前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JavaScript中条件判断处理JSO...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
JSON
JSON:网站数据导入源的利器 在当今的Web开发世界中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,凭借其简洁的语法、易于人阅读和编写以及机器解析的特点,在网站数据交互、API接口设计等方面扮演着举足轻重的角色。这篇文会手把手地带你潜入JSON如何充当网站数据搬运工的内部世界,并且,咱还会通过一些超实用的代码实例,让你亲身体验一把这个过程有多酷炫! 1. 初识JSON 一种易读易写的格式 首先,让我们回顾一下JSON的基本结构。JSON这家伙,可厉害了,它用的是一种跟任何编程语言都“不粘锅”的文本格式,能够超级给力地把那些乱七八糟、复杂无比的数据结构,比如数组、对象什么的,整得清清楚楚、明明白白。例如: json { "users": [ { "id": 1, "name": "Alice", "email": "alice@example.com" }, { "id": 2, "name": "Bob", "email": "bob@example.com" } ] } 这段JSON数据清晰地展现了用户列表信息,每个用户都有自己的ID、姓名和邮箱地址。这正是JSON让人着迷的地方,它能用咱们人类看得懂的方式去表达数据,而且机器也能轻松解析理解,真可谓“人机对话”的小能手。 2. JSON与网站数据导入 在实际的网站开发场景中,我们经常需要从外部源导入数据,如API接口、文件或数据库。JSON格式因其通用性,成为理想的数据传输媒介。以下是一个典型的网站导入JSON数据的例子: javascript // 假设我们从某个API获取到了上述JSON数据 fetch('https://example.com/api/users') .then(response => response.json()) .then(data => { // 解析并处理JSON数据 const users = data.users; users.forEach(user => { console.log(User ID: ${user.id}, Name: ${user.name}); // 这里可以将用户数据插入到网站DOM或其他存储中 }); }) .catch(error => console.error('Error fetching data:', error)); 在这段代码中,我们通过fetch函数请求一个返回JSON数据的API,然后利用.json()方法将其转化为JavaScript对象,进而进行数据处理和展示。这便是JSON在网站数据导入中的核心应用。 3. JSON的应用深度探讨 - 数据交互:JSON不仅适用于前后端数据交换,也常用于客户端和服务端之间、甚至不同系统之间的数据传递。它减少了数据转换的成本,简化了开发流程。 - 兼容性:由于JSON是基于JavaScript的对象字面量,因此在浏览器环境中可以直接转化为JavaScript对象,无需额外的库或工具支持。 - 灵活性:JSON结构灵活多变,可以表示复杂的嵌套数据结构,适应各种业务场景的需求。 - 性能优化:相对于XML等其他数据格式,JSON的体积更小,解析速度更快,有利于提升网站性能。 4. 结语 拥抱JSON,让数据流动更自由 随着Web技术的发展,JSON已经深入到我们日常开发的方方面面。它如同一条无形的信息高速公路,承载着网站间、系统间的数据流通。作为开发者,咱们得把JSON的使用窍门玩得贼溜,可别浪费了它的那些个优点。把它用得风生水起,让它在咱们的项目里发光发热,发挥出最大的价值,这才是正经事!当我们面对网站数据导入这样的需求时,不妨试着借助JSON的力量,你会发现,数据的搬运原来可以如此轻松自如,充满了无限可能!
2023-10-11 22:09:42
754
林中小径
转载文章
...分布式事务必须满足的条件: 1、远程RPC调用,支付宝和余额宝存在接口调用 2、支付宝和余额宝使用不同的数据库 如图: 2、分布式事务解决方案 1、基于数据库XA协议的两段提交 XA协议是数据库支持的一种协议,其核心是一个事务管理器用来统一管理两个分布式数据库,如图 事务管理器负责跟支付宝数据库和余额宝数据库打交道,一旦有一个数据库连接失败,另一个数据库的操作就不会进行,一个数据库操作失败就会导致另一个数据库回滚,只有他们全部成功两个数据库的事务才会提交。 基于XA协议的两段和三段提交是一种严格的安全确认机制,其安全性是非常高的,但是保证安全性的前提是牺牲了性能,这个就是分布式系统里面的CAP理论,做任何架构的前提需要有取舍。所以基于XA协议的分布式事务并发性不高,不适合高并发场景。 2、基于activemq的解决方案 如图: 1、支付宝扣款成功时往message表插入消息 2、message表有message_id(流水id,标识夸系统的一次转账操作),status(confirm,unconfirm) 3、timer扫描message表的unconfirm状态记录往activemq插入消息 4、余额宝收到消息消费消息时先查询message表如果有记录就不处理如果没记录就进行数据库增款操作 5、如果余额宝数据库操作成功往余额宝message表插入消息,表字段跟支付宝message一致 6、如果5操作成功,回调支付宝接口修改message表状态,把unconfirm状态转换成confirm状态 问题描述: 1、支付宝设计message表的目的 如果支付宝往activemq插入消息而余额宝消费消息异常,有可能是消费消息成功而事务操作异常,有可能是网络异常等等不确定因素。如果出现异常而activemq收到了确认消息的信号,这时候activemq中的消息是删除了的,消息丢失了。设置message表就是有一个消息存根,activemq中消息丢失了message表中的消息还在。解决了activemq消息丢失问题 2、余额宝设计message表的目的 当余额宝消费成功并且数据库操作成功时,回调支付宝的消息确认接口,如果回调接口时出现异常导致支付宝状态修改失败还是unconfirm状态,这时候还会被timer扫描到,又会往activemq插入消息,又会被余额宝消费一边,但是这条消息已经消费成功了的只是回调失败而已,所以就需要有一个这样的message表,当余额宝消费时先插入message表,如果message根据message_id能查询到记录就说明之前这条消息被消费过就不再消费只需要回调成功即可,如果查询不到消息就消费这条消息继续数据库操作,数据库操作成功就往message表插入消息。 这样就解决了消息重复消费问题,这也是消费端的幂等操作。 基于消息中间件的分布式事务是最理想的分布式事务解决方案,兼顾了安全性和并发性! 接下来贴代码: 支付宝代码: @Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws userID:转账的用户ID amount:转多少钱/@Autowired@Qualifier("activemq")OrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId,String messageId, int amount) {try {orderService.updateAmount(amount,messageId, userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";}@RequestMapping("/callback")public String callback(String param) {JSONObject parse = JSONObject.parseObject(param);String respCode = parse.getString("respCode");if(!"OK".equalsIgnoreCase(respCode)) {return null;}try {orderService.updateMessage(param);}catch (Exception e) {e.printStackTrace();return "fail";}return "ok";} } public interface OrderService {public void updateAmount(int amount, String userId,String messageId);public void updateMessage(String param);} @Service("activemq")@Transactional(rollbackFor = Exception.class)public class OrderServiceActivemqImpl implements OrderService {Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;@AutowiredJmsTemplate jmsTemplate;@Overridepublic void updateAmount(final int amount, final String messageId, final String userId) {String sql = "update account set amount = amount - ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[]{amount, userId});if (count == 1) {//插入到消息记录表sql = "insert into message(user_id,message_id,amount,status) values (?,?,?,?)";int row = jdbcTemplate.update(sql,new Object[]{userId,messageId,amount,"unconfirm"});if(row == 1) {//往activemq中插入消息jmsTemplate.send("zg.jack.queue", new MessageCreator() {@Overridepublic Message createMessage(Session session) throws JMSException {com.zhuguang.jack.bean.Message message = new com.zhuguang.jack.bean.Message();message.setAmount(Integer.valueOf(amount));message.setStatus("unconfirm");message.setUserId(userId);message.setMessageId(messageId);return session.createObjectMessage(message);} });} }}@Overridepublic void updateMessage(String param) {JSONObject parse = JSONObject.parseObject(param);String messageId = parse.getString("messageId");String sql = "update message set status = ? where message_id = ?";int count = jdbcTemplate.update(sql,new Object[]{"confirm",messageId});if(count == 1) {logger.info(messageId + " callback successfull");} }} activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> spring-dispatcher.xml <beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"xmlns:context="http://www.springframework.org/schema/context"xmlns:task="http://www.springframework.org/schema/task" xmlns:aop="http://www.springframework.org/schema/aop"xmlns:tx="http://www.springframework.org/schema/tx"xmlns:util="http://www.springframework.org/schema/util" xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/utilhttp://www.springframework.org/schema/util/spring-util-3.2.xsdhttp://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsdhttp://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-3.2.xsdhttp://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsdhttp://www.springframework.org/schema/txhttp://www.springframework.org/schema/tx/spring-tx-3.0.xsdhttp://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"><!-- 引入同文件夹下的redis属性配置文件 --><!-- 解决springMVC响应数据乱码 text/plain就是响应的时候原样返回数据--><import resource="../activemq/activemq.xml"/><!--<context:property-placeholder ignore-unresolvable="true" location="classpath:config/core/core.properties,classpath:config/redis/redis-config.properties" />--><bean id="propertyConfigurerForProject1" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"><property name="order" value="1" /><property name="ignoreUnresolvablePlaceholders" value="true" /><property name="location"><value>classpath:config/core/core.properties</value></property></bean><mvc:annotation-driven><mvc:message-converters register-defaults="true"><bean class="org.springframework.http.converter.StringHttpMessageConverter"><property name="supportedMediaTypes" value = "text/plain;charset=UTF-8" /></bean></mvc:message-converters></mvc:annotation-driven><!-- 避免IE执行AJAX时,返回JSON出现下载文件 --><bean id="mappingJacksonHttpMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"><property name="supportedMediaTypes"><list><value>text/html;charset=UTF-8</value></list></property></bean><!-- 开启controller注解支持 --><!-- 注:如果base-package=com.avicit 则注解事务不起作用 TODO 读源码 --><context:component-scan base-package="com.zhuguang"></context:component-scan><mvc:view-controller path="/" view-name="redirect:/index" /><beanclass="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /><bean id="handlerAdapter"class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"></bean><beanclass="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"><property name="mediaTypes"><map><entry key="json" value="application/json" /><entry key="xml" value="application/xml" /><entry key="html" value="text/html" /></map></property><property name="viewResolvers"><list><bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /><bean class="org.springframework.web.servlet.view.UrlBasedViewResolver"><property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /><property name="prefix" value="/" /><property name="suffix" value=".jsp" /></bean></list></property></bean><!-- 支持上传文件 --> <!-- 控制器异常处理 --><bean id="exceptionResolver"class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver"><property name="exceptionMappings"><props><prop key="java.lang.Exception">error</prop></props></property></bean><bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"><property name="driverClass"><value>${jdbc.driverClassName}</value></property><property name="jdbcUrl"><value>${jdbc.url}</value></property><property name="user"><value>${jdbc.username}</value></property><property name="password"><value>${jdbc.password}</value></property><property name="minPoolSize" value="10" /><property name="maxPoolSize" value="100" /><property name="maxIdleTime" value="1800" /><property name="acquireIncrement" value="3" /><property name="maxStatements" value="1000" /><property name="initialPoolSize" value="10" /><property name="idleConnectionTestPeriod" value="60" /><property name="acquireRetryAttempts" value="30" /><property name="breakAfterAcquireFailure" value="false" /><property name="testConnectionOnCheckout" value="false" /><property name="acquireRetryDelay"><value>100</value></property></bean><bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate"><property name="dataSource" ref="dataSource"></property></bean><bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"><property name="dataSource" ref="dataSource"/></bean><tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true" /><aop:aspectj-autoproxy expose-proxy="true"/></beans> logback.xml <?xml version="1.0" encoding="UTF-8"?><!--scan:当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。scanPeriod:设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒当scan为true时,此属性生效。默认的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
499
转载
Python
...查找元素索引以及执行条件判断更为简洁高效。此外,对于大数据处理或科学计算场景,NumPy库提供的ndarray对象在性能上远超Python原生列表,可以实现快速的矩阵运算和统计分析。 近期,一篇发布于“Real Python”网站的文章深入探讨了如何利用列表推导式(List Comprehensions)和生成器表达式(Generator Expressions)对列表进行复杂操作,如过滤、映射和压缩数据,从而提升代码可读性和运行效率。文章还介绍了functools模块中的reduce函数,用于对列表元素执行累积操作,如求乘积、求序列中最长连续子序列等。 另外,在实际编程实践中,掌握列表的排序、切片、连接、复制等基本操作同样至关重要。例如,使用sorted()函数或列表的sort()方法对列表进行排序;利用切片技术实现列表的部分提取或替换;通过extend()和+运算符完成列表合并等。这些操作不仅能丰富你对Python列表的理解,更能在日常开发任务中助你事半功倍。 总的来说,深入学习和熟练运用Python列表的各种特性与功能,不仅有助于数据分析和处理,更能提升代码编写质量,使程序更加简洁、高效。同时,关注Python社区的最新动态和最佳实践,将能持续拓展你的编程技能边界,紧跟时代发展步伐。
2023-10-05 18:16:18
359
算法侠
Python
...的基础概念,如循环、条件语句、面向对象编程、图像绘制、事件处理等。 列表推导式(List Comprehension) , 在Python编程中,列表推导式是一种简洁易读的方式来创建新的列表,其根据现有数据结构(如列表、元组或范围)快速生成新列表,同时可以结合条件判断实现对元素的选择和转换。例如,在“外星人入侵”游戏中,如果需要移除外星人并创建一个新的不包含已消灭外星人的列表,可以使用列表推导式来避免直接修改原列表带来的索引错误等问题。 反模式(Anti-Pattern) , 在软件工程领域,反模式是指那些常见但有害于程序设计、效率或者可维护性的实践或结构。在文中引用《Effective Python》一书中提到的“在对容器元素进行迭代的同时对其进行修改”,就是一种反模式行为。这意味着在遍历列表或其他可变集合的过程中直接删除或修改元素,可能导致不可预期的结果,比如索引错误。在外星人入侵游戏中,直接在循环中移除被击中的外星人就可能引发这类问题,正确的做法是先记录待删除的外星人,然后在遍历结束后再统一执行删除操作。
2023-12-10 11:15:11
201
昨夜星辰昨夜风_t
Python
...Python编程语言处理正数求和问题后,我们可以进一步探索其在实际应用场景中的价值。近期,数据分析领域的一项实时研究引起了广泛关注:科研人员利用Python进行大规模气象数据处理时,面临了类似的问题。由于原始数据中包含正负数值,研究人员需要快速准确地计算特定参数(如温度增量)的正向变化总和。通过借鉴文中提到的Python正数筛选与累加方法,并结合abs()函数确保结果正确性,成功实现了对复杂数据集的有效分析。 此外,在金融风控领域,Python同样扮演着关键角色。在评估投资组合收益时,分析师需要精确计算正收益部分的累积和,以排除亏损交易的影响。运用文中介绍的条件判断循环结构,结合Python强大的pandas库进行数据清洗和计算,使得复杂的财务数据分析变得更为高效且精准。 更进一步,Python内置函数的强大性和灵活性,不仅体现在abs()这样的数学运算上,还表现在众多其他场景中。例如,Python 3.9版本引入了新特性——":= walrus operator",它可以简化if条件语句内部的赋值操作,使代码更加简洁易读。这一更新对于解决类似本文所述问题的程序编写具有重要意义,让开发者能够更好地应对实际编程挑战,提升代码质量及执行效率。 综上所述,无论是基础的正数求和问题,还是前沿的数据科学、金融分析等领域,Python以其丰富全面的功能和不断优化的语法设计,持续赋能广大开发者实现高效、准确的数据处理与业务逻辑构建。
2023-04-28 23:59:16
1590
软件工程师
Java
...规则对两个或多个布尔条件进行判断,并返回一个布尔结果。例如,\ or\ 运算符要求只要有一个条件为true,整个表达式就为true;而\ and\ 运算符则需要所有条件均为true,表达式才为true。 短路求值(Short-Circuit Evaluation) , 这是一种编程中的优化策略,主要应用于逻辑运算符处理布尔表达式时。在Java中,对于\ or\ (||)运算符,如果左侧条件为true,那么右侧条件将不再评估,因为无论右侧条件如何,整个表达式的结果已经是true。同样地,对于\ and\ (&&)运算符,若左侧条件为false,则不再评估右侧条件,因为在这种情况下,整个表达式无论如何都将得到false的结果。这种特性可以节省计算资源,提高程序执行效率,并且在某些情况下避免不必要的错误发生。 布尔变量 , 布尔变量是一种特殊的变量类型,在Java中用boolean关键字声明,其值只能是true或false。在本文的上下文中,布尔变量condition1和condition2被用来存储特定条件的状态,通过逻辑运算符与这些布尔变量结合使用,可以构建复杂的条件判断结构,以决定程序流程的走向和执行相应的代码块。
2024-02-21 16:05:44
275
码农
JSON
JSON , JavaScript Object Notation,是一种轻量级的数据交换格式。它基于JavaScript的一个子集,采用完全独立于语言的文本格式来存储和传输数据。在文中,JSON被广泛应用于前端与后端的数据交互以及API接口的数据格式定义中,其数据结构清晰、易于阅读和编写,并且可以方便地被JavaScript和其他多种编程语言解析和生成。 递归 , 在计算机科学中,递归是一种解决问题的方法,它在函数内部调用自身以解决规模更小的相同问题,直至达到基本情况(基础条件)为止。在本文的上下文中,递归用于遍历并清空JSON对象中的所有value,当遇到嵌套的对象时,函数会继续调用自身处理该嵌套对象的属性,直至所有的value都被清空或遇到非对象类型的value为止。 JSON Schema , 一种用于描述和验证JSON文档结构和内容的标准格式,类似于数据库模式或者XML模式。在实际开发过程中,开发者可以通过预先定义JSON Schema来确保接收或发送的数据符合预期的结构和约束,从而提高数据质量,减少因数据格式错误引发的问题。虽然文章正文未直接提到JSON Schema,但在讨论JSON数据处理的相关实践与最新动态时,它是经常被提及的一种重要工具,尤其在保证JSON数据的有效性和安全性方面具有重要作用。
2023-10-16 19:41:44
522
码农
JQuery
...但其内部也提供了一些处理数组的便捷方法。我们将利用这些方法来完成今天的任务。 2. 理解问题 假设我们有一个数组,其中包含了一些数字: javascript var numbers = [1, 2, 3, 4, 5]; 现在,我们需要把数组中的某个特定元素向前移动一位。例如,如果我们要将3这个元素向前移动一位,那么最终结果应该是: javascript [1, 3, 2, 4, 5] 3. 解决方案 3.1 分析 首先,我们需要找到这个元素在数组中的位置。然后,将它与前一个元素交换位置。这个过程听起来不难,但是实现起来需要考虑几个关键点。 3.2 实现步骤 1. 查找元素的位置 我们可以通过.indexOf()方法来获取元素的位置。 2. 判断边界条件 如果元素已经是第一个元素,那么就没有必要再往前移动了。 3. 交换元素位置 通过数组的splice方法来交换两个元素的位置。 让我们一步一步来看代码实现。 3.3 代码示例 javascript $(document).ready(function() { var numbers = [1, 2, 3, 4, 5]; // 找到元素的位置 var index = $.inArray(3, numbers); if (index !== -1 && index > 0) { // 判断是否是第一个元素 // 交换元素位置 var temp = numbers[index-1]; numbers[index-1] = numbers[index]; numbers[index] = temp; console.log(numbers); // 输出: [1, 3, 2, 4, 5] } else { console.log("元素已经在首位或者不存在"); } }); 这里,我们使用了jQuery的$.inArray()方法来查找元素的位置。如果我们找到了那个元素,并且它在数组里的位置不是第一个,那就把它和前面的那个元素换一下位置。 4. 进阶技巧 当然,这只是基本的实现方式。在实际开发中,你可能会碰到更棘手的情况,比如得反复挪动某个元素,或者它的位置总是变来变去,让你头大。这时候,你可以考虑封装一个函数来处理这种情况。 4.1 封装函数 javascript function moveElementForward(arr, element) { var index = $.inArray(element, arr); if (index !== -1 && index > 0) { var temp = arr[index-1]; arr[index-1] = arr[index]; arr[index] = temp; } return arr; } $(document).ready(function() { var numbers = [1, 2, 3, 4, 5]; console.log(moveElementForward(numbers, 3)); // 输出: [1, 3, 2, 4, 5] }); 这样,每次调用moveElementForward()函数时,就可以方便地将指定元素向前移动一位,而不需要重复编写相同的代码。 5. 结语 通过这次的技术分享,我们不仅学习了如何使用jQuery来处理数组中的元素移动,还了解了一些进阶的编程技巧。编程不仅仅是技术上的挑战,更是一种思维方式的锻炼。希望这篇东西能给你点灵感,在以后的项目里玩转jQuery就像吃糖一样简单。 最后,如果你有任何疑问或者更好的解决方案,请随时留言交流。编程之路,我们一起前行!
2025-02-17 16:03:22
59
桃李春风一杯酒
JSON
在深入理解JSON属性过滤器这一实用工具之后,我们可以进一步探索其在现代Web开发和数据处理中的实际应用。近日,随着API经济的快速发展,高效精准地处理API返回的大量JSON数据成为了众多开发者关注的焦点。例如,前端工程师在对接后端接口时,经常需要根据页面需求筛选并显示部分JSON数据,此时JSON属性过滤器就显得尤为重要。 据TechCrunch报道,许多现代JavaScript框架如React、Vue.js等已内建或推荐使用专门的数据处理库(如Lodash、Ramda等),它们提供了丰富的函数以简化JSON属性过滤操作,极大地提升了开发效率和代码可读性。这些库不仅支持基础的属性提取,还能进行深度查找和复杂条件下的过滤。 同时,在大数据和云计算领域,像Apache Spark等分布式计算框架也支持对JSON数据进行高效的属性过滤与转换,以便于后续分析与存储。通过运用特定的过滤策略,企业能够快速从海量JSON日志或其他半结构化数据中提炼关键信息,辅助业务决策。 此外,对于那些注重隐私保护和数据最小化原则的应用场景,JSON属性过滤技术同样发挥着不可或缺的作用。在GDPR等相关法规的要求下,开发者必须确保只收集和传输必要的用户数据,这时精细到属性级别的过滤功能就能有效防止数据泄露风险。 总之,JSON属性过滤器及其相关技术不仅是提升开发效率的重要手段,也是应对当前大数据时代挑战,实现数据安全、合规使用的必备工具。无论是前端交互逻辑优化,还是后端大规模数据处理,乃至云端数据合规流通,深入理解和掌握JSON属性过滤方法都将带来显著的价值提升。
2023-02-21 22:09:00
545
电脑达人
JSON
JSON , JavaScript Object Notation,是一种轻量级的数据交换格式。它基于文本,易于阅读和编写,同时也易于机器解析和生成。在文中,JSON被广泛应用于前后端开发中,作为数据交换的标准格式,其简洁的键值对结构使得开发者能够方便地将数据序列化为JSON字符串在网络间传输或存储,并反序列化还原为原生对象进行处理。 JSONPath , 类似于XPath在XML文档中的作用,JSONPath是一种查询和筛选JSON数据的语言,可以用来定位JSON文档中的特定节点或者满足一定条件的子集。在本文给出的例子中,通过使用JSONPath表达式 $.. ?(@.age >= 30) ,我们能快速准确地找到所有年龄大于等于30岁的用户对象,从而展现出相对于传统遍历方法更高的查询效率。 filter() 方法 , filter() 是JavaScript数组的一个内置方法,用于创建一个新的数组,其中包含通过所提供函数实现的测试的所有元素。在文章提到的具体场景中,filter() 方法接收一个回调函数作为参数,该函数会应用到数组的每个元素上,只有当回调函数返回true时,该元素才会被包含在新创建的数组中。所以,在查询JSON数据中年龄大于等于30岁的用户时,filter() 方法直接根据给定的条件过滤出符合条件的用户对象,相比for循环遍历的方式,代码更简洁且执行速度更快。
2023-09-15 23:03:34
484
键盘勇士
VUE
...e.js是一个普及的JavaScript结构,相似Angular.js,但它有着一些独特性的特性,让它在开发者圈内备受宠。尽管两者在设计理念和使用方式上有所不同,但Vue.js在某些方面确实参考了Angular.js的设计风格,使得在从Angular到Vue.js的过渡更为容易。 在Vue.js的组件化设计方面,我们可以看到一些相似Angular的特点。比如,Vue.js也采用了单向数据流的模式,就像Angular的双向数据绑定一样,我们可以将父组件数据传送给子组件,但在子组件内部,所传送的数据是不可写的,无法直接修改。 Vue.component( 'my-component', { props: [ 'message' ], template: ' { { message } } ' }); 与此不同的是,Vue.js的作用域是许可作用域插槽的,在这种模式下,Vue.js的作用域可以被传送到嵌套组件中,从而使组件的结构更加清晰易懂。 Vue.component( 'my-outer-component', { data: function() { return { message: 'Hello, world!' } }, template: '', components: { 'my-inner-component': { props: [ 'message' ], template: ' { { message } } ' } } }); 另一个相似Angular的特点是Vue.js的指令机制。Vue.js提供了一组指令,帮助我们在模板中简洁地实现一些常见的操作,例如条件判断、迭代、事件绑定等等。尤其是使用v-html指令可以实现相似ng-bind-html的性能,绑定包含HTML的字符串,渲染出对应的页面。 Vue.component( 'my-component', { data: function() { return { content: 'This is italic text.' } }, template: ' ' }); Vue.js和Angular.js在某些方面看起来很像,但是随着它们的进一步发展,它们之间的不同点也越来越明显。例如,Vue.js的数据绑定和指令机制相对来说更加灵动,而Angular.js则更加重视性能优化和强制代码规范。因此,在选择结构时,我们需要根据具体的项目需求进行综合考虑。
2023-08-10 19:26:32
332
算法侠
MySQL
...留心了,如果不特意去处理一下,MySQL这家伙可会按照字母表顺序对字符串进行排序,而这很可能并不是咱们期望的结果。为了克服这个问题,我们可以使用函数来对字符串进行特殊处理。例如,我们可以使用UCASE函数将所有字符串转换为大写,然后再进行排序: sql SELECT ID, NAME, AGE FROM USER ORDER BY UCASE(NAME) ASC, AGE ASC; 这样,我们就可以保证所有的姓名都是按照字母表顺序进行排序的了。 五、NULL值排序 在实际应用中,我们还常常需要对包含NULL值的数据进行排序。这时候,千万要注意了哈,MySQL这家伙有个默认习惯,就是会把NULL值当作小尾巴,统统放在非NULL值的后面。如果你想让NULL值率先出场,那你就得在ORDER BY这个排序句子里头加个特殊的小条件。例如,我们可以使用IS NULL函数来判断是否为空,然后将其放在列名的前面: sql SELECT ID, NAME, AGE FROM USER ORDER BY AGE ASC, (CASE WHEN NAME IS NULL THEN 1 ELSE 0 END) ASC; 这样,我们就可以保证NULL值总是被排在最前面了。 六、总结 总的来说,MySQL提供了丰富的排序功能,可以帮助我们快速有效地对大量数据进行排序。在实际操作中,咱们得瞅准具体需求,灵活选择最合适的排序方法。同时呢,千万记得要避开那些时常冒泡的常见错误陷阱。只要掌握了这些基础知识,我们就能够在MySQL的世界里游刃有余了。
2023-05-16 20:21:51
58
岁月静好_t
Scala
...的不同形式指定不同的处理逻辑。在本文的上下文中,使用 case class 的一个主要优势在于可以直接对其进行模式匹配操作,无需额外编写复杂的条件判断代码,这有助于提升代码的可读性和表达力。例如,可以轻松根据 Person case class 的字段值来执行不同的业务逻辑。
2023-01-16 14:23:59
180
风轻云淡-t
Groovy
...关注的焦点。特别是在JavaScript领域,闭包的应用越来越广泛,尤其是在React框架中,闭包被用来管理组件的状态和生命周期。例如,React Hooks的出现极大地简化了状态管理和副作用处理,其中很多原理都是基于闭包的。React Hooks如useState和useEffect,都返回闭包来保存状态和逻辑,这使得组件更加可复用和可测试。 此外,Python社区也在讨论如何更有效地使用闭包。Python虽然不像Groovy那样直接支持闭包作为返回值,但开发者们通过一些技巧实现了类似的功能。例如,Python中的装饰器本质上就是闭包的应用,可以用来动态修改函数的行为。这种技术在Django等Web框架中得到了广泛应用,帮助开发者更灵活地管理视图函数和中间件。 在学术界,关于闭包的研究也在不断深入。最新的研究指出,闭包不仅能够提高代码的灵活性和模块化程度,还能显著减少内存泄漏的风险。这是因为闭包能够更精确地控制作用域和变量生命周期,避免不必要的全局变量污染。一项发表在《软件工程学报》上的研究指出,通过合理使用闭包,可以将内存泄漏率降低至少30%。 这些延伸内容不仅展示了闭包在现代编程语言中的广泛应用,也反映了闭包在提高代码质量和性能方面的巨大潜力。无论是前端开发还是后端服务,闭包都已成为不可或缺的技术工具。对于希望深入学习Groovy或其他编程语言的开发者来说,理解闭包的工作机制和最佳实践是非常重要的。
2024-12-16 15:43:22
148
人生如戏
Javascript
...。就像这样: javascript let x; 在这个例子中,我们声明了一个名为x的变量,但是并没有给它赋值。这就意味着,当你尝试去撩一下x的时候,会得到个啥嘞?JavaScript引擎这家伙可不会跟你卖关子,直接甩给你个"undefined"。 三、使用未初始化的变量进行运算 那么,如果我们在不初始化的情况下就使用变量进行运算,会发生什么呢?让我们来看看几个例子。 1. 使用未初始化的变量加法运算 javascript console.log(x + 5); // 输出: NaN 在这个例子中,我们将一个未初始化的变量x与数字5相加。由于x的值是undefined,所以这就会导致NaN的结果。这里的NaN是"Not a Number"的缩写,表示结果是一个非数字。 2. 使用未初始化的变量乘法运算 javascript console.log(x 3); // 输出: NaN 同样的,当我们试图将一个未初始化的变量与数字相乘时,也会得到NaN的结果。 四、为什么会出现这样的问题? 可能有人会问:“为什么会这样呢?”其实,这是因为在JavaScript中,所有的数值运算都会从左到右依次执行。换句话说,假如你没经过初始化,就急吼吼地拿一个变量去做运算,JavaScript引擎也不会懵圈,它会先淡定地算出左边这个家伙的值,然后再把这个结果和右边的伙伴一起进行运算。 在这个过程中,当遇到一个未初始化的变量时,JavaScript引擎并不会报错或者抛出异常,而是直接返回undefined。因此,在这种情况下进行运算,就很容易导致NaN的结果。 五、如何避免这个问题? 为了避免出现上述的问题,我们可以采取以下几种方式: 1. 在使用变量之前进行初始化。 javascript let x = 0; console.log(x + 5); // 输出: 5 在这个例子中,我们在使用变量x之前就已经为它赋了初始值,所以就不会再出现NaN的结果了。 2. 在进行运算前检查变量是否已初始化。 javascript if (typeof x !== 'undefined') { console.log(x + 5); } else { console.log('x is undefined'); } 在这个例子中,我们在进行运算之前先检查变量x是否已经定义,如果没有定义的话,我们就打印一条错误消息,而不是直接进行运算。 六、总结 总的来说,使用未初始化的变量进行运算可能会导致一些意料之外的结果。为了避免这类麻烦,咱们最好在用到变量前先给它来个初始化,就像我们用东西之前得先把它准备好一样。而且,在进行计算或者操作的时候,也记得确认一下这个变量是不是已经乖乖地被定义好了,别让它关键时刻掉链子。希望这篇文章能够帮助你更好地理解和处理这个常见的编程问题。感谢你的阅读,祝你编程愉快!
2023-08-16 16:01:05
339
灵动之光-t
PostgreSQL
... 3.2 使用条件判断 另一种方法是利用条件判断来处理 LEFT JOIN 的情况。你可以把 LEFT JOIN 的结果想象成一个备用值,当 JOIN 找不到匹配项时就用这个备用值。这样可以避免数据重复,同时也能达到合并的效果。 sql SELECT e.name AS employee_name, COALESCE(d.name, 'Unknown') AS department_name FROM employees e LEFT JOIN departments d ON e.department_id = d.id; 这里使用了 COALESCE 函数,当 d.name 为空时(即没有匹配到部门),返回 'Unknown'。这样就能保证所有的员工都有部门信息,即使该部门不存在。 3.3 使用 CASE WHEN 如果我们想在某些情况下返回不同的结果,可以考虑使用 CASE WHEN 语句。例如,如果某个员工的部门不存在,我们可以显示特定的提示信息: sql SELECT e.name AS employee_name, CASE WHEN d.id IS NULL THEN 'No Department' ELSE d.name END AS department_name FROM employees e LEFT JOIN departments d ON e.department_id = d.id; 这样,当 d.id 为 NULL 时,我们就可以知道该员工没有对应的部门信息,并显示相应的提示。 4. 总结与反思 通过上述几种方法,我们可以看到,合并SQL语句其实有很多方式。每种方式都有其适用场景和优缺点。在实际应用中,我们应该根据具体需求选择最合适的方法。这些招数不光让代码更好懂、跑得更快,还把我们的SQL技能磨得更锋利了呢! 在学习过程中,我发现,SQL不仅仅是机械地编写代码,更是一种逻辑思维的体现。每一次优化和改进都是一次对问题本质的深刻理解。希望这篇文章能帮助你更好地理解和掌握SQL语句的合并技巧,让你在数据库操作中更加游刃有余。
2025-03-06 16:20:34
54
林中小径_
Shell
...对于运维、自动化任务处理等方面具有重要意义。近期,随着DevOps理念的普及和云计算技术的发展,shell编程的重要性日益凸显。例如,在Kubernetes集群管理中,开发者经常借助shell脚本结合while循环来监控Pod状态,确保服务稳定运行。而在大型数据处理过程中,通过编写高效严谨的while循环逻辑,能够实现对批量数据的逐条处理与动态控制。 同时,关于条件判断失效的问题也引发了业界对于代码质量把控和测试实践的新思考。许多团队开始强调ShellCheck等静态分析工具的使用,它可以自动检测shell脚本中的常见错误,包括可能导致while循环失效的逻辑问题。此外,提倡采用TDD(测试驱动开发)模式编写shell脚本,预先为关键循环逻辑编写单元测试用例,可以在编码初期就发现问题并及时修复。 值得注意的是,对于避免无限递归这一问题,现代编程范式如函数式编程的一些思想可以提供借鉴,比如明确地设定递归退出条件,并在设计循环结构时注重其简洁性和可读性。而命令执行结果的正确处理,则要求开发者深入理解Unix哲学,遵循“每个程序都做好一件事,并做到最好”的原则,以减少因命令失败导致的意外循环行为。 总之,在实战中不断优化shell编程技巧,深入研究相关工具与最佳实践,不仅可以解决while循环条件失效这类具体问题,更能全面提升开发效率与系统稳定性,适应快速发展的IT技术环境。
2023-07-15 08:53:29
71
蝶舞花间_t
Lua
...能实现复杂的决策树和条件判断,使得游戏AI更加智能和多样。此外,Lua还常用于游戏服务器的脚本,负责处理玩家行为、交易系统、排行榜更新等后台服务,保证游戏的稳定运行和公平竞争环境。 另一方面,Lua在多人在线游戏中也有着不可忽视的作用。它能够帮助开发者快速搭建和调整游戏服务器架构,实现跨平台兼容性,以及处理复杂的网络通信协议和玩家间交互逻辑。通过Lua,开发者可以轻松实现诸如匹配系统、聊天系统、物品交易等关键功能,同时保持代码的简洁和易于维护。 总之,Lua在游戏开发领域的应用不仅提升了开发效率,还增强了游戏的可扩展性和适应性,是现代游戏开发不可或缺的一部分。随着游戏技术的不断进步,Lua在游戏开发中的应用将会越来越广泛,为开发者提供更多的可能性和创新空间。
2024-08-29 16:20:00
89
蝶舞花间
Java
...Google的V8 JavaScript引擎团队在其博客中分享了关于底层优化的工作原理,其中提到了类似前加加和后加加这样的操作符对编译器优化的影响。他们指出,在某些情况下,编译器能够识别并优化这类简单的递增操作,将其转化为更底层且高效的机器指令,从而极大地提升了程序执行速度。 此外,对于并发编程而言,前加加和后加加并非线程安全的操作,若在多线程环境下直接使用可能会导致数据竞争问题。因此,在开发高并发系统时,开发者需要借助Java的synchronized关键字或Atomic类提供的原子操作来保证前加加和后加加操作的线程安全性。 同时,随着JIT(Just-In-Time)编译器的发展,对于自增操作符的理解也需与时俱进。例如,HotSpot JVM会依据热点代码进行即时编译优化,使得原本看似微不足道的前加加和后加加操作,在特定场景下可能会影响到整体程序的性能表现。 综上所述,深入理解并适时、适地使用前加加和后加加运算符是提高代码质量、保障程序高效稳定运行的关键一环,同时也是紧跟编程语言和技术发展潮流的必备技能。在实际项目开发过程中,建议开发者结合具体业务场景和性能需求,灵活运用这些基础而又重要的运算符。
2023-03-21 12:55:07
376
昨夜星辰昨夜风-t
JSON
JSON条件读取:深入理解与实践探索 JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,广泛应用于Web服务和API接口中。这篇小文呢,咱要唠的就是“JSON条件读取”这码事儿。我会尽量说人话,用大伙都能秒懂的语言,再配上一堆实实在在的代码实例,手把手带你摸清怎么按照自个儿的需求,从JSON这座信息山里头精准挖出想要的数据宝贝。 1. JSON基础回顾 在我们深入探讨条件读取之前,先简单回顾一下JSON的基础知识。JSON是一种文本格式,用来表示键值对的集合,支持数组、对象等复杂结构。例如: json { "users": [ { "id": 1, "name": "Alice", "age": 25, "city": "New York" }, { "id": 2, "name": "Bob", "age": 30, "city": "San Francisco" } ] } 在这个例子中,我们有一个包含多个用户信息的JSON对象,每个用户信息也是一个JSON对象,包含了id、name、age和city属性。 2. JSON条件读取初识 JSON条件读取是指基于预先设定的条件,从JSON数据结构中提取满足条件的特定数据。比如,我们要从这个用户列表里头找出所有年龄超过28岁的大哥大姐们,这就得做个条件筛选了。 2.1 JavaScript中的JSON条件读取 在JavaScript中,我们可以使用循环和条件语句实现JSON条件读取。下面是一个简单的示例: javascript var jsonData = { "users": [ // ... ] }; for (var i = 0; i < jsonData.users.length; i++) { var user = jsonData.users[i]; if (user.age > 28) { console.log(user); } } 这段代码会遍历users数组,并打印出年龄大于28岁的用户信息。 2.2 使用现代JavaScript方法 对于更复杂的查询,可以利用Array.prototype.filter()方法简化条件读取操作: javascript var olderUsers = jsonData.users.filter(function(user) { return user.age > 28; }); console.log(olderUsers); 这里我们使用了filter()方法创建了一个新的数组,其中只包含了年龄大于28岁的用户。 3. 进阶 深度条件读取与JSONPath 在大型或嵌套结构的JSON数据中,可能需要进行深度条件读取。这时,JSONPath(类似于XPath在XML中的作用)可以派上用场。虽然JavaScript原生并不直接支持JSONPath,但可通过第三方库如jsonpath-plus来实现: javascript const jsonpath = require('jsonpath-plus'); var data = { ... }; // 假设是上面那个大的JSON对象 var result = jsonpath.query(data, '$..users[?(@.age > 28)]'); console.log(result); // 输出所有年龄大于28岁的用户 这个例子展示了如何使用JSONPath表达式去获取深层嵌套结构中的满足条件的数据。 4. 总结与思考 JSON条件读取是我们在处理大量JSON数据时不可或缺的技能。用各种语言技巧和工具灵活“玩转”,我们就能迅速找准并揪出我们需要的信息,这样一来,无论是数据分析、应用开发还是其他多种场景,我们都能够提供更棒的支持和服务。随着技术的不断进步,未来没准会出现更多省时省力的小工具和高科技手段,帮咱们轻轻松松解决JSON条件读取这个难题。因此,不断学习、紧跟技术潮流显得尤为重要。让我们一起在实践中不断提升对JSON条件读取的理解和应用能力吧!
2023-01-15 17:53:11
383
红尘漫步
MyBatis
...据用户类型的不同进行条件筛选查询。在MyBatis的XML映射文件中,我们可能会这样编写:xml SELECT FROM users type = {type} AND name LIKE CONCAT('%', {name}, '%') 在这个例子中,标签的顺序非常重要,因为SQL语句是按顺序拼接的。如果咱把第二个标签调到第一个位置,那么碰上只有name参数的情况,生成的SQL语句可能就会“调皮”地包含一个还没定义过的type字段,这样一来,程序在运行的时候可就要“尥蹶子”,抛出异常啦。 4. 处理XML元素顺序问题的策略 - 理解并遵循MyBatis文档规定:首先,我们需要深入阅读并理解MyBatis官方文档中关于XML映射文件元素顺序的说明,确保我们的编写符合规范。 - 合理组织SQL语句结构:对于含有多个条件的动态SQL,我们要尽可能地保持条件判断的逻辑清晰,以便于理解和维护元素顺序。 - 利用注释辅助排序:可以在XML文件中添加注释,对各个元素的功能和顺序进行明确标注,这对于多人协作或者后期维护都是非常有益的。 - 单元测试验证:编写相应的单元测试用例,覆盖各种可能的输入情况,通过实际运行结果来验证XML元素顺序是否正确无误。 5. 结论与思考 虽然MyBatis中的XML元素顺序问题看似微不足道,但在实际开发过程中却起着至关重要的作用。作为开发者,咱们可不能光有硬邦邦的编程底子,更得在那些不起眼的小节上下足功夫。这些看似微不足道的小问题,实际上常常是决定项目成败的关键所在,所以咱们得多留个心眼儿,好好地把它们给摆平喽!在处理这类问题的过程里,不仅实实在在地操练了我们的动手能力和技术水平,还让我们在实践中逐渐养成了对待工作一丝不苟、精益求精的劲头儿。因此,让我们一起在MyBatis的探索之旅中,更加注重对XML元素顺序的把握,让代码变得更加健壮和可靠!
2023-08-16 20:40:02
197
彩虹之上
Kibana
...求,然后把那些符合你条件的数据给挖出来,以一种可视化的方式展示给你看,就像变魔术一样。如果这个过程耗时较长或者返回为空,通常涉及到以下几个可能因素: - 查询语句过于复杂或宽泛 - Elasticsearch集群性能瓶颈 - 网络延迟或带宽限制 - Kibana自身的配置问题 3. 深入排查原因(举例说明) 示例1:查询语句分析 json GET /my_index/_search { "query": { "match_all": {} }, "size": 5000 } 上述代码是一个简单的match_all查询,试图从my_index中获取5000条记录。如果您的索引数据量巨大,这样的查询将会消耗大量资源,导致Discover页面加载缓慢。此时,可以尝试优化查询条件,比如添加时间范围过滤、字段筛选等。 示例2:检查Elasticsearch性能指标 借助Elasticsearch的监控API,我们可以获取节点、索引及查询的性能指标: bash curl -X GET 'localhost:9200/_nodes/stats/indices,query_cache?human&pretty' 通过观察查询缓存命中率、分片分配状态以及CPU、内存使用情况,可以帮助我们判断是否因ES集群性能瓶颈导致Discover加载慢。 4. 解决策略与实践 策略1:优化查询条件与DSL 确保在Discover页面使用的查询语句高效且有针对性。例如,使用range查询限定时间范围,使用term或match精确匹配特定字段,或利用bool查询进行复杂的组合条件过滤。 策略2:调整Elasticsearch集群配置 - 增加硬件资源,如提升CPU核数、增加内存大小。 - 调整索引设置,如合理设置分片数量和副本数量,优化refresh interval以平衡写入性能与实时性需求。 - 启用并适当调整查询缓存大小。 策略3:优化Kibana配置 在Kibana.yml配置文件中,可以对discover页面的默认查询参数进行调整,如设置默认时间范围、最大返回文档数等,以降低一次性加载数据量。 5. 结论与探讨 解决Kibana Discover页面加载数据慢或空白的问题,需要结合实际情况,从查询语句优化、Elasticsearch集群调优以及Kibana自身配置多方面着手。在实际操作的过程中,我们得像个福尔摩斯那样,一探究竟,把问题的根源挖个底朝天。然后,咱们得冷静分析,理性思考,不断尝试各种可能的优化方案,这样才能够让咱们的数据分析之路走得更加顺风顺水,畅通无阻。记住,每一次的成功优化都是对我们技术理解与应用能力的一次锤炼和提升!
2023-08-21 15:24:10
298
醉卧沙场
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chattr -i file
- 取消文件的不可修改状态。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"