,“工作后所得到的收获就是,学习和工作要有相对明确的目标,不能因为一时心动而去学习某一技术。在真正下决定之前,我通常会考虑更多因素,包括长期的发展、个人路线的规划、需要付出的代价、可能遇到的困难以及解决的办法等等,在决定后还会制定更加明确的计划,包括短期、中期和长期的,身边可以利用到的资源,以及每一个阶段是怎么过渡到更高阶段的计划。” 现在,越来越多的在职人员意识到,未来的职业细分市场中,只有在某一领域确实比较深入、具有专长和资源的人会得到企业的重视,浪里淘沙勇者胜。 中国软件业面临困境 中国的软件业发展目前面临两难境地。上至国家,下至各城市都给予了相当的政策优惠,但整体软件业的发展却一直雷声大,雨点小。对此,北航软件学院院长孙伟忧心忡忡,“很多人从心里看不起印度,但印度的软件业却有数家2万、3万员工规模的大企业,放眼中国,规模最大的东软集团、用友公司,真正的软件开发者也不过两、三千人,这种差别太巨大了,我们一定要好好思考,中国的软件业究竟出了什么问题?” 对此,很多专家认为,中国软件业已经面临一个新的转折点,随着信息化在各行各业的深入运用,软件业有机会深度专业化,由边缘而进入核心,从而形成以深度专业化为特征的核心竞争力。无论个人还是公司,我们都有幸在第一时间站在了软件业这块前沿阵地,但明天是否会更好,还有待于中国软件业的整体发展,在这颇为沉闷的时刻,我们期望“让暴风雨来得更猛烈些吧”! 参考资料:http://www.w-training.com/viewc.asp?id=23922 ====================================================== 在最后,我邀请大家参加新浪APP,就是新浪免费送大家的一个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
286
转载
JQuery插件下载
...动生成色彩丰富、随机分布的三角形单元格,组合成具有艺术感和视觉吸引力的背景图案。Trianglify支持灵活配置,用户可以根据需求调整颜色方案、网格大小以及形状布局等参数。通过这款插件,开发者可以轻松地将生成的背景应用为CANVAS元素、SVG图形或直接导出为PNG图片格式,以适应不同的项目需求和浏览器兼容性要求。无论是需要一个独特的网页背景增强用户体验,还是用于数据可视化项目的美化装饰,Trianglify都能提供一种快速、简便且高度定制化的解决方案。只需简单的集成与调用,即可让网页背景焕发出新颖而富有创意的渐变多边形网格风格。 点我下载 文件大小:21.00 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-18 13:03:10
292
本站
JQuery插件下载
...态、交互式的方式展示数据比例分布。通过该插件,开发者能够轻松创建出吸引人的饼状图表,将复杂的数据关系转化为直观易懂的视觉表现形式。此插件的核心功能在于利用canvas元素的强大绘图能力,实时渲染出各种颜色鲜明、过渡平滑的饼状图区块,并支持鼠标交互。用户只需悬停或点击饼图中的任一片段,即可查看对应部分所占的具体比例数值,增强了数据探索和解读的便捷性。其简洁的设计理念和高度可定制化的配置选项,使得该插件易于集成到各类网站项目中,无论是用于业务报告、统计分析还是信息展示场合,都能提供出色的用户体验。此外,由于采用了跨平台兼容性强的HTML5标准,确保了在现代浏览器上的一致性和流畅性,是数据可视化领域中一款值得推荐的高效前端解决方案。 点我下载 文件大小:35.48 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-28 23:53:54
107
本站
HTML
...通过P2P网络传输、分布式存储等新型模式,用户下载视频的方式或将迎来更多创新解决方案。因此,掌握如何从复杂网络环境中提取视频文件,无论是对普通网民还是专业开发者而言,都是一项与时俱进且实用的技术技能。
2023-12-03 18:44:09
563
键盘勇士
VUE
...P实现加密通信以保障数据安全性的基础上,进一步探讨网络安全和数据加密的最新趋势和技术动态至关重要。近日,随着欧盟《通用数据保护条例》(GDPR)等法规对数据隐私保护要求的提升,全球范围内的企业和开发者都在寻求更为安全、高效的数据加密方案。 一项最新的研究指出,越来越多的企业正在采用端到端加密技术来保护其用户数据。例如,在Web应用中,除了前后端之间使用AES等算法加密传输数据外,还可以结合HTTPS协议提供传输层安全,并探索如JWT(JSON Web Tokens)等认证机制以增强整体安全性。 此外,针对密钥管理问题,区块链技术也被引入用于改进和强化密钥的安全存储和分发。一些企业开始尝试利用智能合约自动执行密钥生命周期管理,确保即使在分布式系统中也能实现安全的密钥交换。 同时,密码学领域的前沿进展也值得关注。比如,量子计算的发展对传统加密算法构成威胁,为此NIST正在进行后量子密码标准(PQC)的遴选工作,旨在找到能在量子计算机面前保持安全的新型加密算法。 综上所述,理解并熟练运用Vue与PHP进行加密通信只是构建安全Web应用的第一步,持续关注和学习最新的加密技术和行业规范,才能更好地应对不断变化的网络环境,确保敏感信息在网络空间中的安全流转。
2023-12-15 17:02:45
141
编程狂人
Python
...欠采样和过采样方法以解决此问题。为进一步深入了解这一主题,以下提供一些相关的延伸阅读材料。 近期,《Journal of Machine Learning Research》发布了一篇关于“处理分类任务中样本不平衡问题的最新策略与实践”的深度研究文章(请查阅具体文献)。该文详细探讨了各种平衡技术的理论基础、实际应用及潜在影响,并对比了包括RandomUnderSampler和RandomOverSampler在内的多种方法在不同数据集上的表现效果。 同时,Kaggle社区最近举办了一场专门针对不均衡数据集的竞赛,参赛者们积极尝试并分享了多样化的样本平衡技巧,如SMOTE(合成少数类过采样技术)、ADASYN(自适应合成过采样)以及集成多种采样方法等,这些前沿实战经验对于理解和改进样本不平衡问题具有很高的参考价值。 另外,TechCrunch的一篇报道指出,在医疗影像识别和金融风控等领域,由于正负样本天然分布的极度不平衡,样本平衡处理技术成为提高模型准确率和减少误报的关键手段。报道引用了多个实例,展示了如何在实际场景中运用欠采样、过采样及其衍生技术有效提升模型性能。 综上所述,对样本不平衡问题的研究与实践始终与时俱进,不断有新的解决方案和技术涌现。深入研读相关学术论文、关注业界竞赛动态以及追踪行业报道,都能帮助我们更好地掌握和应对这一核心问题。
2023-06-26 13:46:11
265
逻辑鬼才
转载文章
...是一款企业级开源监控解决方案,用于实时监控IT基础设施的各项指标,包括网络、服务器性能、数据库状态、应用程序等。在本文的上下文中,Zabbix服务器遇到了启动问题,无法成功启动其内部服务如alert manager服务和预处理服务。 SELinux(Security-Enhanced Linux) , SELinux是一种强制访问控制机制,它为Linux操作系统提供了更精细的权限管理功能,通过策略规则来限制进程对系统资源的访问,从而增强系统的安全性。在本文中,由于SELinux的安全策略限制了Zabbix服务对相关socket文件的访问权限,导致Zabbix服务无法启动部分组件。 Socket绑定错误 , Socket绑定错误是指在计算机网络编程中,当一个进程试图与指定的套接字地址建立连接并进行监听时,由于权限或其他系统层面的问题,未能成功将套接字与该地址关联起来。在本文的具体情境下,Zabbix的alert manager服务和预处理服务尝试绑定到特定的Unix域套接字文件(例如 /var/run/zabbix/zabbix_server_alerter.sock),但由于SELinux安全策略的限制,操作系统返回了“Permission denied”错误,表现为无法完成socket绑定操作,进而导致服务无法启动。
2023-04-15 23:41:26
298
转载
JSON
...一步探讨一下JSON数据处理的相关实践与最新动态。近年来,随着前端技术和API接口设计的快速发展,JSON数据交换格式的应用场景愈发广泛且深入。 例如,在2021年,Node.js发布了其最新稳定版本,其中对JSON模块进行了性能优化和功能增强,支持更高效的大规模JSON数据解析和生成。同时,一些主流的前端框架如React、Vue等也提供了更为便捷的方式来处理JSON数据,比如React Hooks中的useReducer可以用来简化复杂状态(包括JSON数据)的管理逻辑。 此外,针对安全性问题,JSON Schema作为一种用于描述和验证JSON数据结构的标准,被越来越多的开发者所关注和采用。通过预先定义JSON Schema,可以在数据交换过程中实时校验JSON数据的有效性,避免因数据格式错误导致的问题,并可实现对敏感字段的值进行清理或加密。 近期,业界还提出了一种名为“JSON Patch”的RFC标准(RFC 6902),它提供了一种描述JSON文档变更的方式,使得在网络传输中只传递差异部分成为可能,这无疑为JSON数据的更新操作提供了更为轻量级的解决方案,同时也间接涉及到JSON数据的部分属性值清零的需求。 总之,随着技术的发展,JSON数据处理的方法论和技术手段都在不断演进和完善,无论是对JSON value的清空操作,还是更深层次的数据校验、高效传输以及状态管理等方面,都有丰富的研究内容和最佳实践值得我们持续关注和学习。
2023-10-16 19:41:44
522
码农
MySQL
如果你需要在本地搭建MySQL服务器,并对其进行批处理注册,可以按照以下步骤进行操作: //1.进入到mysql文件夹下 cd /usr/local/mysql/bin/ //2.以root用户登录mysql mysql -u root -p //3.创建新用户,并授权 create user 'yourusername'@'localhost' identified by 'yourpassword'; grant all privileges on . to 'yourusername'@'localhost'; //4.退出mysql exit 在以上代码中,你需要根据自己的实际情况修改'yourusername'和'yourpassword',并授权给你的新用户所有权限。 如果需要进行更多的数据库操作,你可以接着使用以下命令操作: //1.进入到mysql文件夹下 cd /usr/local/mysql/bin/ //2.以新用户登录mysql mysql -u yourusername -p //3.创建新的数据库和数据表 create database yourdatabasename; use yourdatabasename; create table tablename (column1 datatype, column2 datatype, column3 datatype); //4.退出mysql exit 以上代码中,你需要将'yourdatabasename'和'tablename'替换为你需要创建的数据库名和表名,同时根据实际情况定义相应的表字段。 批处理注册MySQL服务器并不复杂,只需按照以上步骤进行操作即可。如果你对SQL语句不熟悉,也可以使用可视化工具对数据库进行操作。
2024-05-08 15:31:53
111
程序媛
MySQL
MySQL是一种普遍的关联式数据库,许多应用软件都要选用它。在特定情境下,你可能需要从异地服务端连接MySQL数据库。本文将向你介绍如何检查MySQL是否支持异地访问。 要检查MySQL是否支持异地访问,需要连接MySQL服务端。然后,选用以下步骤: $ mysql -u用户名 -p密码 Enter password: mysql>use mysql; mysql>SELECT host, user FROM user WHERE host != 'localhost'; 代码中的第一个命令是接入MySQL服务端。将用户名和密码替换为你的登录信息。在输入密码后,你将进入MySQL的终端界面。在此界面下,运行以下步骤: 第1步: use mysql; 上述命令将选用MySQL的自带mysql数据库。 第2步: SELECT host, user FROM user WHERE host != 'localhost'; 上述命令将检索MySQL的user表,它包括所有用户的信息。在显示结果中,你将看到近似以下的结果: +-----------+------------------+ | host | user | +-----------+------------------+ | localhost | root | | 127.0.0.1 | root | | ::1 | root | | % | your_username | +-----------+------------------+ 一般情况下,你会看到像上面那个表格数据的显示结果。这意味着你可以从任何异地服务端连接MySQL服务端。 如果host列只有'localhost',这意味着MySQL不支持从异地服务端连接。你可以选用以下命令修改这个设置: GRANT ALL PRIVILEGES ON . TO 'your_username'@'%' IDENTIFIED BY 'your_password' WITH GRANT OPTION; 上述命令将your_username赋予连接MySQL服务端的所有许可权。请将your_username和your_password替换为你自己的登录信息。 最后,你可以重复运行之前的命令,确保host列包括'%'。
2023-12-17 16:15:36
63
数据库专家
ClickHouse
...ickHouse进行数据分析时,我们可能会遇到一些常见的问题。这中间啊,有一个问题相当普遍,也是我们需要好好琢磨琢磨的,那就是“表格的列突然自动增长出错了”。 二、问题解析 1. 什么是“表的列出现自动增长错误”? 当我们创建一个表并定义了一个具有自动增长属性的列时,如果我们尝试插入一条数据并且这个列没有被指定为值,则会出现这个错误。 2. 为什么会出现这种错误? 这是因为ClickHouse在处理数据时,需要确保每一行的数据都是完整的。如果你在往数据库里插数据的时候,忘记给自增列填数值了,ClickHouse这个家伙就会觉得这条数据缺胳膊少腿的,不够完整,然后就“怒”了,给你抛出一个错误来。 三、解决方案 1. 使用默认值 如果我们知道某一列的所有数据应该具有相同的初始值,我们可以直接将这个初始值设置为该列的默认值。例如: sql CREATE TABLE test ( id UInt32, value UInt32 DEFAULT 0, name String ) ENGINE = MergeTree() ORDER BY id; 在这个例子中,value列的默认值被设置为了0,这样我们就无需在插入数据时手动指定它的值了。 2. 插入完整数据 另一种避免这种错误的方法是在插入数据时提供所有列的值。例如: sql INSERT INTO test (id, value, name) VALUES (1, 0, 'test'); 在这个例子中,我们在插入数据时提供了value列的值,因此ClickHouse不会抛出错误。 四、总结 通过以上分析,我们可以看出“表的列出现自动增长错误”实际上是因为我们在插入数据时不提供完整的信息导致的。要搞定这个问题,关键点在于得把所有列的数值都清清楚楚地填上,或者,对于那种会自动增长的列,给它设定一个默认的初始值就搞定了。只要我们遵循这些规则,就可以有效地避免这个错误。 五、建议 在使用ClickHouse进行数据分析时,我们应该始终注意保持数据的一致性和完整性。这不仅能让我们彻底告别“表的列自动增长出错”的烦恼,更能实实在在地提升咱们的工作效率,让数据分析的质量蹭蹭上涨。 六、结语 ClickHouse是一款强大的实时数据分析工具,但是在使用它的时候也会遇到各种各样的问题。不过,只要我们把这些小问题背后的“猫腻”摸清楚,再掌握几招解决它们的窍门,那咱们就能更溜地运用ClickHouse,让它帮咱们把数据分析的事儿做得妥妥的。
2023-07-20 08:25:08
553
林中小径-t
JSON
在处理JSON数据交换和时区转换问题上,近期有几篇值得深入阅读的文章和新闻: 1. 一篇来自InfoQ的技术文章《JavaScript与JSON中的日期和时区处理最佳实践》于今年5月份发布,详尽探讨了如何在JavaScript中有效管理和转换JSON中的时间戳,并结合最新的ECMAScript标准提供了多种解决方案,尤其强调了时区差异对全球化应用的影响以及避免常见陷阱的方法。 2. 在Web开发社区Stack Overflow上,一篇关于“处理JSON日期和时区的最新讨论”热度不减,开发者们分享了各自在实际项目中遇到的问题及解决策略,涉及Moment.js、Luxon等流行日期时间库在JSON序列化反序列化过程中的应用。 3. 最近发布的JavaScript库“TZJS”专为解决JSON中时区问题而设计,它提供了一套完整的工具集,帮助开发者轻松实现UTC时间与任意时区之间无缝转换。该库遵循最新的国际时区数据库(IANA TZDB),确保了时区信息的准确性和时效性。 4. 针对全球范围内的API服务,一篇名为《跨时区JSON数据交换的标准与挑战》的技术博客深度剖析了ISO-8601格式在多时区环境下的优势和局限,同时提出了标准化JSON中时间表示以适应全球用户需求的未来趋势。 这些延伸阅读资料将有助于读者更全面地理解并掌握JSON数据交换中的时区处理技术,及时跟进行业动态,提升自身开发实践能力。
2023-08-18 10:38:11
520
算法侠
Python
...,该策略能够根据输入数据的分布动态调整网络权重,从而有效缓解异方差带来的预测误差。这一研究成果为处理复杂高维数据集中的异方差问题提供了新的解决方案。 此外,在实际应用层面,Kaggle竞赛项目“House Prices: Advanced Regression Techniques”中,参赛者们普遍遇到了因房价数据异方差导致的传统线性回归模型效果不佳的问题。通过采用异方差鲁棒估计方法如广义最小二乘法(GLS)以及基于树集成模型(如随机森林和梯度提升机)等非线性模型,部分优秀解决方案成功克服了这一挑战,显著提升了预测性能。 同时,对于金融、经济等领域的时间序列数据分析,可参考《Econometrica》上关于时间序列异方差检验与建模的研究文章,作者从理论角度解析了ARCH/GARCH模型在应对时间序列异方差上的有效性,并结合实例阐述了如何将其应用于风险评估和投资决策中。 综上所述,无论是理论探索还是实践应用,异方差问题始终是机器学习和统计建模领域的重要议题,与时俱进的研究成果和案例分析将有助于我们更好地理解和解决这一问题,从而优化模型预测效果,提升数据分析质量。
2023-06-14 11:41:40
137
代码侠
JSON
在处理数据交换和存储的过程中,JSON(JavaScript Object Notation)因其简洁的语法和广泛的兼容性而备受青睐。然而,将JSON数据高效、准确地转换为数据库表格式是一项关键任务,特别是在大数据时代背景下,大量异构数据的整合与分析尤为重要。 近期,业界对于如何优化这一过程展开了深入研究和实践应用。例如,2023年春季,Google Cloud推出了一款名为“Dataflow for JSON”的服务,该服务能够自动解析复杂JSON结构,并智能映射到BigQuery等云数据库中,极大地简化了JSON至关系型数据库的转换流程,提升了数据集成效率。 同时,一些开源项目也在积极探索这一领域,如PostgreSQL的jsonb数据类型就支持直接存储JSON并进行高效的查询操作,使得JSON数据可以直接在数据库层面进行深度处理,无需预先转换成传统的表结构。 此外,针对嵌套层级较深或动态结构变化频繁的JSON数据,有学者提出了基于NoSQL数据库的解决方案,如MongoDB的文档模型能很好地适应JSON数据的特性,实现灵活且高性能的数据管理。 总的来说,随着技术的发展和应用场景的变化,JSON数据转换为数据库表格式的方法不断演进,无论是通过增强传统关系型数据库的功能,还是借助NoSQL数据库的优势,都在推动着更高效、便捷的数据处理方式的创新与发展。
2023-11-04 08:47:08
443
算法侠
JSON
...了JSON作为轻量级数据交换格式的基础概念及其在JavaScript中的应用后,我们可进一步探索这一技术在现代Web开发及跨平台数据交互领域的最新动态与实践。 近年来,随着API经济的快速发展和微服务架构的广泛应用,JSON愈发成为主流的数据传输格式。例如,在GraphQL这一新兴的API查询语言中,JSON不仅被用作请求和响应的数据载体,还支持丰富的自定义类型系统,以满足日益复杂的应用场景需求。此外,诸如AJAX、RESTful API等技术也都深度依赖JSON进行前后端数据交互。 与此同时,考虑到性能优化和数据压缩的问题,业界也出现了对JSON的改进方案。比如,Facebook推出的Msgpack是一种二进制序列化格式,它在保持类似JSON语法简洁性的同时,显著提高了数据传输效率。另外,JSONB(Binary JSON)是PostgreSQL数据库为存储和检索JSON数据而提供的高效二进制格式。 不仅如此,针对JSON的安全性问题,开发者需关注如何有效验证和过滤JSON数据,防止注入攻击等安全风险。为此,一些库如ajv、 Joi等提供了严谨的数据模式验证功能,确保接收到的JSON数据符合预期结构和类型。 综上所述,深入理解和掌握JSON相关的最新技术和最佳实践,对于提升应用程序的数据处理能力、保障数据交互安全以及优化系统性能等方面具有重要价值。建议读者持续关注JSON及相关领域的发展趋势,并结合具体项目需求灵活运用各种解决方案。
2023-05-11 17:44:41
267
代码侠
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
xz -d file.txt.xz
- 解压xz格式的压缩文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"