前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[复杂查询操作实战技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Maven
...ment可能还是有些复杂和难以理解。这篇东西呢,我打算手把手教大家怎么在dependencyManagement里头把springboot相关的所有组件版本一股脑儿全换成新的,保准让大家伙儿能更接地气、更明白透彻地掌握dependencyManagement的使用诀窍,希望真的能帮到大伙儿! 二、什么是dependencyManagement? dependencyManagement是一种Maven的核心特性,主要用于集中管理项目的依赖版本。在parent项目的pom.xml文件里头,咱们专门设立一个dependencyManagement区域,这样就能一次性搞定所有子项目依赖库的版本号,省得我们在每个小项目里头反反复复地写相同的依赖版本信息了,多方便呐! dependencyManagement的工作原理如下: 1. 当我们在子项目中添加依赖时,如果没有明确指定依赖的版本,则会自动从dependencyManagement部分查找是否有该依赖的版本声明。 2. 如果dependencyManagement中有该依赖的版本声明,则子项目会使用dependencyManagement中定义的版本;如果没有找到,那么子项目会抛出错误,提示用户必须在子项目中显式指定依赖版本。 三、如何在dependencyManagement中替换springboot相关的所有组件的版本? 在实际开发中,我们经常需要替换成特定版本的springboot相关组件,例如升级springboot框架或者替换spring-boot-starter-web等。那么,如何在dependencyManagement中替换这些组件的版本呢?下面我们来看一个具体的例子。 首先,在父pom.xml文件中添加dependencyManagement部分,并设置需要替换的组件版本,例如: xml org.springframework.boot spring-boot-dependencies 2.5.4 pom import 在这个例子中,我们设置了spring-boot-dependencies的版本为2.5.4,这将会被所有的子项目继承。注意,我们将scope属性设置为import,这样就可以把dependencyManagement作为一个独立的依赖来引用了。 然后,在子项目中只需要添加对应的依赖即可,不需要再手动指定版本: xml org.springframework.boot spring-boot-starter-web org.springframework.boot spring-boot-starter-web 通过上述步骤,我们就成功地在dependencyManagement中替换了springboot相关的所有组件的版本。你瞧,dependencyManagement这个东西可了不得,它不仅能让我们开发工作变得轻松简单,还能让整个项目的维护和稳定性噌噌噌地往上蹿,简直是一大神器。 四、总结 dependencyManagement是Maven的一个强大工具,可以帮助我们有效地管理和控制项目的依赖版本。在日常开发工作中,我们常常会碰到这样一种情况:某个组件的版本需要更新换代。这时候,有一个超级实用的功能——dependencyManagement,它就能像救星一样,帮我们迅速搞定这个问题,省时又省力。一旦你熟练掌握了dependencyManagement的常规操作,就能轻轻松松地对项目中各个依赖项的版本进行有效管理,这样一来,不仅开发效率嗖嗖往上涨,项目的整体质量也能更上一层楼。
2023-01-31 14:37:14
72
红尘漫步_t
Shell
...循环行为。 总之,在实战中不断优化shell编程技巧,深入研究相关工具与最佳实践,不仅可以解决while循环条件失效这类具体问题,更能全面提升开发效率与系统稳定性,适应快速发展的IT技术环境。
2023-07-15 08:53:29
71
蝶舞花间_t
MySQL
...。 二、MySQL的操作符及函数 1. 对照操作符:包含等于、超过、少于等。 2. 推理操作符:包含AND、OR、NOT等。 3. 算术操作符:包含加减乘除等。 4. 函数:包含数学函数、日期函数、字符串函数等。 三、MySQL的数据类型 1. 整型:包含TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT等。 2. 浮点型:包含FLOAT、DOUBLE、DECIMAL等。 3. 字符型:包含CHAR、VARCHAR、TEXT、BLOB等。 4. 日期型:包含DATE、TIME、YEAR、DATETIME等。 四、MySQL的高级操作 1. 数据表联合查询:使用UNION、UNION ALL操作符将多个SELECT语句的结果集合并起来。 2. 分组查询:使用GROUP BY子句对结果集进行分组。 3. 常见子查询:使用子查询语句作为SELECT语句的一部分进行查询。 4. 数据库备份和恢复:使用备份手段和恢复手段对数据库进行备份和恢复操作。 五、MySQL的优化 1. 使用索引:对于经常查询的字段名,可以创建索引来提高检索速度。 2. 优化查询语句:使用EXPLAIN语句分析SQL语句,查看索引使用情况,可以优化查询语句。 3. 控制连接数:控制数据库连接数可以避免连接过多导致数据库性能下降。 4. 内存优化:通过调整MySQL的内存参数,优化数据库性能。 总之,MySQL是一种功能强大的数据库系统管理软件,需要我们掌握其基础概念、操作符、函数、数据类型、高级操作及优化等知识点。只有全面了解MySQL,才能更好地应对各种复杂的数据处理问题。
2023-09-03 11:49:35
63
键盘勇士
Kylin
...术,Kylin能够将复杂的查询转换为对预计算结果的快速检索,从而实现亚秒级的查询响应速度,特别适用于大数据时代海量数据的实时分析需求。 ZooKeeper , ZooKeeper是一个分布式的、开放源码的分布式应用程序协调服务,它提供了一种简单且强大的方式来管理大型分布式系统中的各种状态信息和元数据。在Apache Kylin中,ZooKeeper被用作集群管理和配置存储的角色,确保各个节点之间能够进行有效的通信和协调。 Service Mesh , Service Mesh是一种用于处理服务间通信的基础设施层,通常以轻量级网络代理的形式部署在每个服务实例旁边,负责服务发现、负载均衡、熔断限流、监控追踪等微服务治理功能。在云原生环境中,借助Istio等Service Mesh框架,可以更好地管理和优化Apache Kylin与ZooKeeper之间的交互,提升服务稳定性及通信效率。
2023-09-01 14:47:20
110
人生如戏-t
SeaTunnel
...开发者进行深入解读和实战演示。同时,也有不少技术博客和教程,如《SeaTunnel 实战:从零搭建跨云数据同步平台》一文,结合具体场景详细剖析了如何借助 SeaTunnel 应对复杂的数据同步挑战。 总之,在不断变化的技术环境中,SeaTunnel 正以其强大的功能和活跃的社区支持,为越来越多的企业和个人用户提供可靠且高效的实时数据同步服务,而深入了解并掌握应对各类问题的方法,则能让我们更好地利用这一利器挖掘数据价值。
2023-06-03 09:35:15
137
彩虹之上-t
MySQL
...,MySQL将拒绝该操作,并抛出错误。 默认值(Default Value) , 在MySQL数据库设计中,默认值是指为表的某一字段预先设定的一个固定值,当用户在插入新记录时没有明确指定该字段的值时,系统会自动填充这个默认值。结合NOT NULL约束,即使未在INSERT语句中提供具体数据,MySQL也能保证字段不会出现NULL,而是使用预设的默认值。 PreparedStatement(预编译语句) , 在Java等编程语言与数据库交互的过程中,PreparedStatement是一种预编译的SQL查询对象,允许开发者先定义SQL语句模板,并通过占位符(如“?”)为参数预留位置。在执行查询或插入操作时,可以动态地为这些占位符提供实际值,从而提高SQL执行效率和安全性。通过PreparedStatement,可以有效地防止SQL注入攻击,并确保在插入或更新数据时,每个字段都能被正确且明确地赋值,避免因为空白值导致的数据完整性问题。
2023-04-18 15:27:46
87
风轻云淡_t
HBase
...它那超凡的数据存储和查询技能,在业界那是名声响当当,备受大家伙的青睐和推崇啊!然而,即使是最强大的工具也可能会出现问题,就像HBase一样。在这篇文章里,我们打算聊聊一个大家可能都碰到过的问题——HBase表的数据有时候会在某个时间点神秘消失。 二、数据丢失的原因 在大数据世界里,数据丢失是一个普遍存在的问题,它可能是由于硬件故障、网络中断、软件错误或者人为操作失误等多种原因导致的。而在HBase中,数据丢失的主要原因是磁盘空间不足。当硬盘空间不够,没法再存新的数据时,HBase这个家伙就会动手干一件事:它会把那些陈年旧的数据块打上“已删除”的标签,并且把它们占用的地盘给腾出来,这样一来就空出地方迎接新的数据了。这种机制可以有效地管理磁盘空间,但同时也可能导致数据丢失。 三、如何防止数据丢失 那么,我们如何防止HBase表的数据在某个时间点上丢失呢?以下是一些可能的方法: 3.1 数据备份 定期对HBase数据进行备份是一种有效的防止数据丢失的方法。HBase提供了多种备份方式,包括物理备份和逻辑备份等。例如,我们可以使用HBase自带的Backup和Restore工具来创建和恢复备份。 java // 创建备份 hbaseShell.execute("backup table myTable to 'myBackupDir'"); // 恢复备份 hbaseShell.execute("restore table myTable from backup 'myBackupDir'"); 3.2 使用HFileSplitter HFileSplitter是HBase提供的一种用于分片和压缩HFiles的工具。通过分片,我们可以更有效地管理和备份HBase数据。例如,我们可以将一个大的HFile分割成多个小的HFiles,然后分别进行备份。 java // 分割HFile hbaseShell.execute("split myTable 'ROW_KEY_SPLITTER:CHUNK_SIZE'"); // 备份分片后的HFiles hbaseShell.execute("backup split myTable"); 四、总结 数据丢失是任何大数据系统都无法避免的问题,但在HBase中,通过合理的配置和正确的操作,我们可以有效地防止数据丢失。同时,咱们也得明白一个道理,就是哪怕咱们拼尽全力,也无法给数据的安全性打包票,做到万无一失。所以,当我们用HBase时,最好能培养个好习惯,定期给数据做个“体检”和“备胎”,这样万一哪天它闹情绪了,咱们也能快速让它满血复活。 五、参考文献 [1] Apache HBase官方网站:https://hbase.apache.org/ [2] HBase Backup and Restore Guide:https://hbase.apache.org/book.html_backup_and_restore [3] HFile Splitter Guide:https://hbase.apache.org/book.html_hfile_splitter
2023-08-27 19:48:31
414
海阔天空-t
Gradle
...在接手那些让人挠头的复杂项目时,咱们免不了会碰上一些糟心问题。比如说,这么多任务到底该按照什么顺序一个个来执行呢?又或者,怎样才能把每个任务的执行时间调整到最佳状态,省时高效地完成它们?这时候啊,Gradle这个神器的任务优先级配置功能就显得特别的关键和给力了! 二、理解任务优先级 在Gradle中,每个任务都有一个默认的优先级。这个优先级就像是给任务排了个队,决定了它们谁先谁后开始执行。简单来说,就是那个优先级标得高的任务,就像插队站在队伍前面的那位,总是能比那些优先级低、乖乖排队在后面的任务更快地得到处理。 三、设置任务优先级的方法 那么,如何设置任务的优先级呢?主要有以下几种方法: 3.1 在build.gradle文件中直接设置 我们可以在每个任务定义的时候明确指定其优先级,例如: task test(type: Test) { group = 'test' description = 'Run tests' dependsOn(':compileJava') runOrder='random' } 在这里,我们通过runOrder属性指定了测试任务的运行顺序为随机。 3.2 使用gradle.properties文件 如果我们想对所有任务都应用相同的优先级规则,可以将这些规则放在gradle.properties文件中。例如: org.gradle.parallel=true org.gradle.caching=true 这里,org.gradle.parallel=true表示开启并行构建,而org.gradle.caching=true则表示启用缓存。 四、调整任务优先级的影响 调整任务优先级可能会对构建流程产生显著影响。比如,如果我们把编译任务的优先级调得高高的,就像插队站在队伍前面一样,那么每次构建开始的时候,都会先让编译任务冲在前头完成。这样一来,就相当于减少了让人干着急的等待时间,使得整个过程更顺畅、高效了。 另一方面,如果我们的项目包含大量的单元测试任务,那么我们应该将其优先级设置得较低,以便让其他更重要的任务先执行。这样可以避免在测试过程中出现阻塞,影响整个项目的进度。 五、结论 总的来说,理解和正确地配置Gradle任务的优先级是非常重要的。这不仅能够帮咱们把构建流程整得更顺溜,工作效率嗖嗖提升,更能稳稳当当地保证项目的牢靠性和稳定性,妥妥的!所以,在我们用Gradle搞开发的时候,得先把任务优先级的那些门道整明白,然后根据实际情况灵活调整,这样才能玩转它。 六、参考文献 1. Gradle官方网站 https://docs.gradle.org/current/userguide/more_about_tasks.htmlsec:ordering_of_tasks 2. Gradle用户手册 https://docs.gradle.org/current/userguide/userguide.html 3. Gradle官方文档 https://docs.gradle.org/current/userguide/tutorial_using_tasks.html
2023-09-01 22:14:44
476
雪域高原-t
Java
...力,通过链式调用实现复杂的数据操作逻辑。而在并发编程领域,除了传统的synchronized关键字和volatile变量,Java还不断推出CompletableFuture、Flow API等高级工具,帮助开发者更好地应对高并发场景。 在日期时间处理方面,自Java 8起,全新的java.time包取代了原有的Date和Calendar类,LocalDate、LocalTime以及LocalDateTime等类提供了更加直观易用且线程安全的时间日期操作功能。 总而言之,Java作为久经沙场的编程语言,其发展日新月异,始终保持活力。开发者在掌握基础类和方法之余,紧跟官方更新的步伐,了解并应用最新的特性和最佳实践,将能极大提升开发效率与代码质量,从而在实际项目中创造更大价值。
2023-01-06 08:37:30
349
桃李春风一杯酒
MyBatis
...要包括: - 数据库查询效率低下:一次性获取大量数据,可能导致SQL查询执行时间过长。 - 内存消耗过大:一次性加载大量数据到内存,可能导致Java Heap空间不足,甚至引发OOM(Out Of Memory)错误。 - 循环依赖与延迟加载陷阱:在实体类间存在复杂关联关系时,如果不合理配置懒加载,可能会触发N+1查询问题,严重降低系统性能。 2. 针对性优化策略及示例代码 2.1 SQL优化与分页查询 示例代码: java @Select("SELECT FROM large_table LIMIT {offset}, {limit}") List fetchLargeData(@Param("offset") int offset, @Param("limit") int limit); 在实际应用中,尽量避免一次性获取全部数据,而是采用分页查询的方式,通过LIMIT关键字实现数据的分批读取。例如,上述代码展示了一个分页查询的方法定义。 2.2 合理设置批量处理与流式查询 MyBatis 3.4.0及以上版本支持了ResultHandler接口以及useGeneratedKeys、fetchSize等属性,可以用来进行批量处理和流式查询,有效减少内存占用。 示例代码: java @Select("SELECT FROM large_table") @Results(id = "largeTableResult", value = { @Result(property = "id", column = "id") // 其他字段映射... }) void streamLargeData(ResultSetHandler handler); 在这个例子中,我们通过ResultSetHandler接口处理结果集,而非一次性加载到内存,这样就可以按需逐条处理数据,显著降低内存压力。 2.3 精细化配置懒加载与缓存策略 对于实体间的关联关系,应合理配置懒加载以避免N+1查询问题。另外,咱们也可以琢磨一下开启二级缓存这招,或者拉上像Redis这样的第三方缓存工具,这样一来,数据访问的速度就能噌噌噌地往上提了。 示例代码: xml 以上示例展示了如何在实体关联映射中启用懒加载,只有当真正访问LargeTable.detail属性时,才会执行对应的SQL查询。 3. 总结与思考 面对MyBatis处理大量数据时可能出现的性能瓶颈,我们应从SQL优化、分页查询、批量处理、懒加载策略等方面综合施策。同时呢,咱们得在实际操作中不断摸索、改进,针对不同的业务场景,灵活耍起各种技术手段,这样才能保证咱的系统在面对海量数据挑战时,能够轻松应对,游刃有余,就像一把磨得飞快的刀切豆腐一样。 在此过程中,我们需要保持敏锐的洞察力和持续优化的态度,理解并熟悉MyBatis的工作原理,才能逐步克服性能瓶颈,使我们的应用程序在海量数据面前展现出更强大的处理能力。同时,咱也得留意一下性能优化和代码可读性、维护性之间的微妙平衡,目标是追求那种既高效又易于理解和维护的最佳技术方案。
2023-08-07 09:53:56
57
雪落无痕
MySQL
...监控系统、全文检索、复杂数据分析等领域,提供近乎实时的搜索和分析能力。其核心特性包括分布式架构、支持PB级别数据的近实时检索、动态扩容缩容以及丰富的查询语句与聚合功能。 join类型 , 在Elasticsearch中,join类型是一种特殊的查询机制,用于连接或关联多个索引中的数据,模拟传统数据库中的SQL JOIN操作。尽管Elasticsearch本身不直接支持跨索引JOIN,但通过Nested数据类型或Parent-Child关系等实现方式,可以在一定程度上处理多表关联查询场景,提高查询效率。然而,由于Elasticsearch的设计初衷是为了解决大规模分布式环境下的搜索问题,故join类型的使用可能面临性能瓶颈,尤其在处理大数据量时。 Nested数据类型 , 在Elasticsearch中,Nested数据类型是一种特殊的数据结构,允许在一个文档内嵌套另一个完整的JSON对象,并且这个嵌套对象可以拥有自己的独立元数据和独立的文档ID。相比于传统的平面文档结构,Nested数据类型更适用于表达一对多或多对多的关系,尤其是在需要进行类似SQL JOIN操作的时候,可以通过Nested查询来实现对嵌套文档内容的筛选和关联,以替代原始的join类型查询,从而在单个索引内部达到高效、灵活的关联查询效果。
2023-12-03 22:57:33
48
笑傲江湖_t
JQuery
...,这样才能继续下一步操作,或者是传给服务器那边做进一步处理。好嘞,那么咱们就来聊聊一个实际问题:当你使用了 jQuery 中的那个 $.get 方法加载了一个页面后,怎么才能在这个新加载的页面里获取到当前的 URL 呢?接下来,咱俩就一起深入研究下这个问题,我还会给你分享几个超级实用的代码实例! 1. 获取当前完整 URL 使用浏览器内置对象 Location 首先,无论页面是否是通过 AJAX 加载的,JavaScript 都可以访问到浏览器提供的全局 window.location 对象,该对象包含了当前页面的 URL 信息: javascript // 不依赖 jQuery,直接使用原生 JavaScript 获取当前完整 URL var currentUrl = window.location.href; console.log("当前页面的完整 URL 是: ", currentUrl); 如果你确实需要在 jQuery 函数上下文中获取 URL,尽管这不是必须的,但完全可以这样做: javascript // 使用 jQuery 包装器获取当前完整 URL(实际上调用的是原生属性) $(function() { var currentUrlUsingJQuery = $(window).location.href; console.log("使用 jQuery 获取的当前 URL 是: ", currentUrlUsingJQuery); }); 2. 在 $.get 请求完成后获取 URL 当使用 jQuery 的 $.get 方法从服务器异步加载内容时,你可能想在请求完成并渲染新内容之后获取当前 URL。注意,这并不会改变原始页面的 URL,但在回调函数中获取 URL 的方法与上述相同: javascript // 示例:使用 jQuery $.get 方法加载数据,并在成功回调里获取当前 URL $.get('/some-url', function(responseData, textStatus, jqXHR) { // 页面内容更新后,仍可获取当前页面的 URL var urlAfterAjaxLoad = window.location.href; console.log('AJAX 加载后,当前页面的 URL 依然是: ', urlAfterAjaxLoad); // ... 其他针对响应数据的操作 ... }, 'json'); // 注意:$.get 方法默认采用异步方式加载数据 3. 获取 URL 参数及片段标识符(Hash) 在实际应用中,你可能不仅需要完整的 URL,还需要从中提取特定参数或哈希值(hash)。尽管这不是本问题的核心,但它与主题相关,所以这里也给出示例: javascript // 获取 URL 中的查询字符串参数(比如 topicId=361) function getParameterByName(name) { var urlParams = new URLSearchParams(window.location.search); return urlParams.get(name); } var topicId = getParameterByName('topicId'); console.log('当前 URL 中 topicId 参数的值为: ', topicId); // 获取 URL 中的哈希值(例如 section1) var hashValue = window.location.hash; console.log('当前 URL 中的哈希值为: ', hashValue); 综上所述,无论是同步还是异步场景下,通过 jQuery 或原生 JavaScript 获取当前页面 URL 都是一个相当直接的过程。虽然jQuery有一堆好用的方法,但说到获取URL这个简单任务,我们其实完全可以甩开膀子,直接借用浏览器自带的那个叫做window.location的小玩意儿,轻轻松松就搞定了。而且,对于那些更复杂的需求,比如解析URL里的小尾巴(参数)和哈希值这些难题,我们同样备有专门的工具和妙招来搞定它们。所以,在实际编程的过程中,摸透并熟练运用这些底层原理,就像掌握了一套独门秘籍,能让我们在应对各种实际需求时更加得心应手,游刃有余。
2023-02-17 17:07:14
56
红尘漫步_
ElasticSearch
...和丰富的功能。在实际操作中,我们经常会遇到要处理海量数据并进行分页展示的情况,这时候,Elasticsearch 提供的这个叫 search_after 的参数就派上大用场啦。 一、什么是 search_after 参数 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它允许我们在前一页的基础上,根据排序字段的值获取下一页的结果。search_after 参数的核心思想是在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推,直到达到我们需要的分页数量为止。 二、为什么需要使用 search_after 参数 使用传统的 from + size 方式进行分页,如果数据量很大,那么每一页都需要加载所有满足条件的记录到内存中,这样不仅消耗了大量的内存,而且会导致 CPU 资源的浪费。用 search_after 参数来实现分页的话,操作起来就像是这样:只需要轻轻拽住满足条件的最后一项记录,就能嗖地一下翻到下一页的结果。这样做,就像给内存和CPU减负瘦身一样,能大大降低它们的工作压力和损耗。 三、如何使用 search_after 参数 使用 search_after 参数非常简单,我们只需要在 Search API 中添加 search_after 参数即可。例如,如果我们有一个商品列表,我们想要获取第一页的商品列表,我们可以这样做: bash GET /products/_search { "from": 0, "size": 10, "sort": [ { "name": { "order": "asc" } } ], "search_after": [ { "name": "Apple" } ] } 在这个查询中,我们设置了 from 为 0,size 为 10,表示我们要获取第一页的商品列表,排序字段为 name,排序顺序为升序,最后,我们设置了 search_after 参数为 {"name": "Apple"},表示我们要从名为 Apple 的商品开始查找下一页的结果。 四、实战示例 为了更好地理解和掌握 search_after 参数的使用,我们来看一个实战示例。想象一下,我们运营着一个用户评论平台,现在呢,我们特别想瞅瞅用户们最新的那些精彩评论。不过,这里有个小插曲,就是这评论数量实在多得惊人,所以我们没法一股脑儿全捞出来看个遍哈。这时,我们就需要使用 search_after 参数来进行深度分页。 首先,我们需要创建一个 user_comment 文档类型,包含用户 id、评论内容和评论时间等字段。然后,我们可以编写如下的代码来获取最新的用户评论: python from datetime import datetime import requests 设置 Elasticsearch 的地址和端口 es_url = "http://localhost:9200" 创建 Elasticsearch 集群 es = Elasticsearch([es_url]) 获取最新的用户评论 def get_latest_user_comments(): 设置查询参数 params = { "index": "user_comment", "body": { "query": { "match_all": {} }, "sort": [ { "created_at": { "order": "desc" } } ], "size": 1, "search_after": [] } } 获取第一条记录 response = es.search(params) if not response["hits"]["hits"]: return [] 记录最后一条记录的排序字段值 last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 获取下一条记录 while True: params["body"]["size"] += 1 params["body"]["search_after"] = search_after response = es.search(params) 如果没有更多记录,则返回所有记录 if not response["hits"]["hits"]: return [hit["_source"] for hit in response["hits"]["hits"]] else: last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 在这段代码中,我们首先设置了一个空的 search_after 列表,然后执行了一次查询,获取了第一条记录,并将其存储在 last_record 变量中。接着,我们将 last_record 中的 id 和 created_at 字段的值添加到 search_after 列表中,再次执行查询,获取下一条记录。如此反复,直到获取到我们需要的所有记录为止。 五、总结 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它可以让我们在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推广多获取我们需要的分页数量为止。这种方法不仅可以减少内存和 CPU 的消耗,而且还能够提高查询的效率,是一个非常值得使用的分页方式。
2023-03-26 18:17:46
577
人生如戏-t
SpringBoot
...全力支持你进行热部署操作,贼方便!这篇文儿呢,咱要手把手教你如何在Spring Boot里头实现那个热部署的骚操作,还会连带着代码实例,给你掰开了、揉碎了,细细道来,包你一看就明白! 一、引入Spring Boot DevTools依赖 要实现热部署,首先我们需要在项目中引入Spring Boot DevTools依赖。这个依赖组件可是Spring Boot给咱们带来的一个超级实用的大宝贝,它能帮咱们轻轻松松、快速高效地搞定项目的搭建和各种配置问题,真是个不可或缺的小助手。 xml org.springframework.boot spring-boot-devtools true 二、开启热部署开关 在引入了Spring Boot DevTools依赖之后,我们还需要开启热部署开关。默认情况下,Spring Boot DevTools会根据项目的实际情况自动判断是否开启热部署。如果想要强制开启热部署,可以通过application.properties文件中的配置来实现: properties spring.devtools.restart.enabled=true 三、指定热部署路径 在启用了热部署开关之后,我们还可以指定热部署的路径。一般来说,Spring Boot DevTools会对指定的路径进行监控,一旦发现有代码改动,就会自动重启项目。我们可以指定多个路径进行监控,也可以排除一些不需要监控的路径: properties spring.devtools.restart.additional-paths=src/main/java spring.devtools.restart.exclude=test/ 四、编写代码示例 以上都是理论上的介绍,接下来我们将通过一个简单的Spring Boot项目来进行实战演示。 1. 创建一个新的Spring Boot项目,然后在pom.xml文件中添加Spring Boot DevTools的依赖。 2. 在application.properties文件中开启热部署开关,并指定热部署的路径。 3. 编写一个简单的Controller类,如下所示: java @RestController public class HelloController { @GetMapping("/hello") public String hello() { return "Hello, Spring Boot!"; } } 4. 启动项目,在浏览器中访问http://localhost:8080/hello,可以看到返回的结果为"Hello, Spring Boot!"。 5. 修改HelloController类中的某个方法,保存后关闭IDEA,再次打开项目,可以看到Spring Boot已经自动重启,并且页面上返回的结果已经被修改。 这就是Spring Boot如何实现热部署的过程。总的来说,Spring Boot真够意思,它提供了一种超级便捷的方式来实现热部署,你只需要动动手指做些简单的配置,就能轻轻松松把这事儿给办了。而且你知道吗,Spring Boot DevTools这玩意儿可是一个相当成熟的框架,所以它的性能那叫一个稳如老狗,你完全不用担心热部署的时候会出什么幺蛾子,把程序给整崩溃了这类的问题。因此,我强烈推荐大家在实际开发中使用Spring Boot DevTools来实现热部署。
2023-09-08 15:26:42
128
冬日暖阳_t
Scala
...的类型安全的代码审查技巧 1. 引言 嗨,大家好!今天我想聊聊关于Scala编程语言中的类型安全问题。我得承认,刚开始接触Scala的时候,我对它的类型系统感到有点困惑。但是经过一段时间的学习和实践,我发现它真的非常强大。嘿,大家好!今天我想跟你们聊聊在代码审查时学到的一些小窍门,这样你就能写出更安全、更靠谱的Scala代码啦。 2. 了解类型系统的重要性 首先,我们来谈谈为什么类型安全如此重要。在实际开发中,类型错误往往是导致程序出错的一个重要原因。比如说,在Java里,你要是不小心把字符串当整数用了,编译器可能不吱声,但一运行程序就给你整出个异常来。在Scala里,类型系统可牛了,它能在你代码还没跑起来之前就找出那些潜在的坑,这样你就不用担心程序在运行时突然出幺蛾子了。 示例代码 scala // 错误示例 val x: Int = "hello" // 编译错误 这段代码会直接报错,因为类型不匹配。而在其他一些动态语言中,这可能会导致难以追踪的bug。 3. 利用泛型提升代码健壮性 接下来,我们要讨论的是泛型。泛型可是Scala类型系统里的一个大明星,用好了,你编的代码就能更灵活地对付各种数据类型,而且还能保证类型安全,妥妥的! 示例代码 scala def printLength[T](list: List[T]): Unit = { println(list.length) } printLength(List(1, 2, 3)) // 正确 printLength(List("a", "b", "c")) // 正确 通过使用泛型,我们可以确保函数能够接受任何类型的列表,而不用担心类型错误。这种灵活性使得我们的代码更加健壮和可重用。 4. 使用case类进行模式匹配 在Scala中,case类是一个非常强大的工具,可以用来创建不可变的数据结构,并且支持模式匹配。利用case类,你可以写出更加清晰和安全的代码。 示例代码 scala sealed trait Result case class Success(value: Int) extends Result case class Failure(message: String) extends Result def processResult(result: Result): Unit = result match { case Success(value) => println(s"Success with value $value") case Failure(message) => println(s"Failure: $message") } processResult(Success(10)) // 输出:Success with value 10 processResult(Failure("Something went wrong")) // 输出:Failure: Something went wrong 在这个例子中,我们定义了一个密封特质Result及其两个子类Success和Failure。通过模式匹配,我们可以安全地处理不同类型的Result对象,而不用担心类型错误。 5. 重视类型别名 有时候,为了提高代码的可读性和可维护性,我们可能会给某些复杂的类型起一个新的名字。这就是类型别名的作用。通过类型别名,我们可以让代码更加简洁明了。 示例代码 scala type UserMap = Map[String, User] def getUserById(id: String)(users: UserMap): Option[User] = users.get(id) val users: UserMap = Map( "1" -> User("Alice"), "2" -> User("Bob") ) getUserById("1")(users) // 返回 Some(User("Alice")) 在这个例子中,我们为Map[String, User]定义了一个类型别名UserMap。这样一来,当我们声明变量或函数参数时,就可以用一个更易读的名字,而不用每次都打那串复杂的 Map[String, User] 了。 6. 结语 好了,今天的分享就到这里啦!希望这些关于Scala类型安全的技巧能对你有所帮助。记住,良好的编码习惯和对类型系统的深入理解,可以帮助我们写出更加健壮和可靠的代码。最后,编程之路漫漫,让我们一起继续探索吧! --- 以上就是关于Scala中的类型安全的代码审查技巧的全部内容了。如果你有任何疑问或者想了解更多细节,欢迎随时留言交流。希望这篇分享对你有所帮助,也期待你在实际开发中能运用这些技巧写出更好的代码!
2025-01-05 16:17:00
83
追梦人
Struts2
...步理解和学习。 三、实战演练 现在我们来看几个具体的例子,加深对struts.xml的理解。 案例一:如何配置Action的属性 java /WEB-INF/views/myResult.jsp 在这个例子中,我们定义了一个名为myAction的Action,并将其类设置为MyAction。同时,我们在Action中定义了一个名为myProperty的属性,并赋值为myValue。这样,当我们通过url访问myAction时,myAction会自动获取到这个属性。 案例二:如何使用结果类型 java /WEB-INF/views/myResult.jsp 在这个例子中,我们将结果类型设置为redirect,这意味着当Action执行完成后,将直接跳转到指定的路径(/WEB-INF/views/myResult.jsp)。这跟result标签的用法不太一样,你知道吧,那个result标签啊,它可勤快了,直接就把结果内容给亮出来给你看,完全不跟你玩跳转到新页面的那套。 案例三:如何使用通配符匹配URL java /WEB-INF/views/${1}.jsp 在这个例子中,我们使用了通配符来匹配URL,只要URL的后缀名是.do,就会被这个Action处理。同时,我们在Action里耍了个小聪明,用了EL表达式${1}这个小玩意儿,它可以灵活地从URL中抓取动态变化的参数。例如,如果URL为/home.do,那么${1}就会被替换为home,从而在视图中显示正确的数据。 总结 本文介绍了Str
2023-11-11 14:08:13
97
月影清风-t
Etcd
...对,并提供一致性读写操作。然而,由于其分布式特性,监控其节点健康状态是非常重要的。本文将手把手教你如何运用一些实用工具和专业技术,来实时关注并确保Etcd节点的健康状况。就像是医生定期检查你的身体一样,咱们也会细致入微地去“体检”Etcd的各个节点,确保它们随时都能健健康康地运行。 二、基本概念 首先,我们来看看什么是Etcd的节点健康状态。Etcd节点健康状况,就好比是检查一个Etcd节点这家伙是否在正常干活,以及它的工作效率能否满足我们的要求。通常情况下,我们可以从以下几个方面来判断一个Etcd节点的健康状态: 1. Etcd节点是否能够正常接收和响应请求。 2. Etcd节点的存储空间是否充足。 3. Etcd节点的CPU和内存使用率是否过高。 三、监控工具 对于上述问题,我们可以通过一些专门的监控工具来解决。以下是几种常用的监控工具: 1. Prometheus Prometheus是一个开源的时序数据库和监控系统,可以实时收集和存储时间序列数据。它可以轻松地与Etcd集成,从而监控Etcd节点的状态。 python from prometheus_client import start_http_server, Gauge gauge = Gauge('etcd_up', 'Whether etcd is up or down') assume we have a running etcd instance at localhost:2379 url = "http://localhost:2379/health" def check_health(): response = requests.get(url) if response.status_code == 200: gauge.set(1) else: gauge.set(0) start_http_server(8000) while True: check_health() 2. Grafana Grafana是一款强大的图形化监控仪表板工具,可以用来展示Prometheus收集到的数据。 四、自定义指标 除了上述的预置指标外,我们还可以自定义一些指标来更详细地监控Etcd节点的状态。例如,我们可以创建一个指标来监测Etcd节点的存储空间使用情况: python import time from prometheus_client import Counter, Gauge counter = Counter('etcd_disk_used', 'Total disk space used by etcd') disk_usage = Gauge('etcd_disk_usage', 'Current disk usage in bytes') assume we have a running etcd instance at localhost:2379 url = "http://localhost:2379/v2/metrics" def get_disk_usage(): response = requests.get(url) for line in response.text.split('\n'): key, value = line.strip().split(': ') if key == 'etcd_disk_total': total_size = int(value) elif key == 'etcd_disk_used': used_size = int(value) elif key == 'etcd_disk_inodes_total': total_inodes = int(value) elif key == 'etcd_disk_inodes_used': used_inodes = int(value) return (used_size, total_size, used_inodes, total_inodes) def update_disk_usage(): used_size, total_size, used_inodes, total_inodes = get_disk_usage() counter.labels(total_size).inc() disk_usage.labels(used_size).inc() while True: update_disk_usage() time.sleep(60) 五、结论 总的来说,监控Etcd节点的健康状态是分布式系统管理中的一个重要环节。通过各种各样的监控小工具和我们自己设置的独特指标,咱们能更接地气地掌握Etcd节点的运行状态,这样一来,任何小毛小病都甭想逃过咱们的眼睛,能够及时揪出来、顺手就给解决了。在未来,随着分布式系统的日益壮大和进化,我们还得继续钻研和优化监控方案,好让它们更能应对各种眼花缭乱的复杂场景。
2023-12-30 10:21:28
514
梦幻星空-t
Netty
...记录日志、关闭连接等操作: java public class ServerHandler extends SimpleChannelInboundHandler { @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { if (cause instanceof TooLongFrameException || cause instanceof UnexpectedMessageSizeException) { System.out.println("Caught an oversized message, closing connection..."); ctx.close(); } else { // 其他异常处理逻辑... } } // ...其他处理器逻辑... } 最后,对于消息大小的设定,并非越大越好,而应根据具体应用场景和服务器资源状况进行权衡。另外,咱们也可以琢磨琢磨用些招儿来对付大消息这个难题,比如把消息分块传输,或者使使劲儿,用压缩算法给它“瘦身”一下。 总的来说,处理Netty中的UnexpectedMessageSizeException关键在于提前预防,合理设置消息大小上限,以及妥善处理异常情况。只有把这些技巧摸得门儿清、运用自如,咱们的Netty应用程序才能真正变得身强力壮、高效无比。在这个过程中,不断地思考、实践与优化,才是编程乐趣之所在!
2023-11-27 15:28:29
153
林中小径
Lua
...受欢迎。然而,在编程实战中,我们免不了会碰到一些让人挠头的常见表达式计算问题,比如除数尴尬地变成了零,或者莽撞地去访问一个不存在的索引,这些小插曲常常让我们措手不及。这些看似微小的问题,却可能导致程序运行出错甚至崩溃。本文将深入探讨这些问题,并通过实例代码来帮助你理解和避免它们。 2. 除数为零错误 --- 在Lua中,当你尝试进行一个除法运算,而除数是零时,会触发一个运行时错误。例如: lua -- 尝试除以零的例子 local result = 10 / 0 print(result) 执行这段代码后,Lua会抛出一个错误信息:"attempt to perform arithmetic on a nil value (divide by zero)"。这意味着Lua无法处理除以零的操作,因为它在数学上没有定义。为了避免出现这种囧境,咱们在做除法之前通常得先瞅一眼,看看那个除数是不是零。 3. 无效索引错误 --- Lua中的表(table)是一种非常重要的数据结构,它支持动态索引和关联数组特性。然而,当我们试图访问一个不存在的索引时,就会引发“无效索引”错误: lua -- 无效索引例子 local myTable = {} print(myTable[5]) -- 此处会报错,因为myTable并没有索引为5的元素 Lua会返回错误提示:" attempt to index a nil value"。为了预防这类错误,我们可以使用if语句或者pairs函数预先判断索引是否存在: lua local myTable = {} if myTable[5] then print(myTable[5]) else print("Index not found.") end 4. 其他常见表达式错误 --- 除了上述两种情况外,Lua还可能在其他类型的表达式计算中出现错误。例如,对未初始化的变量进行操作: lua -- 未初始化变量的例子 local uninitializedVar print(uninitializedVar + 1) -- 这将导致"nil value"错误 解决这个问题的方法是在使用变量之前确保其已被初始化: lua local initializedVar = 0 print(initializedVar + 1) -- 现在这段代码将会正常执行,输出1 5. 结论与思考 --- 在Lua编程过程中,理解并妥善处理表达式计算错误是我们编写健壮代码的关键步骤。通过不断实践和探索,我们可以学会如何预见和规避这些陷阱。记得时刻打起精神,像给我们的代码穿上逻辑盔甲、装备上条件语句武器一样,让咱们的Lua程序就算遇到突发状况也能稳如老狗,表现出超强的适应力和稳定性。说真的,编程可不只是敲代码实现功能那么简单,它更像是一个解决难题、迎接挑战的大冒险,这个过程中充满了咱们人类智慧的灵光乍现和饱含情感的深度思考,可带劲儿了! 以上示例只是冰山一角,实际编程中可能会有更多的潜在问题等待我们去发现和解决。因此,让我们一起深入Lua的世界,不断提升自己的编程技艺吧!
2024-03-16 11:37:16
277
秋水共长天一色
Mongo
...我首先想到的是可能是查询语句的问题。为了找到原因,我开始查看我们使用的查询语句,并进行了各种优化尝试。但结果并不理想,无论怎样调整查询语句,都不能显著提高检查速度。 然后,我又考虑到了索引的问题。我想,如果能够合理地建立索引,也许可以加快查询速度。于是,我开始为数据字段创建索引,希望能够提升检查效率。 四、代码示例 以下是我对一些重要字段创建索引的代码示例: javascript // 对用户ID创建唯一索引 db.users.createIndex({ _id: 1 }, { unique: true }) // 对用户名创建普通索引 db.users.createIndex({ username: 1 }) 虽然我对这些字段都创建了索引,但是数据一致性检查的速度并没有显著提高。这让我感到很困惑,因为这些索引都是根据业务需求精心设计的。 五、深入分析 在进一步研究后,我发现原来我们在进行数据一致性检查时,需要同时考虑多个字段的组合,而不仅仅是单个字段。这意味着,我们需要使用复合索引来加速检查。 六、优化策略 为此,我决定采用MongoDB的复合索引来解决这个问题。以下是我创建复合索引的代码示例: javascript // 对用户ID和用户名创建复合索引 db.users.createIndex({ _id: 1, username: 1 }) 通过添加这个复合索引,我发现数据一致性检查的速度有了明显的提升。这是因为复合索引就像是一本超级详细的目录,它能帮我们火速找到想找的信息,这样一来,查询所需的时间就大大缩短啦! 七、总结 总的来说,通过这次经历,我深刻体会到了索引对于提高查询速度的重要性。特别是在应对海量数据的时候,如果巧妙地利用索引,那简直就是给应用程序插上翅膀,能让它的运行速度嗖嗖地提升一大截儿,效果显著得很呐! 当然,这只是一个简单的例子,实际的应用场景可能会更复杂。但我相信,只要我们持续学习和探索,总会找到适合自己的解决方案。毕竟,作为开发者,我们的终极目标就是为了让用户爽翻天,让咱们的应用程序跑得更溜、更稳当,用户体验一级棒!
2023-02-20 23:29:59
137
诗和远方-t
Golang
...组合在一起,创建出更复杂的行为。 让我们来看几个实际的例子: 示例1:多态性 go func MakeNoise(s Speaker) { fmt.Println(s.Speak()) } func main() { dog := Dog{Name: "Buddy"} cat := Cat{Name: "Whiskers"} MakeNoise(dog) MakeNoise(cat) } 在这个例子中,MakeNoise函数接受一个实现了Speaker接口的对象。无论是Dog还是Cat,都可以作为参数传递给这个函数,因为它都满足了Speaker接口的要求。 示例2:抽象化 go type Animal struct { name string } func (a Animal) SetName(name string) { a.name = name } func (a Animal) GetName() string { return a.name } type Cat struct { Animal } type Dog struct { Animal } func main() { cat := Cat{Animal: Animal{name: "Kitty"} } dog := Dog{Animal: Animal{name: "Rex"} } fmt.Println(cat.GetName()) // 输出:Kitty fmt.Println(dog.GetName()) // 输出:Rex } 在这个例子中,Animal是一个基础类型,它包含了所有动物共有的属性和方法。Cat和Dog类型继承了Animal类型,并且可以通过组合的方式实现特定的行为。 示例3:组合 go type Swimmer interface { Swim() string } type Runner interface { Run() string } type Duck struct { Animal } func (d Duck) Swim() string { return "Swimming..." } func (d Duck) Run() string { return "Running..." } func main() { duck := Duck{Animal: Animal{name: "Donald"} } fmt.Println(duck.Swim()) // 输出:Swimming... fmt.Println(duck.Run()) // 输出:Running... } 在这个例子中,Duck类型同时实现了Swimmer和Runner两个接口。这就意味着我们可以把不同的功能模块拼在一起,打造出一个全能的小能手。 4. 总结 接口是Go语言的核心特性之一,它为程序提供了强大的抽象能力和灵活性。用好这些接口,我们的代码就能变得像搭积木一样,既模块化又容易维护,还能随时加新东西进去。不管是在平时写代码还是搞定那些烧脑的大难题时,接口都能帮我们把代码整理得井井有条,管理起来也更顺手。 在学习Go的过程中,深入理解和掌握接口的使用是非常重要的。它不仅能够提升你的编码技巧,还能让你的设计思维更加成熟。希望这篇文章能帮助你在Go语言的学习之路上走得更远!
2025-01-22 16:29:32
61
梦幻星空
ZooKeeper
...们搞定集群里头的各种复杂活儿,比如设置管理、名字服务,还有分布式锁这些 tricky 的事情。而今天我们主要讨论的是如何在ZooKeeper中设置和获取节点的数据。这个过程虽然看起来简单,但其中却蕴含了不少技巧和经验。废话不多说,让我们直接进入正题吧! 2. 安装与配置 首先,我们需要确保ZooKeeper已经正确安装并运行。如果你是新手,不妨先看看官方文档,学着自己安装一下。或者,你也可以直接用Docker,几下敲敲代码就搞定了,超级方便! bash docker run -d --name zookeeper -p 2181:2181 zookeeper 这样我们就有了一个本地的ZooKeeper服务。接下来,我们可以开始编写客户端代码了。 3. 设置数据 3.1 使用Java API设置数据 让我们先从Java API开始。想象一下,我们要在系统里建个新家,就叫它/myapp/config吧。然后呢,我们往这个新家里放点儿配置文件,好让它知道该怎么干活。下面是一个简单的代码示例: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; import org.apache.zookeeper.ZooDefs.Ids; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, watchedEvent -> {}); // 设置节点数据 byte[] data = "some config data".getBytes(); String path = "/myapp/config"; // 创建临时节点 String createdPath = zk.create(path, data, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Created node: " + createdPath); // 关闭连接 zk.close(); } } 在这个例子中,我们首先创建了一个ZooKeeper实例,并指定了连接超时时间。然后呢,我们就用create这个魔法命令变出了一个持久节点,还往里面塞了一些配置信息。最后,我们关闭了连接。 3.2 使用Python API设置数据 如果你更喜欢Python,也可以使用Python客户端库kazoo来操作ZooKeeper。下面是一个简单的示例: python from kazoo.client import KazooClient zk = KazooClient(hosts='127.0.0.1:2181') zk.start() 设置节点数据 zk.create('/myapp/config', b'some config data', makepath=True) print("Node created") zk.stop() 这段代码同样创建了一个持久节点,并写入了一些配置信息。这里我们使用了makepath=True参数来自动创建父节点。 4. 获取数据 4.1 使用Java API获取数据 接下来,我们来看看如何获取节点的数据。假设我们要读取刚刚创建的那个节点中的配置信息,可以这样做: java import org.apache.zookeeper.ZooKeeper; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, watchedEvent -> {}); // 获取节点数据 byte[] data = zk.getData("/myapp/config", false, null); System.out.println("Data: " + new String(data)); // 关闭连接 zk.close(); } } 在这个例子中,我们使用getData方法读取了节点/myapp/config中的数据,并将其转换为字符串打印出来。 4.2 使用Python API获取数据 同样地,使用Python的kazoo库也可以轻松完成这一操作: python from kazoo.client import KazooClient zk = KazooClient(hosts='127.0.0.1:2181') zk.start() 获取节点数据 data, stat = zk.get('/myapp/config') print("Node data: " + data.decode()) zk.stop() 这里我们使用了get方法来获取节点数据,同时返回了节点的状态信息。 5. 总结与思考 通过上面的代码示例,我们可以看到,无论是使用Java还是Python,设置和获取ZooKeeper节点数据的过程都非常直观。但实际上,在真实使用中可能会碰到一些麻烦,比如说网络卡顿啊,或者有些节点突然不见了之类的。这就得在开发时不断地调整和改进,确保系统又稳又靠谱。 希望今天的分享对你有所帮助!如果你有任何问题或建议,欢迎随时交流。
2025-01-25 15:58:48
46
桃李春风一杯酒
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
rsync -avz source destination
- 在本地或远程之间同步文件夹。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"