前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Kubernetes集群成本优化实践 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
Kubernetes
...以提高效率并降低运维成本。然而,在这个过程中,安全性和合规性问题也日益凸显。为了保证容器能够安全平稳地运行,我们可不能光说不练,得对这些家伙进行实打实的高效管理和严密监控。同时呢,还要给它们设定好恰当精细的权限控制,就像给每个容器分配一份定制化的“行为准则”,让它们各司其职,互不越界。 二、Kubernetes简介 Kubernetes是一种开源的容器编排工具,它可以帮助我们在大规模分布式环境中自动部署、扩展和管理容器应用。在Kubernetes这个大家庭里,我们可以像搭积木一样,通过创建各种各样的资源小玩意儿,比如Pods、Services这些,来描绘出我们自己的应用程序蓝图。然后,我们只要挥舞起kubectl这个神奇的小锤子,就能轻松对这些资源对象进行各种操作,就像是指挥家驾驭他的乐队一样。 三、Kubernetes权限控制的基本原理 在Kubernetes中,我们可以为不同的用户或角色设置不同的权限级别。这样一来,我们就能更灵活地掌控哪些人能接触到哪些资源,就像看门的大爷精准识别每一个进出小区的人,确保不会让捣蛋鬼误闯祸,也不会放任坏家伙搞破坏,把安全工作做得滴水不漏。 四、如何在Kubernetes中实现细粒度的权限控制? 1. 使用RBAC(Role-Based Access Control) Kubernetes提供了一种名为RBAC的角色基础访问控制系统,我们可以通过创建各种角色(Role)和绑定(Binding)来实现细粒度的权限控制。 例如,我们可以创建一个名为"my-app-admin"的角色,该角色具有修改Pod状态、删除Pod等高级权限: yaml apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: my-app-admin rules: - apiGroups: [""] resources: ["pods"] verbs: ["get", "watch", "list", "update", "patch", "delete"] 然后,我们可以将这个角色绑定到某个用户或者组上: yaml apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: my-app-admin-binding subjects: - kind: User name: user1 roleRef: kind: Role name: my-app-admin apiGroup: rbac.authorization.k8s.io 2. 使用PodSecurityPolicy 除了RBAC,Kubernetes还提供了另一种称为PodSecurityPolicy(PSP)的安全策略模型,我们也可以通过它来实现更细粒度的权限控制。 例如,我们可以创建一个PSP,该PSP只允许用户创建只读存储卷的Pod: yaml apiVersion: policy/v1beta1 kind: PodSecurityPolicy metadata: name: allow-read-only-volumes spec: fsGroup: rule: RunAsAny runAsUser: rule: RunAsAny seLinux: rule: RunAsAny supplementalGroups: rule: RunAsAny volumes: - configMap - emptyDir - projected - secret - downwardAPI - hostPath allowedHostPaths: - pathPrefix: /var/run/secrets/kubernetes.io/serviceaccount type: "" 五、结论 总的来说,通过使用Kubernetes提供的RBAC和PSP等工具,我们可以有效地实现对容器的细粒度的权限控制,从而保障我们的应用的安全性和合规性。当然啦,咱们也要明白一个道理,权限控制这玩意儿虽然厉害,但它可不是什么灵丹妙药,能解决所有安全问题。咱们还得配上其他招数,比如监控啊、审计这些手段,全方位地给咱的安全防护上个“双保险”,这样才能更安心嘛。
2023-01-04 17:41:32
99
雪落无痕-t
转载文章
...。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
Docker
...容器运行时性能的显著优化以及对安全性的强化改进。例如,新版本引入了对cgroup v2的支持,以提供更精细的资源控制,并且加强了容器镜像签名功能,确保从源头上保证软件供应链的安全。 此外,随着Kubernetes成为容器编排的事实标准,Docker也更加紧密地集成到Kubernetes生态中,使得用户可以更加便捷地将Docker容器部署到Kubernetes集群中。通过kubectl等工具,开发者不仅可以管理单个Docker容器,还能构建、部署和管理复杂的微服务架构。 值得注意的是,在云原生技术发展的大潮下,各大云服务商如AWS、Azure、阿里云等,都在自家平台提供了深度整合Docker的解决方案,使用户能够利用Docker容器无缝迁移应用程序至云端,实现跨环境的一致性部署与运维。 同时,针对企业级应用,诸如Docker Swarm和Mesos等容器编排工具也在不断演进,为大规模容器集群的管理和调度提供强大支持。深入学习和掌握这些工具,结合Docker容器的基础使用,将有助于企业和开发者充分释放云计算潜力,提升DevOps效率,加速数字化转型进程。 总之,Docker作为容器化技术的基石,正持续拓展其在现代IT架构中的影响力,而对其前沿动态和技术实践的跟进,则是我们紧跟时代步伐,驾驭云原生技术浪潮的关键所在。
2023-07-24 13:07:20
782
软件工程师
Docker
...的版本更新,强化了与Kubernetes的集成能力,使得Docker容器中的文件管理、数据持久化以及多容器间的共享存储更为便捷和安全。 同时,随着微服务架构的广泛应用,Docker Compose工具因其对多容器应用程序定义和部署的简化而备受瞩目。通过Compose文件,开发人员可以轻松配置多个容器间的数据卷挂载策略,从而确保服务间数据的可靠传输与同步。 另外,对于数据敏感型应用,诸如数据库容器等,Docker持续优化其对存储驱动的支持,如支持本地存储、网络存储(NFS、iSCSI)以及云服务商提供的块存储服务,这无疑提升了容器环境中数据的安全性和可用性。 此外,业界也在积极研究和发展基于Docker的新型文件系统解决方案,例如结合分布式存储系统以满足大规模集群环境下容器对高性能、高可用文件读写的诉求。这些前沿技术和实践为Docker在企业级应用场景中提供了更强大的支撑,也体现了容器技术在持续演进中不断解决实际问题的决心与创新力。 总之,深入掌握Docker容器中的文件读写机制,并关注其在云原生领域的发展动态和技术革新,将有助于我们在构建现代化、可扩展的应用架构时,更好地利用Docker的优势,提升开发运维效率,保障业务系统的稳定运行。
2023-12-30 15:13:37
472
编程狂人
Docker
...新进展。近年来,随着Kubernetes等容器编排系统的广泛应用,Docker容器的网络模型也在持续演进和完善。例如,在Kubernetes集群中,可以通过创建HostNetwork类型的Pod来实现类似Docker的--net=host效果,使得Pod内的应用可以直接使用宿主机的网络栈。 另外,考虑到安全性与隔离性,现代云环境更倾向于采用更精细的网络策略,如CNI(Container Network Interface)插件提供的多种网络模式,包括overlay网络、macvlan等,这些方案不仅支持容器间通信,也能够实现容器到特定主机服务的访问,同时保证了资源的有效隔离和管理。 近期,Docker和eBPF技术的结合也被广泛关注。eBPF(Extended Berkeley Packet Filter)作为一种内核级可编程技术,为容器网络提供了更细粒度的控制能力,通过eBPF可以实现在不使用--net=host的情况下,对容器的网络行为进行深度定制和优化,这一创新实践将对未来的云原生应用网络架构产生深远影响。 总的来说,Docker的网络共享功能只是其强大特性的冰山一角,随着云计算和容器技术的发展,更多先进的网络解决方案正在不断涌现,为构建高效、安全且灵活的应用部署环境提供了无限可能。对于开发者和运维人员来说,紧跟这些前沿趋势和技术动态,无疑有助于提升业务系统的技术水平和竞争力。
2023-03-28 21:41:55
589
逻辑鬼才
MySQL
...的最新发展动态与部署优化策略。近期,MySQL 8.0版本发布了一系列重大更新,包括性能提升、安全增强以及对JSON文档处理能力的大幅改进。MySQL官方持续优化其在Linux环境下的运行效能,用户可通过查阅官方文档学习如何根据自身服务器硬件配置和业务需求调整MySQL的配置参数以实现最佳性能。 此外,对于企业级应用而言,MySQL的高可用性和扩展性至关重要。为确保服务稳定,很多企业采用主从复制、分片集群等高级部署架构,并借助于ProxySQL等中间件进行流量管理和负载均衡。同时,Percona Server for MySQL和MariaDB作为MySQL的两大分支,也在不断推出新功能并优化性能,为用户提供更多选择。 值得一提的是,随着容器化和云原生技术的发展,MySQL在Kubernetes集群中的部署实践也日益丰富。通过Operator模式或者Helm Chart等方式,可以更便捷地在云环境中部署和管理MySQL实例,实现自动化运维和弹性伸缩。 综上所述,掌握MySQL在Linux系统上的安装路径只是基础操作之一,深入了解MySQL的最新特性、部署策略及云环境下的运维实践,将有助于广大开发者和DBA更好地构建和维护高性能、高可用的数据库服务。
2023-12-31 14:25:35
112
软件工程师
Docker
...通过整合Azure Kubernetes Service (AKS) 与Docker Desktop,开发者能够在本地开发环境中无缝对接云端资源,实现从开发、测试到生产的全生命周期管理。 此外,随着Kubernetes逐渐成为容器编排领域的标准,Docker也在持续优化其与Kubernetes的集成体验,如推出新版Docker Enterprise(现名为Mirantis Container Cloud),不仅支持多云环境下的容器部署,还提供了对Kubernetes集群的一站式管理能力。 与此同时,业界对于容器安全的关注度日益提升。例如,Docker在其产品中强化了安全特性,包括使用Notary项目来验证容器镜像的完整性和来源,以及通过运行时的安全工具确保容器在生产环境中的安全性。 深入研究方面,《Docker in Action》一书详尽解读了Docker的原理及其在实际项目中的最佳实践,是开发者深入理解并高效运用Docker进行现代化软件交付的宝贵参考资源。 综上所述,Docker作为容器化技术的先驱者,在不断推进自身发展的同时,也正积极融入云计算生态体系,携手各方力量共同推动容器技术在企业级应用场景的深化落地,助力更多组织构建起灵活、安全且高效的云原生IT架构。
2024-02-25 16:17:40
343
软件工程师
Docker
...可进一步关注容器日志实践中的最新技术和策略。近期,随着云原生技术的快速发展,Kubernetes作为容器编排领域的领导者,其对容器日志处理也提出了更为全面和精细的设计。 例如,Kubernetes提供了“容器日志收集器”(Container Log Collector),允许用户直接从Pod中自动收集、存储和转发日志数据,大大简化了大规模容器集群的日志管理工作流程。同时,众多开源项目如EFK(Elasticsearch、Fluentd、Kibana)栈或Loki等日志解决方案正与Kubernetes紧密集成,为用户提供实时检索、可视化分析及报警等功能,显著提升运维效率。 此外,在安全合规层面,针对容器日志的安全审计越来越受到重视。一些企业开始采用具有加密功能的日志传输协议,以及支持细粒度权限控制和长期存储的云端日志服务,确保容器产生的敏感信息能够得到妥善保护和合规留存。 总的来说,容器日志管理不仅涉及基础的操作技巧与工具配置,更需要紧跟行业发展潮流,掌握先进的日志架构设计与最佳实践,以适应日益复杂的应用场景和严苛的安全要求。通过不断优化日志系统,企业不仅能快速定位问题、提升应用服务质量,还能更好地满足业务连续性需求和监管政策规定。
2023-03-19 15:04:33
482
逻辑鬼才
Docker
...为提升应用部署效率、优化资源利用的重要工具。例如,企业可利用Kubernetes等容器编排平台,实现对大规模Docker容器集群的自动化管理和调度,从而提高业务连续性和扩展性。 同时,对于开发者而言,通过容器化技术,可以确保开发、测试和生产环境的一致性,减少“在我机器上能运行”的问题,极大提升了软件开发与交付的效率。此外,值得注意的是,虽然迅雷等传统桌面应用程序可以在Docker中运行,但并非所有应用都适合容器化,尤其是那些对图形界面依赖度极高或需访问底层硬件的应用,可能需要借助更复杂的技术如GPU共享、设备映射等进行适配。 近期,微软Azure团队发布了一系列关于容器技术与DevOps最佳实践的文章,深入解读了如何利用Docker构建高效安全的应用生命周期管理流程,并结合实例探讨了容器技术在大数据分析、人工智能等领域的新趋势。这些内容将有助于读者深化理解Docker在实际场景中的运用,同时也揭示出容器技术未来发展的广阔前景。
2023-01-28 13:49:08
526
程序媛
Docker
...至关重要。近期,随着Kubernetes等容器编排系统的广泛应用,如何在大规模集群中高效管理和恢复故障容器成为热门话题。例如,一篇来自InfoQ的《利用Kubernetes原生机制实现容器故障自动恢复》的文章深入探讨了K8s平台上的健康检查、自愈能力以及Pod重启策略等核心功能,对容器故障恢复场景进行了详尽解读。 另外,针对容器技术安全层面,The New Stack的一篇报道《确保Docker容器安全:最佳实践与新工具》聚焦于防止由于安全漏洞导致的容器故障,并推荐了一系列实时监测、快速响应的安全工具及方法论,这对于提升Docker容器的整体安全性具有极高的参考价值。 同时,随着Docker生态的不断演进,社区和企业也在积极研发更强大的监控和诊断工具。例如,Datadog发布的新一代容器监控方案可以实时跟踪并分析容器资源使用情况,提供预警以预防潜在的故障发生,用户通过集成这些工具能够更加主动地进行Docker容器的健康管理与恢复操作。 总之,无论是在大规模集群环境下借助Kubernetes等平台进行容器故障恢复管理,还是从安全角度出发采取措施防患于未然,抑或是运用先进的监控工具进行深度洞察,都是在实际运维工作中进一步完善Docker容器故障恢复策略的重要途径。对于希望持续优化容器化应用稳定性的技术人员而言,紧跟行业动态、深入学习并实践这些内容显得尤为重要。
2023-12-29 23:51:06
593
电脑达人
MySQL
...持续更新,带来了性能优化、安全增强以及诸多新特性,如窗口函数支持更全面、JSON功能增强以及默认事务隔离级别的变更等。这对于开发者而言意味着更强大的数据处理能力和更丰富的开发选项。 另外,随着云服务的普及,各大云服务商如AWS、阿里云、腾讯云等均提供MySQL数据库托管服务,用户无需在本地安装,即可轻松部署和管理MySQL实例,极大地降低了运维难度和成本。例如,AWS RDS MySQL提供了自动备份、故障切换、读副本等功能,帮助企业实现数据库的高可用与扩展性。 此外,对于MySQL的学习者来说,社区资源与教程也不断推陈出新。诸如“MySQL 8.0从入门到精通”、“实战MySQL:高性能SQL优化、架构及集群”的在线课程和书籍,帮助初学者快速上手,并为有经验的开发者深入解析MySQL的内核机制和最佳实践。 综上所述,在MySQL的实际应用中,不仅应关注其安装配置,更要紧贴技术发展趋势,掌握最新的产品特性以提升数据库系统的性能与安全性,并结合云服务优势进行高效便捷的数据库管理与维护。同时,持续学习和跟进MySQL相关的教育资源,有助于不断提升自身技术水平,适应日益复杂多变的应用场景需求。
2023-09-19 12:58:09
133
算法侠
MySQL
...远程访问的最新技术和实践。近年来,随着云计算和大数据的发展,数据安全性问题日益凸显,如何确保数据库连接的安全性成为业界关注焦点。 2023年,MySQL官方发布了新版本,强化了SSL加密连接功能,用户可以设置强制使用SSL连接到MySQL服务器,以保护数据传输过程中不被窃取或篡改。此外,一些云服务提供商如阿里云、AWS等也提供了基于VPC(虚拟私有云)环境下的MySQL数据库连接方案,通过私有网络和子网策略增强数据库连接的安全层级。 另一方面,针对SSH隧道技术,开发者们正在研究如何优化其性能并提高可用性。例如,通过跳板机设置减少网络延迟,或者结合密钥对认证代替密码验证以提升安全性。同时,DevOps领域也在积极倡导采用自动化工具(如Ansible、Terraform)来配置和管理SSH隧道及MySQL连接,以实现更加高效和安全的运维流程。 此外,随着Kubernetes和Docker容器化技术的广泛应用,为MySQL数据库提供安全连接的方式也在发生变革。例如,利用Kubernetes中的Ingress资源,可实现从外部网络到集群内MySQL服务的安全访问,并且支持自动化的SSL证书管理和轮换。 总的来说,在关系型数据库管理系统中,MySQL连接方式的演进与发展,始终紧跟时代步伐,不断融入最新的安全理念和技术手段,以适应日益复杂的数据安全需求。对于技术人员而言,持续关注这些领域的动态和实践,无疑将有助于提升自身在数据库安全管理方面的专业素养和实战能力。
2023-06-22 12:09:56
134
码农
Docker
...其对于提升运维效率、优化资源管理具有重要意义。事实上,随着容器技术的广泛应用,Docker生态系统的完善与发展一直是业界关注的重点。近日,Docker官方发布了最新的Docker Desktop 4.3版本,其中包含了对容器生命周期管理功能的多项增强改进,如更精细化的容器状态监控和更灵活的批量操作支持。 与此同时,云原生计算基金会(CNCF)正在积极推动Kubernetes等容器编排工具与Docker的深度融合,旨在为企业提供更为强大的容器集群管理能力。例如,通过编写Kubernetes YAML文件,用户能够实现跨多个节点的容器批量启动、停止、更新等操作,进一步提升了大规模容器化应用的运维体验。 此外,针对容器安全问题,近期有研究人员发表了一篇深度分析文章,详细解读了如何在Docker环境下实施安全的容器生命周期策略,包括但不限于容器运行时权限控制、网络隔离以及镜像扫描等方面,这对于保障企业级容器服务的安全稳定运行至关重要。 综上所述,无论是从Docker自身的产品迭代升级,还是整个容器生态系统的演进发展,都为高效、安全地进行容器生命周期管理提供了有力支撑。了解并掌握这些最新动态和技术实践,无疑将有助于我们在实际工作中更好地利用Docker及相关工具来简化运维流程,提高业务连续性和系统稳定性。
2023-07-13 23:32:15
261
码农
Docker
...生产环境中有效实施和优化这些策略。近期,随着容器化技术的广泛应用,Docker数据保护的重要性日益凸显。2022年,一家知名云服务提供商发布了一份关于“容器数据保护最佳实践”的报告,其中详细阐述了定期备份、异地存储以及自动化数据恢复流程等关键环节,并强调了采用一致性快照以确保数据完整性。 同时,开源社区也在持续推动相关工具的发展,例如Portworx的Stork项目提供了对Kubernetes和Docker数据卷的一键式备份与恢复支持,大大简化了操作流程。此外,通过深度集成如Velero(原名为Heptio Ark)这类开源灾备工具,企业能够实现跨集群的数据迁移和灾难恢复,增强了基于Docker的应用系统的韧性。 另外,对于更复杂的企业级场景,有专家建议结合使用分布式文件系统(如Ceph或GlusterFS)来持久化和备份Docker数据卷,从而提高数据安全性及可用性。实践中,不断优化数据恢复方案,使之与业务连续性和高可用性要求相匹配,是每一个依赖于Docker运行关键业务的企业必须面对的挑战。 总而言之,在数字化转型加速的今天,理解并掌握先进的Docker数据备份与恢复策略已成为IT运维人员必备技能之一。只有紧跟技术发展潮流,结合实际情况灵活运用各种解决方案,才能确保即使在遭遇意外情况时,也能迅速有效地恢复业务运行,最大限度地降低数据丢失带来的潜在风险和损失。
2023-04-14 09:42:03
301
码农
Docker
...的最新发展动态和深入实践。近期,Docker与Kubernetes的结合运用成为了云计算行业的热点话题。2022年,Docker宣布对其产品进行战略调整,更加紧密地集成到更广泛的云原生生态系统中,尤其是加大对Kubernetes的支持力度,这使得开发者能够利用Docker构建和管理镜像,并在Kubernetes集群上实现无缝部署和扩展。 同时,随着微服务架构和持续集成/持续部署(CI/CD)流程的普及,Docker在DevOps领域的重要性日益凸显。例如,一些大型科技公司如Google、Microsoft等在其内部研发流程中广泛应用Docker技术,通过容器化大大提升了软件开发效率和部署灵活性。 此外,针对安全性和合规性问题,业界也对如何在Docker环境中实施有效安全管理展开了深入研究。诸如Notary项目和Harbor等开源工具应运而生,它们为Docker镜像提供了验证和安全存储的功能,确保从开发到生产的整个生命周期中容器内容的安全可信。 综上所述,Docker作为现代软件交付和运维的关键工具,在不断迭代升级的同时,正逐步融入更多先进的云原生技术和理念,为企业数字化转型提供强大助力。对于希望紧跟行业趋势,优化自身IT基础设施及开发运维流程的专业人士而言,深入探索Docker及其生态系统的最新进展无疑具有极高的价值。
2024-01-10 21:35:41
463
代码侠
Docker
...近期,Docker与Kubernetes(简称K8s)的结合使用成为行业焦点。 2023年2月,Docker发布了全新的版本,优化了与Kubernetes集群的集成体验,使得用户能够更便捷地将基于Docker的容器部署到K8s环境中。同时,新版本强化了安全性和镜像管理功能,提升了大规模生产环境下的性能表现。这对于企业级用户来说具有很高的实用价值和时效性。 此外,针对Docker容器的运维实践,InfoQ上的一篇深度解读文章《从零到一:Docker实战进阶指南》详细阐述了如何运用Docker Compose进行多容器编排,以及如何利用Swarm模式进行集群管理。这些内容为想要进一步提升Docker技能的专业人士提供了宝贵的参考。 另外,鉴于日益严重的网络安全问题,一篇由业界专家撰写的《Docker安全最佳实践》分析了容器运行时的安全风险,并给出了如何通过配置策略、限制容器权限等手段增强Docker容器的安全防护措施,这也是当前Docker使用者关注的热点话题。 综上所述,掌握Docker手动命令只是迈入容器技术大门的第一步,持续关注Docker及其生态系统的最新发展动态,结合实际应用场景深入探究其高级特性和最佳实践,方能更好地驾驭这一强大的工具,在云原生时代保持竞争力。
2023-03-26 21:05:17
324
软件工程师
Nginx
...略要求。 另外,随着Kubernetes在生产环境中的广泛应用,Nginx Ingress Controller成为处理跨域请求的另一种常见方案。它允许在集群入口级别集中配置CORS策略,使得跨越多个服务或命名空间的资源访问得以顺利进行。 同时,业界也在深入研究如何在遵循安全原则的前提下优化浏览器的跨域限制。例如,W3C关于CORS标准的最新讨论与修订,可能会影响未来Web应用程序跨域资源共享的最佳实践。 综上所述,理解并掌握Docker与Nginx在解决浏览器跨域问题上的应用,以及关注相关领域技术的发展动态,对于提升Web应用的开发效率与安全性具有重要意义。
2023-11-18 17:50:15
154
断桥残雪_t
Docker
... 4.0版本,进一步优化了开发人员在本地构建、测试和调试容器化应用程序的体验。新版本引入了对Kubernetes v1.21的支持,并增强了对苹果M1芯片架构的兼容性,使开发者能够在各种硬件平台上更加流畅地运行Docker。 与此同时,业界也在不断探索Docker技术在企业级生产环境中的最佳实践。例如,通过结合Kubernetes进行集群管理,实现容器的自动部署、扩展以及自我修复,以满足大规模分布式系统的需求。此外,随着安全问题成为焦点,围绕Docker的安全加固措施也成为研究热点,如使用Notary项目确保镜像来源可信,以及通过运行时的安全策略防止潜在攻击。 另外,容器技术与DevOps理念的深度融合也是当前的一大趋势。通过将Docker整合到CI/CD(持续集成/持续交付)流程中,团队可以快速构建起一套标准化的应用发布体系,有效提升软件开发效率及应用部署质量。众多知名云服务商,如AWS、Azure、阿里云等,均提供了丰富的Docker相关服务,助力企业更好地利用容器技术实现业务创新与升级。 综上所述,Docker技术的发展不仅体现在产品功能的迭代更新,更在于它如何引领并推动整个IT行业向云原生架构转型,为企业带来更高水平的敏捷性、弹性和可扩展性。深入理解并掌握Docker的核心原理及其在实际场景中的应用,对于企业和开发者而言具有极高的价值和意义。
2024-01-21 17:25:00
424
电脑达人
HBase
...法之后,进一步探索和实践相关技术的发展与应用是十分必要的。近期,Apache HBase社区发布了一系列重要更新,其中包括对元数据管理功能的优化升级,如改进元数据存储的性能、增强跨集群元数据复制能力以及提升元数据操作API的易用性等。这些改动旨在更好地满足现代大数据环境下对海量结构化数据高效管理和访问的需求。 此外,在实际应用层面,一些大型互联网公司正积极研究如何通过智能优化HBase元数据策略来降低存储成本并提高查询效率。例如,通过分析表和列族的访问模式,动态调整数据块大小和压缩策略,有效提升了系统整体运行效能。同时,也有一些专家针对HBase元数据安全问题进行深度解读,强调了在设计和运维阶段加强对敏感元数据保护的重要性。 综上所述,随着技术和业务需求的发展,深入探究HBase元数据管理不仅有助于提升数据库性能,也是确保数据安全、实现企业数字化转型的关键一环。持续关注领域内的最新研究成果和技术动态,将助力我们更高效地驾驭HBase这类分布式数据库系统,应对未来更为复杂的数据挑战。
2023-11-14 11:58:02
434
风中飘零-t
Docker
...器化技术的潮流,不断优化其性能与安全性,并与其他云原生技术如Kubernetes紧密结合,以满足企业对应用程序部署、扩展和管理的需求。 最近,Docker公司在2022年发布了Docker Desktop 4.3版本,该版本强化了对开发者友好的特性,包括改进了Compose V2的兼容性和稳定性,以及增强了对WSL 2(Windows子系统Linux)的支持,使得跨平台开发更为便捷高效。此外,Docker也在积极拥抱开源社区,推动Moby项目发展,为用户提供更加灵活且可定制的容器运行时环境。 同时,随着云服务的普及,各大云服务商如AWS、Azure和阿里云等均提供了基于Docker技术的一站式容器服务解决方案,助力企业实现微服务架构下的快速迭代与敏捷部署。例如,阿里云ACK服务全面支持Docker,通过集群管理和自动运维功能,降低了用户在云端运行和管理Docker容器的复杂性。 总之,无论是对于个人开发者还是企业级应用,掌握Docker的正确安装与卸载方法至关重要,而关注Docker技术的最新进展及行业应用案例,则有助于我们更好地利用这一工具进行高效的软件开发与部署。在实践中,结合Kubernetes等容器编排工具深入学习,将能够充分释放Docker的潜能,提升整体IT基础设施的现代化水平。
2023-03-16 09:08:54
561
编程狂人
Docker
...F)生态的繁荣,以及Kubernetes等编排工具的广泛应用,Docker的价值进一步凸显。 2023年初,Docker发布了新版本,不仅增强了安全性和性能,还优化了与Kubernetes的集成体验,使得开发者能够更便捷地将基于Docker的应用程序部署到大规模集群环境中。同时,Docker也在积极探索和推动服务网格、无服务器计算等前沿领域,为构建现代化应用架构提供更多可能。 此外,关于Docker最佳实践和技术深度解读的文章层出不穷,例如InfoQ上的一篇《深入剖析Docker容器:从内核特性到应用优化》详细探讨了Docker底层技术原理,并提供了若干提升容器性能和资源利用率的有效策略。而一篇来自TechCrunch的技术评论文章《Docker在多云时代下的角色演变》则阐述了Docker在面对日益复杂的云环境时,如何通过持续创新来满足企业对高效、灵活及一致性的需求。 总之,在Docker技术不断演进的当下,理解并掌握其最新发展动态及应用场景,对于软件开发者、运维人员乃至IT决策者来说都至关重要,它不仅能帮助团队提高开发效率、实现快速迭代,还能更好地适应云原生时代的挑战,驱动企业的数字化转型进程。
2023-05-14 18:00:01
553
软件工程师
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 在当前目录下查看所有文件和目录的大致大小。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"