前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据库版本兼容性问题及解决方案 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
JSON
...引发了社区对于轻量化解决方案的需求。因此,许多现代项目开始转向诸如“dayjs”等轻量级替代品。Dayjs设计灵感来源于Moment.js,但文件大小仅为2KB左右,且API与Moment.js保持高度兼容,能够满足大部分基本及复杂的时间日期格式化、解析和操作需求。 此外,国际标准ISO 8601在日期和时间表示方面的重要性不言而喻,尤其是在跨时区的数据交换场景。ECMAScript Internationalization API(简称Intl API)作为JavaScript内置的国际化工具,提供了处理时区转换、日期格式化等功能,进一步简化了开发流程,提升了代码效率和可维护性。 为了紧跟技术潮流,开发者应当关注这些新兴工具和技术的发展,适时地调整和优化自己的代码实践,以适应日益复杂的应用场景。同时,理解和掌握如何利用现有资源进行准确高效的时间字符串格式化输出,无论是在日常开发还是在解决特定业务问题时,都显得尤为重要。
2023-08-03 22:34:52
393
岁月如歌
Flink
...etes Pod启动问题及其解决方案之后,我们了解到正确配置、资源管理、网络策略和容器镜像选择对于成功部署至关重要。实际上,随着Kubernetes生态的不断发展,近期也有一些与Flink集成相关的最新进展值得关注。 例如,Apache Flink社区在2023年初发布了最新的Flink版本,其中包含了对Kubernetes API更深度的优化和支持,使得Flink作业能更好地适应动态变化的Kubernetes环境,增强了Pod自动伸缩的能力,并改进了资源利用率。同时,官方文档也提供了更为详尽的在Kubernetes上部署Flink的最佳实践指南。 此外,业界也在积极探索基于Service Mesh技术如Istio或Linkerd来增强Flink在Kubernetes上的服务治理能力,通过将复杂的网络配置抽象化,简化了分布式流处理任务中的服务间通信,进一步提升了系统的稳定性和可观察性。 另一方面,对于资源不足的问题,云服务商如AWS、阿里云等相继推出了针对大数据工作负载优化的Kubernetes托管服务,用户可以便捷地为Flink集群动态分配资源,有效避免因资源限制导致的Pod启动失败问题。 总之,随着技术的发展和社区的努力,Flink与Kubernetes的结合将会更加紧密且高效,为广大开发者带来更好的大数据处理体验。持续关注相关领域的最新动态和技术分享,无疑将有助于我们在实际运维中更好地解决类似问题,实现Flink在Kubernetes上的平稳运行与优化。
2024-02-27 11:00:14
540
诗和远方-t
RabbitMQ
...Q中可能会遇到的头疼问题——“Connection error: SSL certificate verification failed”。这个问题在开发时真是让人头疼,尤其是试着连到生产环境那会儿,简直要抓狂了。今天我就来和大家分享一下我在这个问题上的一些经历和解决办法。 2. 问题背景 在实际工作中,我们经常会遇到需要通过SSL/TLS协议安全地连接到RabbitMQ服务器的情况。然而,在某些情况下,客户端可能会抛出如下的错误信息: Error: Connection error: SSL certificate verification failed. 这个错误意味着客户端在尝试建立SSL连接时,无法验证服务器提供的SSL证书。这可能是因为好几种原因,比如设置错了、证书到期了,或者是证书本身就有点问题。要搞定这个问题,咱们得对RabbitMQ的SSL设置有点儿了解,还得会点儿排查的技巧。 3. 原因分析 首先,让我们来分析一下可能的原因。在RabbitMQ中,SSL证书主要用于确保通信的安全性和身份验证。如果客户端无法验证服务器提供的证书,就会导致连接失败。 - 证书问题:最常见的原因是SSL证书本身有问题。比如证书已经过期,或者证书链不完整。 - 配置问题:另一个常见问题是SSL配置不正确。比如说,客户端可能没把CA证书的路径配对好,或者是服务器那边搞错了证书。 - 环境差异:有时候,开发环境和生产环境之间的差异也会导致这个问题。比如开发环境中使用的自签名证书,在生产环境中可能无法被信任。 4. 解决方案 接下来,我会分享一些解决这个问题的方法。嘿,大家听好了!这些妙招都是我亲测有效的,不过嘛,不一定适合每一个人。希望能给大伙儿带来点儿灵感,让大家脑洞大开! 4.1 检查证书 首先,我们需要检查SSL证书是否有效。可以使用openssl命令行工具来进行检查。例如: bash openssl s_client -connect rabbitmq.example.com:5671 -showcerts 这条命令会显示服务器提供的证书链,我们可以查看证书的有效期、签发者等信息。如果发现问题,需要联系证书颁发机构或管理员进行更新。 4.2 配置客户端 如果证书本身没有问题,那么可能是客户端的配置出了问题。我们需要确保客户端能够找到并信任服务器提供的证书。在RabbitMQ客户端配置中,通常需要指定CA证书路径。例如,在Python的pika库中,可以这样配置: python import pika import ssl context = ssl.create_default_context() context.load_verify_locations(cafile='/path/to/ca-bundle.crt') connection = pika.BlockingConnection( pika.ConnectionParameters( host='rabbitmq.example.com', port=5671, ssl_options=pika.SSLOptions(context) ) ) channel = connection.channel() 这里的关键是确保cafile参数指向的是正确的CA证书文件。 4.3 调试日志 如果上述方法都无法解决问题,可以尝试启用更详细的日志记录来获取更多信息。在RabbitMQ服务器端,可以通过修改配置文件来增加日志级别: ini log_levels.default = info log_levels.connection = debug 然后重启RabbitMQ服务。这样可以在日志文件中看到更多的调试信息,帮助我们定位问题。 4.4 网络问题 最后,别忘了检查网络状况。有时候,防火墙规则或者网络延迟也可能导致SSL握手失败。确保客户端能够正常访问服务器,并且没有被中间设备拦截或篡改数据。 5. 总结与反思 通过以上几个步骤,我们应该能够解决大部分的“Connection error: SSL certificate verification failed”问题。当然了,每个项目的具体情况都不一样,可能还得根据实际情况来灵活调整呢。在这过程中,我可学了不少关于SSL/TLS的门道,还掌握了怎么高效地找问题和解决问题。 希望大家在遇到类似问题时,不要轻易放弃,多查阅资料,多尝试不同的解决方案。同时,也要学会利用工具和日志来辅助我们的排查工作。希望我的分享能对你有所帮助!
2025-01-02 15:54:12
160
雪落无痕
Kotlin
...让人有点摸不着头脑的问题——构建不同版本之间共享资源时,那些神出鬼没的混淆错误,是不是听起来就挺让人头疼的?这种问题在多线程环境或者数据结构设计这块儿可以说是时常冒个头,如果不妥善处理好它,那可是会大大影响到程序的稳定性和性能表现,甚至可能会让程序“闹脾气”、“拖后腿”的呢。让我们一起深入理解这个问题,并通过实例代码来揭示解决方案。 2. 变体间的资源共享与问题描述 在Kotlin中,我们可以使用枚举类或者 sealed class 创建一组变体,这些变体可能共享某些资源。例如: kotlin sealed class Resource { object SharedData : Resource() data class UniqueData(val value: String) : Resource() // 假设SharedData包含一个需要同步访问的计数器 val counter = AtomicInteger(0) fun incrementCounter() { counter.incrementAndGet() } } 在这个例子中,“SharedData”变体共享了一个“counter”资源。如果好几个线程同时跑过来,都想去改这个计数器的数值,那就可能引发一场“比赛”,我们称之为竞态条件。这样一来,计数器的结果就会乱成一团糟,就像好几只手同时在黑板上写数字,最后谁也不知道正确的答案是多少了。 3. 混淆错误实例分析 想象一下这样的场景,两个线程A和B同时操作Resource.SharedData: kotlin fun main() { val sharedResource = Resource.SharedData launch { // 这里假设launch是启动新线程的方法 for (i in 1..1000) { sharedResource.incrementCounter() } } launch { for (i in 1..1000) { sharedResource.incrementCounter() } } Thread.sleep(1000) // 等待所有线程完成操作 println("Final count: ${sharedResource.counter.get()}") // 这里的结果很可能不是2000 } 运行这段代码后,你可能会发现最终计数器的值并不是预期的2000。这就是典型的因并发访问共享资源导致的混淆错误。 4. 解决方案与实践 解决这类问题的关键在于引入适当的同步机制。在Kotlin中,我们可以使用synchronized关键字或者ReentrantLock等工具来保证资源的线程安全性。 下面是一个修复后的示例: kotlin sealed class Resource { object SharedData : Resource() { private val lock = Any() // 使用一个对象作为锁 fun incrementCounter() { synchronized(lock) { counter.incrementAndGet() } } } // ... } 通过synchronized关键字,我们确保了在同一时间只有一个线程可以访问和修改counter。这样就能避免上述的混淆错误。 5. 结语 在使用Kotlin进行开发时,尤其是在设计包含共享资源的变体时,我们必须时刻警惕潜在的并发问题。深入掌握并发控制这套“武林秘籍”,并且活学活用像synchronized这样的“独门兵器”,咱们就能妥妥地避免那些因为资源共享而冒出来的混淆错误,进而编写出更加结实耐造、稳如磐石的程序来。在编程道路上,每一次解决问题的过程都是一次成长的机会,让我们在实践中不断学习,不断进步吧!
2023-05-31 22:02:26
351
诗和远方
Logstash
在处理日志数据时,Logstash配置文件的重要性不言而喻。最近,Elastic公司发布了Logstash的最新版本,对配置文件解析功能进行了优化升级,不仅增强了错误提示的准确性,还新增了实时语法检查功能,使得用户在编写配置文件过程中能够及时发现并修正错误,从而有效避免“Pipeline启动失败:无法加载配置文件”这类问题的发生。 此外,为了帮助广大用户更好地理解和应用Logstash,社区活跃成员撰写了一系列深度教程和实战案例,深入解读了如何根据实际业务需求定制化配置文件,以及如何利用Logstash与Elasticsearch、Kibana等工具进行联动,构建高效可靠的数据收集、处理与分析体系。 同时,推荐大家关注相关的技术博客和论坛,如Elastic官方博客、Stack Overflow等,这些平台上的讨论和分享往往能提供最新的实践经验和解决方案。例如,一篇名为《Mastering Logstash Configuration: Common Pitfalls and Best Practices》的文章,就系统性地梳理了Logstash配置中常见的陷阱和最佳实践,对于预防和解决配置文件相关的问题具有极高的参考价值。 综上所述,在面对Logstash配置文件可能出现的各种问题时,我们不仅要有扎实的基础知识和细致入微的排查能力,还要紧跟技术发展的步伐,持续学习和借鉴社区内的最新经验和成果,以确保我们的日志处理流程始终保持高效稳定。
2023-01-22 10:19:08
259
心灵驿站-t
Python
...应用场景不断拓宽,从数据分析、人工智能到网络爬虫、自动化运维等领域都有广泛的应用。近日,Python 3.10版本正式发布,引入了新语法特性如结构模式匹配(Structural Pattern Matching)和改进版类型提示等,进一步优化了开发体验,提升了代码可读性与简洁性。 此外,全球顶级科技公司纷纷加大对Python的支持力度。例如,Google推出了Colab这一基于云计算的交互式笔记本环境,支持用户直接在浏览器中编写并运行Python代码进行数据科学项目;而微软也在Azure云平台服务中深度集成Python,提供一站式的AI开发解决方案。 对于初学者来说,《Python Crash Course》、《流畅的Python》等经典教材以及在线课程如Coursera上的“Python for Everybody”系列,都是系统学习Python语言及其实战应用的理想资源。同时,开源社区活跃且丰富的库资源也是Python开发者不可忽视的学习宝库,例如NumPy、Pandas用于数据分析,Django、Flask构建Web应用框架等。 值得注意的是,在实际编程实践中,掌握如何运用版本控制工具Git管理Python项目源码,使用Jupyter Notebook或VS Code等高效IDE进行开发调试,以及利用unittest、pytest等单元测试框架保证代码质量,同样是现代Python程序员必备技能的一部分。 总之,随着Python生态系统的持续繁荣和更新迭代,深入理解和掌握这门语言显得尤为重要,而每日坚持学习和实践则有助于快速成长为一名优秀的Python程序员。
2023-06-06 20:35:24
124
键盘勇士
MyBatis
...发时,我们经常会遇到数据库操作的问题。而在这个过程中,MyBatis就成为了一个非常强大的工具。它其实是个半自动的数据存储小帮手,能够让你把SQL指令悄悄塞进Java对象里头,就像是给对象穿上了能和数据库流畅对话的“隐形衣”。 在本文中,我们将深入研究MyBatis的注解方式实现SQL映射。让我们来通过几个实实在在的例子,亲身感受一下如何用注解这玩意儿让咱们的代码变得更加简洁易懂,从而嗖嗖地提升开发效率,就像给编程过程按下了快进键一样。 二、什么是MyBatis MyBatis是基于Object-Relational Mapping(ORM)思想的一款优秀的持久层框架。它的工作原理是将一个复杂的SQL语句映射为一个简单的Java方法,然后由MyBatis框架去执行这个SQL语句,并返回结果集。 在MyBatis中,我们可以使用两种方式来定义SQL映射:XML文件和注解。在这篇文章中,我们将主要讨论如何使用注解来实现SQL映射。 三、MyBatis的注解使用 首先,我们需要在我们的类上添加一个@Mapper注解。这个东西啊,是个神奇的小标签,它的作用是告诉大伙儿,这个类其实是个接口,并且呢,它还特别标注自己是一个Mapper类型的接口。就像是给这个接口戴了个“我是Mapper接口”的小帽子,让人一眼就能认出它的身份。 java @Mapper public interface UserMapper { // ... } 接下来,我们可以在我们的方法上添加一些注解来指定SQL语句。例如,我们可以使用@Select注解来指定查询语句。 java @Select("SELECT FROM user WHERE id = {id}") User selectUserById(int id); 在上面的例子中,{id}是一个占位符,它的值将在运行时从参数列表中获取。这使得我们可以灵活地改变SQL语句的内容。 除了@Select注解,MyBatis还提供了其他的注解,如@Insert、@Update、@Delete等,分别用于执行插入、更新和删除操作。 java @Insert("INSERT INTO user (name, age) VALUES ({name}, {age})") void insertUser(User user); 以上就是MyBatis使用注解实现SQL映射的基本步骤。当然啦,还有很多牛逼哄哄的高级功能,比如动态SQL、延迟加载这些小玩意儿,在我们日常使用的过程中,会不断地摸索和学习,让它们为我们所用。 四、总结 总的来说,使用MyBatis的注解方式实现SQL映射是一种非常方便、高效的方式。它不仅可以让我们的代码更加简洁,而且还能提高开发效率。我相信,在未来的开发中,MyBatis将会发挥更大的作用。 最后,我想说的是,虽然MyBatis可以帮助我们解决很多问题,但我们也需要不断地学习和探索,以便更好地利用它。毕竟,技术是一把双刃剑,掌握得好,就能给我们带来无穷的力量。
2023-01-16 14:18:50
177
笑傲江湖-t
Element-UI
...乱七八糟、错综复杂的数据结构时,更是表现得像一位得力小助手一样给力。然而,在真实操作的过程中,我们免不了会碰上各种乱七八糟的问题,就比如说,搜索功能突然罢工了。今天我们就来一起探讨一下这个问题的原因及解决方案。 二、问题背景 假设我们正在做一个电商网站的商品分类系统,商品分类是一个多级的结构,如:“家用电器->厨房电器->电饭煲”。我们可以使用Element-UI的Cascader级联选择器来实现这个需求。 三、问题分析 首先,我们要明确一点,Cascader级联选择器本身并没有提供搜索功能,如果需要搜索功能,我们需要自定义实现。那么问题来了,为什么自定义的搜索功能会失效呢?下面我们从两个方面来进行分析: 1. 数据源的问题 如果我们的数据源存在问题,比如数据不完整或者错误,那么自定义的搜索功能就无法正常工作。你瞧,搜索这东西就好比是在数据库这个大宝藏里捞宝贝,要是数据源那个“藏宝图”不准确或者不齐全,那找出来的结果自然就像是挖错了地方,准保会出现各种意想不到的问题。 2. 程序逻辑的问题 如果我们对程序逻辑的理解不够深入,或者代码实现存在错误,也会影响搜索功能的正常使用。比如,当我们处理搜索请求的时候,没能把完全对得上的数据精准筛出来,这就让搜出来的结果有点儿偏差了。 四、解决方案 针对以上两种问题,我们可以采取以下措施来解决: 1. 保证数据源的完整性和正确性 我们需要确保数据源的完整性,即所有的分类节点都应该存在于数据源中。同时,我们也需要检查数据是否正确,包括但不限于分类名称、父级ID等信息。如果发现问题,我们需要及时修复。 2. 正确实现搜索功能 在自定义搜索功能时,我们需要确保程序逻辑的正确性。具体来说,我们需要做到以下几点: - 在用户输入搜索关键字后,我们需要遍历所有节点,找出匹配的关键字; - 如果一个节点包含全部关键字,那么它就应该被选中; - 我们还需要考虑到一些特殊情况,比如模糊匹配、通配符等。 五、结论 总的来说,当Element-UI的Cascader级联选择器的搜索功能失效时,我们需要从数据源和程序逻辑两方面进行排查和修复。这不仅意味着咱们得有两把刷子,技术这块儿得扎扎实实的,而且呢,也得是个解决问题的小能手,这样才能把事儿做得漂亮。希望这篇文章能够帮助到大家,让大家在面对此类问题时不再迷茫。
2023-06-04 10:49:05
462
月影清风-t
Datax
亲爱的数据分析师们, 你是否曾经在处理大量数据时,遇到了Datax的批量插入操作超出最大行数限制的问题?如果你的答案是肯定的,那么你来到了正确的地方。本文将帮助你理解这个错误,并提供一些解决这个问题的方法。 首先,我们需要了解什么是Datax的最大行数限制。Datax是个超级厉害的数据传输神器,不仅速度快得飞起,性能杠杠的,而且稳定性超强,尤其擅长处理那种海量级别的数据交换工作,简直无所不能!不过,这个高效的家伙Datax也带来个小插曲,就是它对每条数据的操作都有个“小脾气”——有个单次操作能处理的最大行数限制。要是你碰巧超过了这个限制,Datax可不会跟你客气,它会立马蹦出一个异常消息,明确告诉你:“喂,老兄,你的批量插入操作已经超标啦,超出了我能处理的最大行数限制!” 现在,让我们来深入了解一下这个错误的具体表现以及如何解决。 一、错误的表现形式 当你尝试插入的数据量超过了Datax的最大行数限制,你会收到一个类似的错误提示: bash ERROR: batch size (65536) is larger than the max insert row count of your destination table, you can reduce batch size or increase the max insert row count of your destination table. 二、错误的原因分析 这个错误的主要原因是你的批量插入数据量过大,超出了Datax对单次操作的最大行数限制。具体来说,这可能是由于以下原因造成的: 1. 数据量过大 如果你一次性想要插入的数据过多,那么这个错误就很容易出现。 2. Datax配置不当 如果你没有正确配置Datax,让它适应你的大数据量需求,也会导致这个错误。 3. 目标表设置不当 如果你的目标表的max insert row count设置得过低,也可能引发这个错误。 三、解决方案 针对上述错误的原因,我们可以从以下几个方面来解决问题: 1. 分批插入数据 如果是因为数据量过大导致的错误,你可以考虑分批次插入数据,每次只插入一部分数据,直到所有数据都被插入为止。这样既可以避免超过最大行数限制,也可以提高插入效率。 2. 调整Datax配置 如果你发现是Datax配置不当导致的错误,你需要检查并调整Datax的配置。例如,你可以增加Datax的并发度,或者调整Datax的内存大小等。 3. 调整目标表设置 如果你发现是目标表的max insert row count设置过低导致的错误,你需要去数据库管理后台,把目标表的max insert row count调高。 四、预防措施 为了避免这种错误的发生,我们还可以采取以下预防措施: 1. 在开始工作前,先进行一次数据分析,估算需要插入的数据量,以此作为基础来设定Datax的工作参数。 2. 对于大项目,可以采用分阶段的方式,先完成一部分,再进行下一部分。 3. 及时监控Datax的工作状态,一旦发现问题,及时进行调整。 总结 当你的Datax批量插入操作遇到最大行数限制时,不要惊慌,要冷静应对。经过以上这些分析和解决步骤,我真心相信你绝对能够挖掘出最适合你的那个解决方案,没跑儿!记住,数据分析师的使命就是让数据说话,让数据为你服务,而不是被数据所困扰。加油!
2023-08-21 19:59:32
526
青春印记-t
Tesseract
...eract OCR:解决“Outdated version of Leptonica library”问题的探索 1. 引言 在当今数字化的时代,光学字符识别(OCR)技术扮演着至关重要的角色。Tesseract作为一款开源、强大的OCR引擎,凭借其准确性和易用性深受开发者和研究者喜爱。不过在实际用起来的时候,我们时不时会碰到个头疼的问题——“Leptonica库版本过时了”,这可能会让Tesseract的本领施展不开,甚至直接把程序给整崩溃。本文将深入探讨这一问题,并通过实例代码帮助你理解如何更新Leptonica库以更好地利用Tesseract。 2. 了解Tesseract与Leptonica的关系 Tesseract的核心功能实现离不开辅助库的支持,其中Leptonica库就是不可或缺的一部分。Leptonica是一个用于图像处理和分析的C库,为Tesseract提供图像预处理和后处理功能,如二值化、降噪、边界检测等,这些对于提升Tesseract的OCR精度至关重要。当Leptonica版本过旧时,可能无法支持Tesseract新特性或导致兼容性问题。 3. “Outdated version of Leptonica library”问题的产生与影响 假设你正在尝试使用最新的Tesseract版本进行OCR识别,但在编译或运行时,系统提示“Outdated version of Leptonica library”。这就意味着你当前环境中的Leptonica版本有点过时了,跟不上你现在Tesseract版本的步伐。它可能没法提供所有需要的功能,甚至有可能会让程序闹脾气、罢工崩溃。 示例代码: bash ./configure --prefix=/usr/local --with-extra-libraries=/usr/local/lib/liblept.so.5 在这个配置阶段,如果发现/usr/local/lib/liblept.so.5是旧版Leptonica库文件,就可能出现上述问题。 4. 更新Leptonica库至最新版 解决这个问题的关键在于更新Leptonica到与Tesseract兼容的新版本。以下是一段详细的操作步骤: a. 首先,访问Leptonica项目的官方GitHub仓库(https://github.com/DanBloomberg/leptonica),查看并下载最新稳定版源码包。 b. 解压并进入源码目录,执行如下命令编译和安装: bash ./autobuild ./configure make sudo make install c. 安装完毕后,确认新版Leptonica是否已成功安装: bash leptinfo -v d. 最后,重新配置和编译Tesseract,指向新的Leptonica库路径,确保二者匹配: bash ./configure --prefix=/usr/local --with-extra-libraries=/usr/local/lib/liblept.so. make sudo make install 5. 结论与思考 通过以上操作,我们可以有效地解决“Outdated version of Leptonica library”带来的问题,让Tesseract得以在最新Leptonica的支持下更高效、准确地进行OCR识别。在这一整个过程中,我们完全可以亲身感受到,软件生态里的各个部分就像拼图一样密不可分,而且啊,及时给这些依赖库“打补丁”,那可是至关重要的。每一次我们更新版本,那不仅仅意味着咱们技术水平的升级、性能更上一层楼,更是实实在在地在为开发者们精心雕琢,让他们的使用体验越来越顺溜、越来越舒心,这是我们始终如一的追求。所以,兄弟们,咱们得养成一个好习惯,那就是定期检查并更新那些依赖库,这样才能够把像Tesseract这样的神器效能发挥到极致,让它们在咱们的项目开发和创新过程中大显身手,帮咱们更上一层楼。
2023-03-22 14:28:26
155
繁华落尽
Apache Lucene
在当前大数据时代,Apache Lucene面临的挑战与解决方案不仅限于上述内容。近期,Elasticsearch(基于Lucene构建的分布式搜索引擎)新版本中引入了更先进的索引压缩算法和存储优化策略,进一步提升了处理大型文本数据的能力。例如,它通过改进段合并策略,减少了不必要的磁盘IO操作,实现了性能提升。 同时,随着云存储技术的发展,利用云环境下的分布式系统架构来解决Lucene处理大型文件的问题成为一种趋势。Google的Cloud Search服务以及阿里云的OpenSearch等产品,都在底层整合了Lucene,并通过分布式计算和存储技术,有效解决了单机资源瓶颈问题,使得处理PB级别数据变得更为高效。 此外,研究者们也在探索将机器学习应用于索引结构的设计和查询优化中,试图通过学习用户查询模式和数据分布特征,动态调整索引结构,从而提高检索效率。这些前沿探索预示着未来全文搜索引擎技术将更加智能化、高效化。 总之,尽管Lucene在处理大规模文本数据时存在挑战,但结合最新的技术发展和研究成果,我们有理由相信这些问题将会得到更好的解决,进而推动整个搜索和数据分析领域的发展。
2023-01-19 10:46:46
510
清风徐来-t
Logstash
在处理大数据流和日志分析时,Logstash内存使用问题的优化与解决方案具有极高的实践价值。然而,在实际运维环境中,随着技术的快速发展,越来越多的企业开始采用更先进的工具链和服务来应对大规模数据处理挑战。例如,Elastic Stack中的新成员Elastic Agent和Beats系列(如Filebeat、Metricbeat)被设计用于轻量级的数据收集,它们能有效降低系统资源占用,特别是内存使用,并且可以直接将数据发送到Elasticsearch,减轻了Logstash的压力。 另外,针对Logstash本身的性能优化,社区也持续进行着更新迭代。近期发布的Logstash 8.x版本中,引入了Pipeline隔离特性,每个Pipeline可以在独立的JVM进程中运行,从而更好地控制内存分配,防止因单个Pipeline异常导致整个服务崩溃的情况。 同时,对于海量数据分批处理策略,Kafka等分布式消息队列系统的应用也在实践中得到广泛认可。通过将Logstash与Kafka结合,能够实现数据缓冲、削峰填谷以及分布式处理,大大提升了系统的稳定性和扩展性。 因此,在解决Logstash内存不足的问题上,除了上述文章提供的基础方法外,与时俱进地了解并利用新的技术和架构方案,是现代IT运维和开发者提升数据处理效能的关键所在。
2023-03-27 09:56:11
329
翡翠梦境-t
Tesseract
...eract发布5.0版本时引入了对PDF文档原生支持的新特性,使得用户可以直接对多页PDF进行识别,并保持页面顺序和结构的完整性。此外,研究者们也在不断尝试结合深度学习方法优化Tesseract,比如通过训练自定义模型来解决特定领域的排版和字体识别难题,显著提升了在医疗报告、历史档案等专业文档中的识别准确率。 同时,值得深入探究的是,与Tesseract协同工作的其他开源项目如Ocular、PDFMiner等也在不断迭代升级,它们在预处理图像、解析PDF结构等方面提供了有力支持,共同构建起更为完善的文档自动识别解决方案。 综上所述,OCR技术的发展日新月异,实际应用中应对多页图像文本识别挑战不仅依赖于核心工具如Tesseract的持续优化,也离不开相关领域前沿研究成果的融入以及跨技术平台的整合创新。对于开发者而言,紧跟最新动态并灵活运用这些技术和策略,将有助于更高效地解决实际业务场景下的复杂识别问题。
2024-01-12 23:14:58
122
翡翠梦境
Datax
随着大数据时代的到来,数据集成和同步工具的重要性日益凸显。DataX作为阿里巴巴开源的数据传输利器,在实际业务场景中发挥着关键作用。近期,阿里云官方持续优化DataX的功能,以适应更复杂多变的数据处理需求。例如,新增对更多数据源的支持,如Kafka、MongoDB等,使得用户可以更方便地进行实时流数据的采集与迁移。 同时,为了提升大规模数据同步的性能和稳定性,DataX在任务调度、错误重试策略等方面也进行了深度优化。结合阿里云的其他服务,比如MaxCompute(原ODPS)的大数据计算能力,企业能够构建起从数据获取、清洗、转换到分析的一体化解决方案,大大提升了数据驱动决策的效率。 此外,对于日志数据的处理和分析,业界也有不少新的趋势和实践。例如,通过AI和机器学习技术,可以实现对海量日志的智能解析和异常检测,从而挖掘出更有价值的信息。而DataX在这个过程中扮演了“桥梁”角色,将各类日志数据高效地汇集至统一的数据平台,为后续的深度分析和应用打下坚实基础。 因此,了解并掌握DataX这类强大的数据集成工具,不仅有助于解决眼前的数据同步问题,更能顺应时代发展,为企业数字化转型提供有力支持。建议读者关注阿里云DataX的最新动态和技术文档,同时深入研究相关的大数据处理和分析方法,以应对不断涌现的新挑战。
2023-09-12 20:53:09
514
彩虹之上-t
Kylin
一、引言 在这个大数据时代,数据分析成为了企业的重要组成部分。为了满足这种需求,Apache Kylin项目应运而生。你知道Kylin吗?这可是一款超赞的开源大数据实时分析神器,有了它,我们就能像闪电一样飞快地对海量数据进行深度剖析,简直不要太方便!然而,在实际操作时,咱们可能会碰上一些状况,比如Kylin和ZooKeeper这俩家伙之间的通信时不时会出点小差错。这篇文章将详细介绍如何解决这个问题。 二、问题现象 在使用Kylin的过程中,我们可能会遇到Kylin与ZooKeeper的通信异常问题。这个问题通常表现为以下几种情况: 1. ZooKeeper连接失败。 2. Kylin无法正常获取到ZooKeeper中的配置信息。 3. Kylin的实时计算任务无法正常运行。 这些问题都会严重影响我们的工作,因此我们需要找到合适的方法来解决它们。 三、原因分析 那么,为什么会出现这样的问题呢?从技术角度上来说,主要有以下几个可能的原因: 1. ZooKeeper服务器故障。要是ZooKeeper服务器罢工了,Kylin就甭想和它顺利牵手,这样一来,它们之间的沟通可就要出乱子啦。 2. Kylin客户端配置错误。如果在Kylin客户端的配置文件里,ZooKeeper的那些参数没整对的话,那也可能让通信状况出岔子。 3. 网络问题。要是网络状况时好时坏,或者延迟得让人抓狂,那么Kylin和ZooKeeper之间的通信就可能会受到影响。 四、解决方案 知道了问题的原因,我们就可以有针对性地去解决问题了。以下是几种常见的解决方法: 1. 检查ZooKeeper服务器状态。首先,我们需要检查ZooKeeper服务器的状态,看是否存在故障。如果有故障,就需要修复它。例如,我们可以查看ZooKeeper的日志文件,查找是否有异常日志输出。 2. 检查Kylin客户端配置。接下来,咱们得瞅瞅Kylin客户端的那个配置文件了,确保里头关于ZooKeeper的各项参数设定都没出岔子哈。例如,我们可以使用如下命令来查看Kylin的配置文件: bash cat /path/to/kylin/conf/core-site.xml | grep zookeeper 如果发现有问题,我们就需要修改配置文件。例如,如果我们发现zookeeper.quorum的值设置错误,可以将其修改为正确的值: xml zookeeper.quorum localhost:2181 3. 检查网络状况。最后,我们需要检查网络状况,确保网络稳定且无高延迟。假如网络出了点状况,不如咱们先试试重启路由器,或者直接给网络服务商打个电话,让他们来帮帮忙解决问题。 五、总结 通过以上的方法,我们可以有效地解决Kylin与ZooKeeper的通信异常问题。在日常工作中,咱们得养成个习惯,时不时地给这些系统做个全面体检,这样一来,要是有什么小毛病或者大问题冒出来,咱们就能趁早发现并且及时解决掉。同时,我们也应该了解更多的技术知识,以便更好地应对各种挑战。
2023-09-01 14:47:20
110
人生如戏-t
Python
...雅地实现一行转多行的数据转换之后,我们发现数据处理与分析的世界远比想象的更为复杂多元。近期,Pandas库不断推陈出新,为解决更复杂的数据拆分问题提供了更多实用工具和方法。 例如,在2022年初发布的Pandas 1.4版本中,explode()函数得到了进一步增强,支持了对多级嵌套列表以及Series、DataFrame类型的列进行拆分操作。这一升级极大地拓展了其应用场景,使得处理如JSON或嵌套字典类型的数据变得更加便捷高效。 与此同时,对于那些无法直接通过explode()解决的极端复杂情况,数据科学社区也在积极探讨并分享解决方案。比如,利用Pandas结合其他Python库如json、itertools甚至是自定义解析函数来处理高度非结构化数据。此外,诸如pd.json_normalize()等专门针对嵌套JSON数据结构的方法也被广泛应用于实际项目中,以期实现更精细化的数据抽取与重塑。 而在数据分析领域,随着大数据及机器学习技术的发展,如何有效预处理复杂异构数据成为关键。为此,研究者们正持续探索新的数据处理范式和技术手段,力求在保持代码简洁的同时提升处理效率。因此,对于Pandas使用者而言,紧跟社区动态,深入了解并掌握各类高级用法,将有助于应对未来可能遇到的各种挑战,让数据分析工作更加得心应手。
2023-05-09 09:02:34
234
山涧溪流_
NodeJS
...这篇文章将会讨论这些问题,并提供一些解决方案。 二、什么是恶意代码和攻击行为? 在计算机编程中,恶意代码是指那些旨在破坏系统正常运行的程序。这包括但不限于病毒、木马、蠕虫等。攻击行为,这个听着好像挺专业的词儿,其实说白了就是那些坏蛋通过各种花招,利用一些带有恶意的代码去搞破坏的行为。就好比,他们可能会像小偷一样悄悄摸摸地盗取你的数据,或者像个涂鸦者随意篡改你的信息内容,再不然就像个霸道的门神,让你无法正常享受服务,这就是所谓的拒绝服务攻击啦。 三、如何应对Node.js中的恶意代码和攻击行为? 1. 安装安全更新和补丁 Node.js官方会定期发布新的版本以及相关的安全更新和补丁,我们应当及时安装这些更新,以修复已知的安全漏洞。 javascript npm install -g n n stable 2. 使用防篡改工具 为了防止恶意代码对我们的代码进行修改,我们可以使用一些防篡改工具,例如Git hooks。 3. 验证输入数据 在接受用户输入时,我们应该对其进行验证,确保其符合预期的格式和范围。否则,恶意用户可能会通过输入特殊的字符来执行恶意操作。 javascript if (isNaN(input)) { console.log('Invalid input'); } 4. 使用HTTPS协议 当我们需要向用户提供敏感信息(如密码)时,我们应该使用HTTPS协议,以保护数据传输过程中的安全性。 5. 实施访问控制 我们需要限制哪些用户可以访问我们的系统,并且赋予他们什么样的权限。这样可以防止未经授权的用户访问系统的敏感部分。 6. 使用防火墙 防火墙可以帮助我们阻止来自特定IP地址的请求,从而防止DDoS攻击。 7. 日志记录和审计 我们需要记录所有的系统事件,以便在发生问题时能够追溯到问题的发生位置。同时,我们还需要定期进行系统审计,检查是否有任何异常行为。 四、总结 虽然Node.js为我们提供了很多便利,但是我们也不能忽视其中可能存在的安全问题。只有时刻瞪大眼睛,像老鹰护小鸡那样采取实实在在的防护行动,才能确保我们的系统稳稳妥妥、安安全全地跑起来,不会出任何岔子。
2024-01-07 18:08:03
98
彩虹之上-t
SeaTunnel
...提供了一种处理大规模数据流的强大方式。然而,在实际应用中,我们可能会遇到数据传输速度慢的问题。这篇文章将深入探讨这个问题,并给出解决方案。 二、问题分析 1. 数据量过大 当数据量超过SeaTunnel所能处理的最大范围时,数据传输的速度就会变慢。比如,如果我们心血来潮,打算一股脑儿传输1个TB那么大的数据包,就算你用上了当今世上最快的网络通道,那个传输速度也照样能慢到让你怀疑人生。 2. 网络状况不佳 如果我们的网络环境较差,那么数据传输的速度自然会受到影响。比如,假如我们的网络有点卡,或者延迟情况比较严重,那么数据传输的速度就会像蜗牛爬一样慢下来。 三、解决方案 1. 数据分片 我们可以将大文件分割成多个小文件进行传输,这样可以大大提高数据传输的速度。例如,我们可以使用Java的File类的split方法来实现这个功能: java File file = new File("data.txt"); List files = Arrays.asList(file.split("\\G", 5)); 在上面的例子中,我们将大文件"data.txt"分割成了5个小文件。 2. 使用更高速的网络 如果我们的网络状况不佳,我们可以考虑升级我们的网络设备,或者更换到更高质量的网络服务商。 3. 使用缓存 我们可以使用缓存来存储已经传输过的数据,避免重复传输。例如,我们可以使用Redis作为缓存服务器: java Jedis jedis = new Jedis("localhost"); String data = jedis.get(key); if (data != null) { // 数据已经在缓存中,不需要再次传输 } else { // 数据不在缓存中,需要从源获取并存储到缓存中 } 在上面的例子中,我们在尝试获取数据之前,先检查数据是否已经在缓存中。 四、总结 SeaTunnel是一个强大的工具,可以帮助我们处理大规模的数据流。然而,在实际操作SeaTunnel的时候,我们免不了可能会碰上数据传输速度不给力的情况。你知道吗,如果我们灵活运用一些小技巧,就能让SeaTunnel这小子在传输数据时跑得飞快。首先,咱们可以巧妙地把数据“切片分块”,别让它一次性噎着,这样传输起来就更顺畅了。其次,挑个网速倍儿棒的环境,就像给它搬进了信息高速公路,嗖嗖的。再者,利用缓存技术提前备好一些常用的数据,随用随取,省去了不少等待时间。这样一来,SeaTunnel的数据传输速度妥妥地就能大幅提升啦! 以上就是我对解决SeaTunnel数据传输速度慢问题的一些想法和建议。如果您有任何问题,欢迎随时与我交流。
2023-11-23 21:19:10
181
桃李春风一杯酒-t
MySQL
...LL,但是在尝试插入数据时,却发现可以输入空白值。嘿,你知道这是怎么一回事儿吗?别急,接下来咱们要从各个角度全面剖析这个问题,并且还会贴心地提供一些解决办法! 二、什么是 NOT NULL? NOT NULL 是 MySQL 中的一个数据类型约束,用于强制字段不为空。当你在建立字段的时候,给它加上了“NOT NULL”的约束,这就意味着从此以后,只要你想往这个字段里插入数据,就绝对、必须得提供一个实实在在的有效值,不能为空!如果试图插入 NULL 或空字符串,MySQL 将会抛出一个错误。 三、为什么可以插入空白值? 在了解了 NOT NULL 的基本概念之后,我们来深入探究一下为什么可以在设置了 NOT NULL 的字段上插入空白值。 首先,我们需要知道,对于文本类型字段来说,MySQL 并没有区分空字符串和 NULL 值。换句话说,你要是尝试在不允许为空的文本框里塞进去一个空字符串,MySQL 还是会把它当作个有效值来对待。所以,就算你在插入信息的时候,随手敲了个空格或者回车键,放心好了,这些可都会被系统认作是有用的数据! 其次,MySQL 的数据验证是在 SQL 语句执行之前进行的,而不是在执行语句时进行的。这就意味着,如果你在插入数据时没有明确地指明要插入的值,MySQL 就会在运行时自动填充该值。对于 NOT NULL 字段来说,MySQL 通常会选择其默认值作为填充值。所以,即使你没有在插入操作中提供任何值,MySQL 也可能会将其填充为默认值,从而让你误以为自己成功地插入了一个空白值。 四、如何避免这种情况? 既然我们知道了为什么可以在设置了 NOT NULL 的字段上插入空白值,那么就可以采取相应的措施来避免这种情况的发生。 一种常见的做法是显式地指定你要插入的值。无论你是使用 INSERT INTO 语句还是 UPDATE 表达式,都应该清楚地指明要插入的值。如果你不确定某个字段的默认值是什么,可以使用 SHOW CREATE TABLE 语句查看表的详细信息。 另外,你也可以通过修改表的约束来限制插入操作。比如说,你完全可以考虑增加一个新栏目来专门存原始数据,然后在塞入新鲜数据之前,先瞅瞅这个位置是不是还空着没填呢。如果为空,你可以拒绝插入请求或者填充一个默认值。 五、总结 总的来说,虽然在 MySQL 中设置了 NOT NULL 的字段理论上不能包含空白值,但实际上却有可能发生这种情况。这是因为 MySQL 的数据验证是在 SQL 语句执行之前进行的,而默认值的选择也是自动完成的。为了避免出现这状况,咱们最好明确指出要塞进去的数值,或者换个法子给插入操作上个“紧箍咒”。希望这篇文章能够帮助到你们,谢谢阅读!
2023-04-18 15:27:46
87
风轻云淡_t
SeaTunnel
在实时数据处理领域,SeaTunnel 作为一款基于 Apache Flink 的开源工具,其稳定性和高效性得到了业界的广泛认可。近期,随着云原生和多云环境的普及,跨云数据同步需求日益增强,SeaTunnel 在解决此类问题上的优势也愈发凸显。值得注意的是,Apache Flink 社区最近发布了新版本,对资源管理、任务调度以及故障恢复机制进行了深度优化,这将进一步提升 SeaTunnel 在处理大规模、高并发数据同步时的性能与稳定性。 此外,针对连接被强制关闭等常见问题,SeaTunnel 团队不仅提供了本文所述的常规排查与解决方案,还在持续改进产品以减少此类异常的发生。例如,在最新的开发路线图中,团队计划增加更强大的网络容错机制和自我修复功能,旨在确保即使在网络波动或服务器故障的情况下,也能保障数据同步任务的连续性和完整性。 与此同时,为了帮助用户更好地理解和使用 SeaTunnel,社区定期举办线上研讨会和技术分享活动,邀请行业专家和一线开发者进行深入解读和实战演示。同时,也有不少技术博客和教程,如《SeaTunnel 实战:从零搭建跨云数据同步平台》一文,结合具体场景详细剖析了如何借助 SeaTunnel 应对复杂的数据同步挑战。 总之,在不断变化的技术环境中,SeaTunnel 正以其强大的功能和活跃的社区支持,为越来越多的企业和个人用户提供可靠且高效的实时数据同步服务,而深入了解并掌握应对各类问题的方法,则能让我们更好地利用这一利器挖掘数据价值。
2023-06-03 09:35:15
137
彩虹之上-t
Tesseract
...设置无效的深度解析与解决策略 引言(1) 亲爱的开发者们,我们都知道Tesseract作为一款强大的开源OCR(光学字符识别)工具,在处理和识别图像中的文本信息时,展现出了非凡的能力。然而,在实际应用过程中,我们可能遇到过这样的困扰:“哎呀,我明明设置了图像旋转角度参数,为啥Tesseract就是不听话,无法正确地识别出旋转后的文字呢?”今天,我们就一起来揭开这个谜团,探讨一下“图像旋转角度参数设置无效”的问题及其解决方案,让我们一起走进Tesseract的世界,感受其背后的逻辑与奥秘。 问题阐述(2) 首先,让我们明确一下问题现象。在使用Tesseract进行图像识别时,有时候由于图片本身存在一定的倾斜角度,因此需要预先对图像进行旋转校正。其实呢,理论上讲,咱们可以通过调整--psm参数或者直接操作API接口来给图片“拧个角度”,但有时候你会发现,就算你把角度调得准准的,可识别出来的结果还是让人挠头,不太对劲儿。这正是我们今天要坐下来好好唠一唠的问题。 python import pytesseract from PIL import Image 假设我们有一张倾斜45度的图片 img = Image.open('rotated_text.jpg') rotated_img = img.rotate(45) 尝试设置旋转角度为45度进行识别 text = pytesseract.image_to_string(rotated_img, config='--psm 6 -c tessedit_pageseg_mode=6 --oem 3 --rotate-pages 45') print(text) 尽管我们已经尝试将图像旋转回正,并在配置中指定了旋转角度,但输出的识别结果却并不理想,这确实令人费解且头疼。 原因分析(3) 原因一:预处理的重要性 Tesseract对于图像的识别并非简单依赖于用户设定的旋转参数,而是基于内部的页面分割算法(Page Segmentation Mode)。如果原始图片质量不咋地,或者背景乱七八糟的,光靠调整旋转角度这一招,可没法保证一定能识别得准准的。在调用Tesseract前,往往需要对图像进行一系列预处理操作,比如灰度化、二值化、降噪等。 原因二:旋转参数的误解 --rotate-pages参数主要用于PDF文档旋转,而非单个图像的旋转矫正。对于单个图像,我们应先自行完成旋转操作后再进行识别。 解决方案(4) 策略一:手动预处理与旋转 正确的做法是先利用Python Imaging Library(Pillow)或其他图像处理库对图像进行旋转校正,然后再交给Tesseract进行识别: python 正确的做法:手动旋转图像并进行识别 corrected_img = img.rotate(-45, expand=True) 注意这里旋转的角度是负数,因为我们要将其逆向旋转回正 corrected_text = pytesseract.image_to_string(corrected_img, config='--psm 6') print(corrected_text) 策略二:结合Tesseract的内部矫正功能 Tesseract从v4版本开始支持自动检测并矫正文本方向,可通过--deskew-amount参数开启文本行的去斜功能,但这并不能精确到每个字符,所以对于严重倾斜的图像,仍需先进行手动旋转。 python 使用Tesseract的去斜功能 auto_corrected_text = pytesseract.image_to_string(img, config='--psm 6 --deskew-amount 0.2') print(auto_corrected_text) 结语(5) 总而言之,“图像旋转角度参数设置无效”这个问题,其实更多的是我们在理解和使用Tesseract时的一个误区。我们需要深入了解其工作原理,并结合恰当的预处理手段来提升识别效果。在这一趟探索的旅程中,我们又实实在在地感受了一把编程那让人着迷的地方——就是那种面对棘手问题时,不断挠头苦思、积极动手实践,然后欢呼雀跃地找到解题钥匙的时刻。而Tesseract,就像一位沉默而睿智的朋友,等待着我们去发掘它更多的可能性和潜力。
2023-05-04 09:09:33
81
红尘漫步
HBase
...入理解了HBase的数据存储机制以及如何防止数据丢失之后,我们可以进一步关注大数据存储领域的最新进展和解决方案。近期,Apache HBase社区发布了其最新的2.4版本,引入了更先进的空间管理和优化功能,如改进的内存管理、读写性能提升以及增强的数据保护措施,有助于进一步降低由于系统资源限制导致的数据丢失风险。 同时,在全球范围内,众多企业正积极探索云原生环境下的HBase应用实践,例如阿里云推出的云HBase服务,不仅提供了自动备份与恢复机制,还集成了监控告警和智能运维功能,确保用户数据安全的同时简化了运维工作。 另外,随着GDPR(欧盟一般数据保护条例)等法规对数据保护要求的提高,数据生命周期管理成为业界焦点。一些研究者和专家正在探索将区块链技术与HBase结合,通过分布式账本实现数据不可篡改性和可追溯性,以满足日益严苛的数据完整性及合规性需求。 此外,对于希望深入了解HBase内部工作机制和最佳实践的读者,推荐阅读《HBase in Action》一书,作者细致剖析了HBase的设计原理,并结合实战案例给出了大量关于数据备份、恢复和优化的策略建议。 总之,随着技术的发展和法规的完善,HBase及其生态系统正在不断进化,为用户提供更为可靠和高效的大数据存储方案,而了解并掌握这些新趋势和工具将有利于我们在实际工作中更好地应对和预防数据丢失问题。
2023-08-27 19:48:31
414
海阔天空-t
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig @dns_server domain_name MX
- 查询指定DNS服务器上某域名的邮件交换记录(MX记录)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"