前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker镜像构建与分发策略]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Nginx
Docker启动的Nginx如何解决浏览器跨域问题? 什么是Nginx? Nginx是一款轻量级的Web服务器和反向代理服务器,它是开源的,并且具有很高的性能和稳定性。由于它的高可用性和易用性,它已经被广泛应用于生产环境中。 什么是跨域问题? 当我们在网页上请求不同域名下的资源时,就会发生跨域问题。浏览器出于安全考虑,不允许这种行为。要搞定这个问题,我们得用上一个叫做“跨域资源共享”的技术,简称CORS。简单来说,就是让不同的网站之间能够安全地共享资源,就像邻里之间互相借个酱油、醋啥的,大家都方便。 使用Docker启动Nginx 我们可以使用Docker来方便地启动Nginx服务器。首先,我们需要创建一个新的Dockerfile,内容如下: bash FROM nginx:latest COPY nginx.conf /etc/nginx/nginx.conf EXPOSE 80 CMD ["nginx", "-g", "daemon off;"] 然后,我们需要创建一个名为nginx.conf的文件,内容如下: perl http { server { listen 80; location / { proxy_pass http://localhost:8080; } } } 最后,我们可以通过运行以下命令来启动Nginx服务器: css docker build -t my-nginx . docker run -d --name my-nginx -p 80:80 my-nginx 现在,我们已经成功地使用Docker启动了一个Nginx服务器,并且可以通过访问http://localhost/来测试。 如何解决浏览器跨域问题? 为了能够在Nginx服务器上解决浏览器跨域问题,我们需要在nginx.conf文件中添加一些配置。具体来说,我们需要添加以下两个配置: javascript add_header 'Access-Control-Allow-Origin' ''; add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS'; 这两个配置的作用分别是: Access-Control-Allow-Origin:指定允许跨域请求的来源。 Access-Control-Allow-Methods:指定允许跨域请求的方法。 注意,我们在location块中添加了proxy_pass指令,这个指令的作用是转发HTTP请求到另一个服务器。嘿,伙计,这次的情况是这样的,我们把请求给“嗖”地一下转送到了localhost那个家伙的8080端口上啦。 现在,我们已经成功地在Nginx服务器上解决了浏览器跨域问题。我们可以再次访问http://localhost/来测试。 总结 总的来说,使用Docker启动Nginx服务器是一种非常简单且有效的方式来解决浏览器跨域问题。只需要几个简单的步骤,咱们就能轻松搞定Nginx服务器的配置,让它帮咱们顺顺利利解决跨域这个小麻烦。而且,这种方式还可以让我们更方便地管理和扩展我们的应用程序。如果你还没有尝试过使用Docker和Nginx,那么我强烈建议你去试试看!
2023-11-18 17:50:15
154
断桥残雪_t
Docker
Docker 是一种实用工具,它可以精简开发、检验和发布过程。在大部分情况中,我们需要永久存储数据来保留重要的信息,包括数据库数据。Docker 可以容易地实现数据库案例,使得数据库的管控变得更加方便。 如果你要利用 Docker 启动数据库案例,你需要先获取你想要发布的数据库映像。例如,若要发布 MySQL,你可以直接在 Docker Hub 上查找 MySQL 映像,然后获取最新版本。 docker pull mysql 接下来,我们需要新建一个新的 Docker 虚拟环境,以便安装和管控 MySQL 服务。 docker run --name mysql -e MYSQL_ROOT_PASSWORD=your_password -d mysql 这个命令将在后台启动一个 MySQL 服务虚拟环境。然后你可以利用以下命令验证 MySQL 是否正在启动: docker ps 然后,我们可以利用以下命令连接到虚拟环境中启动的 MySQL 服务。 docker exec -it mysql mysql -uroot -pyour_password 接下来,我们可以在虚拟环境中为我们的数据库新建新的用户和数据库。 CREATE DATABASE your_database; CREATE USER 'your_user'@'%' IDENTIFIED BY 'your_password'; GRANT ALL PRIVILEGES ON your_database. TO 'your_user'@'%'; FLUSH PRIVILEGES; 现在我们已经成功地在 Docker 虚拟环境中安装和配置了 MySQL 服务,并且已经成功新建了新的数据库和用户。
2024-01-12 17:40:23
536
代码侠
ActiveMQ
...机制,使得消息过滤与分发策略更加丰富多样。这就要求我们在实际应用中,不仅要掌握如何使用ActiveMQ的消息选择器,还需对比分析不同消息中间件的特点与适用场景,以便为特定项目选取最佳方案。 另外,在消息传递及处理领域,Serverless架构的应用也为消息中间件带来了新的挑战与机遇,如何在无服务器环境中实现高效的消息选择与路由成为了一项值得探讨的技术议题。为此,国内外不少团队正在进行前沿研究,尝试将现有消息中间件的功能与Serverless架构深度整合,以期在未来构建更为智能、敏捷且高扩展性的分布式消息通信系统。
2023-03-11 13:19:06
928
山涧溪流-t
Docker
在Docker持续推出新功能以优化开发体验的同时,容器技术领域的发展并未止步。近期,CNCF(云原生计算基金会)宣布了Kubernetes 1.23版本的发布,该版本引入了诸多改进和新特性,如增强的Pod安全性和网络策略、对Windows节点的更好支持以及对Containerd 1.5版本的默认采用等,这些都将进一步提升基于Docker构建的应用部署效率和安全性。 此外,随着服务网格技术如Istio、Linkerd的逐渐成熟,它们与Docker及Kubernetes的集成应用也成为业界关注焦点。通过服务网格,开发者能够更精细化地控制服务间通信,实现流量管理、熔断限流等功能,为微服务架构下的应用开发带来更强大的运维能力。 同时,针对Docker生态中的安全性问题,有专家建议开发者密切关注Docker安全实践,包括但不限于及时更新镜像、最小权限原则配置容器、使用安全扫描工具等措施。近日,Docker官方也发布了最新的安全指南,强调了如何在享受便捷高效的容器化开发环境的同时,有效降低潜在的安全风险。 综上所述,在充分利用Docker新功能提升开发效率的同时,紧跟容器技术发展趋势,并注重安全防护,将是现代软件开发工程师们的重要课题。
2023-01-08 13:18:42
491
草原牧歌_t
Docker
...含的独立运行单元。在Docker中,容器化技术通过创建和管理容器来实现,每个容器共享主机系统的内核,但拥有各自的用户空间,从而确保了应用在不同环境下的运行一致性及资源隔离性。 Docker镜像 , Docker镜像是构建和运行Docker容器的基础模板,是一个只读的静态文件系统层集合。镜像包含了运行应用程序所需的所有内容,包括代码、运行时环境、系统工具、库文件等依赖项。基于镜像可以快速创建出新的容器实例,而且多个容器可以共享同一镜像,大大提高了部署效率和资源利用率。 Dockerfile , Dockerfile是用于定义Docker镜像生成过程的文本文件,包含了若干条指令。开发者通过编写Dockerfile来指定基础镜像、设置工作目录、复制文件、安装依赖、暴露端口以及设定启动命令等一系列构建步骤。当使用docker build命令时,Docker会根据Dockerfile中的指令逐步执行并生成一个新的定制化镜像,这个镜像可以用来创建具有特定配置的应用程序容器实例。
2023-11-15 13:22:24
548
程序媛
Apache Atlas
...治理工具,在帮助企业构建数据资产目录、实施数据血缘分析及确保合规性等方面发挥着关键作用。然而,有效的运维和监控策略是充分发挥其效能的基础。 近期,Apache Atlas社区不断推陈出新,发布了多个版本以优化性能并增强功能特性。例如,最新版Apache Atlas已支持更精细化的JMX监控,用户可以直接通过JMX接口获取详细的内存、线程池、服务调用等运行时数据,以便于进行深度性能分析和问题定位。 与此同时,业界也涌现出诸多针对Apache Atlas的第三方监控解决方案,如集成Prometheus和Grafana进行实时可视化监控,不仅能够展示Atlas的核心性能指标,还能实现预警通知,大大提升了运维效率和系统稳定性。 此外,对于企业级部署场景,结合Kubernetes或Docker等容器化技术进行资源调度和自动化运维,亦成为提升Apache Atlas集群整体性能和可用性的有效途径。专家建议,用户在实践中应结合自身业务需求和IT环境特点,灵活运用各类监控手段,并持续关注Apache Atlas项目动态与最佳实践分享,以期最大化利用这一强大工具的价值。
2023-08-14 12:35:39
449
岁月如歌-t
Docker
...模式。而在微服务中,Docker无疑是最常用的容器技术之一。不过,当我们用Docker捣鼓微服务测试时,免不了会遇到各种状况,比如今天我们要掰扯的这个问题——"Docker小哥罢工了,服务启动不起来"。 二、Docker服务无法启动的原因 当我们在运行Docker服务时,如果遇到了无法启动的情况,那么可能的原因有很多。这里我们来列举几个最常见的原因: 1. Docker镜像的问题 如果你使用的Docker镜像是有问题的,那么你自然也无法成功地运行你的服务。这可能是因为这个镜像没有被正确构建,或者它的依赖项缺失等。 2. Docker容器的配置错误 如果你在创建Docker容器时,没有正确地配置它,那么你也会遇到无法启动的问题。比如说,你可能在捣鼓网络设置的时候没整对,或者可能是你忘啦把必要的端口给绑定上,诸如此类的情况都有可能。 3. 系统环境的问题 最后,如果你的操作系统环境出现了问题,也可能导致你的Docker服务无法启动。例如,你的内存不足,或者你的磁盘空间不足等。 三、如何解决Docker服务无法启动的问题 面对这些问题,我们可以采取以下几种方法来尝试解决: 1. 检查Docker镜像 首先,我们需要检查我们的Docker镜像是否存在问题。你可以通过运行docker images命令来查看所有的Docker镜像。然后,你可以选择一个镜像来运行,看是否能够成功地启动服务。要是不行的话,那你就得从头构建这个镜像了,或者找个办法找出里头的bug并把它修复好。 2. 检查Docker容器的配置 其次,我们需要检查我们的Docker容器的配置是否正确。你可以通过运行docker inspect命令来查看一个容器的所有信息。接下来,你完全可以参照这些信息,去瞅瞅你的网络配置是否正确,端口绑定有没有出岔子,然后对症下药,做出相应的调整。 3. 检查系统环境 最后,我们需要检查我们的系统环境是否满足运行Docker服务的要求。例如,如果你的内存不足,那么你需要增加你的系统内存。如果你的磁盘空间不足,那么你需要清理一些不必要的文件。 四、总结 总的来说,解决Docker服务无法启动的问题需要我们从多个方面进行考虑和处理。咱们得好好检查一下咱们的Docker镜像、Docker容器的设置,还有系统环境这些地方,就像侦探破案一样揪出问题的元凶,然后对症下药,采取相应的解决办法。同时呢,咱们也要留意,在捣鼓Docker服务这事儿上,咱得拿出绣花针般的耐心和显微镜般的细心。为啥呢?因为啊,哪怕是一个芝麻绿豆的小差错,都可能让整个服务启动不起来,到时候就抓瞎了哈。
2023-09-03 11:25:17
265
素颜如水-t
Gradle
...作为一款强大的自动化构建工具,其重要性和影响力与日俱增。近期,Gradle官方团队发布了最新的7.4版本(根据实际发布时间调整),进一步优化了依赖管理性能,并强化了对Maven中央仓库及其他第三方仓库的支持,使得开发者能够更加便捷高效地处理项目依赖关系。 与此同时,随着云原生和Kubernetes等现代技术架构的发展,Gradle也积极适应潮流,开始支持容器化构建和部署,例如通过集成Jib插件,可以一步到位地将Java应用构建为Docker镜像并推送到仓库。这一特性极大地简化了DevOps流程,提升了开发效率。 此外,社区对于Gradle的应用研究也在不断深入,很多大型开源项目如Spring Boot、Android Studio等均采用Gradle作为默认构建工具。为了更好地帮助开发者理解和掌握Gradle,一些知名的技术博客和教育平台纷纷推出了Gradle实战教程及深度解读文章,从原理到实践,全方位解析Gradle在复杂项目构建中的应用策略与最佳实践。 总结来说,Gradle正以其与时俱进的创新特性和日益完善的生态系统,在软件开发生态中占据着举足轻重的地位,值得广大开发者密切关注和深入学习。
2024-01-13 12:54:38
481
梦幻星空_t
SpringBoot
....5版本的发布,其在构建和打包方面引入了一些新特性与优化。例如,Spring Boot Maven插件现在支持自定义 layered JARs,这有助于满足更严格的容器需求,并允许在容器环境中解压层叠jar以节省空间和提高启动速度。 此外,对于云原生应用部署场景,Spring Boot也增强了对容器化工具Docker的支持,用户可以通过Maven或Gradle构建直接生成Docker镜像,简化了将SpringBoot应用部署到Kubernetes或其他容器环境的过程。例如,在pom.xml文件中配置spring-boot-maven-plugin的dockerBuild目标,可以自动化地完成从打包到构建Docker镜像的全流程。 同时,针对依赖管理,Spring Boot团队持续改进了依赖解析策略,确保开发者能更好地控制哪些依赖应包含在最终构建产物中,从而避免运行时依赖缺失的问题。为此,建议开发者密切关注Spring Boot官方文档及更新日志,以便及时掌握最新打包技术动态,提升开发效率并确保应用部署稳定可靠。
2023-02-09 19:33:58
67
飞鸟与鱼_
转载文章
...的应用与发展。近期,Docker与Kubernetes等开源容器技术正在持续推动云原生应用的发展潮流。例如,阿里云日前发布了全新的ACK Anywhere服务,让企业能够在任意基础设施上部署和管理Kubernetes集群,实现混合云、多云环境下的容器统一管理,这无疑为企业提供了更大的灵活性与可控性。 此外,随着安全问题日益突出,如何保障容器环境的安全也成为了业界关注焦点。例如,腾讯云推出了基于密钥注入机制的容器安全解决方案,通过严格的权限控制和SSH密钥对管理,确保容器在构建和运行过程中的安全性,这一举措与文中提到的网易蜂巢容器SSH密钥登录机制不谋而合,凸显出业界对于容器安全性的高度重视。 与此同时,容器镜像仓库作为容器生态链中不可或缺的一环,其标准化与合规化同样至关重要。近日,华为云发布了统一的容器镜像标准,旨在提升镜像质量,简化镜像分发和维护流程,为开发者提供更为便捷、高效的镜像服务体验,这也启示我们在利用如网易蜂巢等平台创建自定义镜像时,应注重遵循行业规范与最佳实践。 总之,容器技术在不断提升效率的同时,也在不断强化安全性和规范化建设,以满足企业和开发者日趋复杂的应用场景需求。对于用户而言,在熟练掌握如网易蜂巢容器管理操作的基础上,紧跟容器技术领域的新趋势与新发展,将有利于更好地运用容器技术驱动业务创新与增长。
2023-01-24 23:58:16
217
转载
Dubbo
...bbo如何通过线程池分发策略解决服务提供者线程池阻塞问题后,我们发现这一技术在现代分布式系统设计与优化中具有极高的实用价值。近期,阿里巴巴集团在其最新的《2022阿里云开发者最佳实践》报告中强调了线程池管理与负载均衡策略对于提升分布式服务性能的重要性,并且列举了Dubbo在众多大型项目中的成功应用案例。 同时,在开源社区和学术研究领域,对服务治理、资源调度的探讨也在不断深化。例如,一篇发表于ACM Transactions on Internet Technology的最新论文《Dynamic Thread Pool Sizing for Scalable and Responsive Microservices》提出了一种动态调整线程池大小的方法,以确保微服务在高并发场景下既能保持响应能力又能实现水平扩展,这为未来改进Dubbo等框架的线程池策略提供了新的理论依据和技术思路。 此外,随着云原生时代的到来,Kubernetes等容器编排工具也对服务提供者的资源分配和管理提出了新的挑战与机遇。诸如Istio等服务网格解决方案正逐步支持更精细的服务流量控制与线程池资源调配,这也为解决类似服务提供者线程池阻塞的问题开辟了新的实战阵地。 综上所述,无论是基于现有框架如Dubbo的深入优化,还是借鉴前沿科研成果及云原生技术的发展趋势,持续探索并优化服务提供者的线程池管理策略,对于构建高性能、高可用的分布式系统都具有重要意义。
2023-09-01 14:12:23
483
林中小径-t
MySQL
.... 引言 当我们使用Docker来部署MySQL数据库时,一个常常引起开发者好奇心的现象是:即使我们没有明确指定MySQL数据存储的宿主机目录进行挂载,Docker仍然会为我们自动配置一个数据卷。这究竟是怎么一回事儿,为啥Docker会做出这样的选择呢?别急,本文就要带你一起揭开这个谜底,就像探险家挖掘宝藏那样,我们会通过实实在在的代码实例,一步步揭示这背后的神秘机制和它所带来的实际价值,让你恍然大悟,拍案叫绝! 1. Docker数据卷的概念与作用 首先,让我们回顾一下Docker数据卷(Data Volume)的基本概念。在Docker的天地里,数据卷可是个了不起的角色。它就像一个超长待机的移动硬盘,不随容器的生死存亡而消失,始终保持独立。也就是说,甭管你的容器是歇菜重启了,还是彻底被删掉了,这个数据卷都能稳稳地保存住里面的数据,让重要信息时刻都在,安全无忧。对于像MySQL这样的数据库服务而言,数据的持久性尤为重要,因此默认配置下,Docker会在启动MySQL容器时不经意间创建一个匿名数据卷以保证数据安全。 2. MySQL容器未显式挂载data目录时的行为 当我们在不设置任何数据卷挂载的情况下运行MySQL Docker镜像,Docker实际上会自动生成一个匿名数据卷用于存放MySQL的数据文件。这是因为Docker官方提供的MySQL镜像已经预设了数据目录(如/var/lib/mysql)为一个数据卷。例如,如果我们执行如下命令: bash docker run -d --name mysql8 -e MYSQL_ROOT_PASSWORD=your_password mysql:8.0 虽然这里没有手动指定-v或--mount选项来挂载宿主机目录,但MySQL容器内部的数据变化依旧会被持久化存储到Docker管理的一个隐藏数据卷中。 3. 查看自动创建的数据卷 若想验证这个自动创建的数据卷,可以通过以下命令查看: bash docker volume ls 运行此命令后,你会看到一个无名(匿名)卷,它就是Docker为MySQL容器创建的用来持久化存储数据的卷。 4. 明确指定数据卷挂载的优势 尽管Docker提供了这种自动创建数据卷的功能,但在实际生产环境中,我们通常更倾向于明确地将MySQL的数据目录挂载至宿主机上的特定路径,以便更好地管理和备份数据。比如: bash docker run -d \ --name mysql8 \ -v /path/to/host/data:/var/lib/mysql \ -e MYSQL_ROOT_PASSWORD=your_password \ mysql:8.0 在此示例中,我们指定了MySQL容器内的 /var/lib/mysql 目录映射到宿主机上的 /path/to/host/data。这么做的妙处在于,我们能够直接在主机上对数据库文件“动手”,不论是备份还是迁移,都不用费劲巴拉地钻进容器里面去操作了。 5. 结论与思考 Docker之所以在启动MySQL容器时不显式配置也自动创建数据卷,是为了保障数据库服务的默认数据持久化需求。不过,对于我们这些老练的开发者来说,一边摸透和掌握这个机制,一边也得明白一个道理:为了追求更高的灵活性和可控性,咱应该积极主动地去声明并管理数据卷的挂载点,就像是在自己的地盘上亲手搭建一个个储物柜一样。这样一来,我们不仅能确保数据安全稳妥地存起来,还能在各种复杂的运维环境下游刃有余,让咱们的数据库服务变得更加结实耐用、值得信赖。 总的来说,Docker在简化部署流程的同时,也在幕后默默地为我们的应用提供了一层贴心保护。每一次看似“自动”的背后,都蕴含着设计者对用户需求的深刻理解和精心考量。在我们每天的工作里,咱们得瞅准自己项目的实际需求,把这些特性玩转起来,让Docker彻底变成咱们打造微服务架构时的得力小助手,真正给力到家。
2023-10-16 18:07:55
127
烟雨江南_
Docker
为什么很多Docker容器中的用户uid默认是999? 在探索Docker容器世界的旅程中,我们经常会发现一个有趣的现象:不少Docker镜像或容器内运行的进程,默认情况下其用户的uid(User ID)被设置为999。你可能心里正犯嘀咕,为啥我们偏偏对这个数字情有独钟,而不是其他的呢?在这篇文里,咱们就一起手拉手,像解密探险一样揭开这个谜团吧!我会带着大伙儿,通过实实在在的例子和深入的讨论,来摸清楚这背后究竟藏着啥讲究。 1. Docker容器与用户权限 首先,让我们简要回顾一下Docker容器内的用户权限模型。你知道吗,Docker那个小家伙,默认情况下启动容器时,会直接动用到root大权限,这在安全性和隔离性方面,可不是什么顶呱呱的优秀操作。为了让大家用得更安心,我常常建议这样做:别让你在容器里运行的应用权限太高了,最好能把它们映射到宿主机上的普通用户级别,这样一来就更加安全啦。就像是让这些应用从VIP房间搬到了经济舱,虽然待遇没那么高,但是安全性却大大提升,避免惹出什么乱子来。这就引出了uid的概念——它是Unix/Linux系统中标识用户身份的重要标识符。 2. 默认uid的选择 999的秘密 那么,为什么许多Docker官方或社区制作的镜像倾向于将应用运行时的用户uid设为999呢?答案其实并不复杂: - 避免冲突:在大多数Linux发行版中,系统用户的uid从100开始分配给普通用户,因此选取大于100但又不是特别大的数字(如999),可以最大程度地减少与宿主机现有用户的uid冲突的可能性。 - 保留空间:选择一个高于常规uid范围的值,确保了不会意外覆盖宿主机上的任何重要用户账号。 - 一致性与约定俗成:随着时间推移,选用999作为非root用户的uid逐渐成为一种行业惯例和最佳实践,尤其是在创建需要低权限运行的应用程序镜像时。 3. 实践示例 自定义uid的Dockerfile 下面是一个简单的Dockerfile片段,展示如何在构建镜像时创建并使用uid为999的用户: dockerfile 首先,基于某个基础镜像 FROM ubuntu:latest 创建一个新的系统用户,指定uid为999 RUN groupadd --gid 999 appuser && \ useradd --system --uid 999 --gid appuser appuser 设置工作目录,并确保所有权归新创建的appuser所有 WORKDIR /app RUN chown -R appuser:appuser /app 以后的所有操作均以appuser身份执行 USER appuser 示例安装和运行一个应用程序 RUN npm install 假设我们要运行一个Node.js应用 CMD ["node", "index.js"] 在这个例子中,我们创建了一个名为appuser的新用户,其uid和gid都被设置为999。然后呢,咱就把容器里面的那个 /app 工作目录的所有权,给归到该用户名下啦。这样一来,应用在跑起来的时候,就能够顺利地打开、编辑和保存文件,不会因为权限问题卡壳。 4. 深入思考 uid映射与安全策略 虽然999是一个常见选项,但它并不是硬性规定。实际上,根据具体的部署环境和安全需求,你可以灵活调整uid。比如,在某些情况下,可能需要把容器里面的用户uid,对应到宿主机上的某个特定用户,这样一来,我们就能对文件系统的权限进行更精准的调控了,就像拿着钥匙开锁那样,该谁访问就给谁访问的权利。这时,可以通过Docker的--user参数或者在Dockerfile中定义用户来实现uid的精确映射。 总而言之,Docker容器中用户uid为999这一现象,体现了开发者们在追求安全、便捷和兼容性之间所做的权衡和智慧。随着我们对容器技术的领悟越来越透彻,这些原则就能被我们玩转得更加游刃有余,随时适应各种实际场景下的需求变化,就像是给不同的应用场景穿上量身定制的衣服一样。而这一切的背后,都离不开我们持续的探索、试错和优化的过程。
2023-05-11 13:05:22
463
秋水共长天一色_
Spark
...容器化部署成为趋势,Docker等容器技术在构建和运行Spark应用时,通过将所有依赖库打包进镜像,有效避免了环境不一致导致的依赖缺失问题。此外,持续集成/持续部署(CI/CD)流程中对依赖项的严格控制也成为了行业最佳实践,如使用GitHub Actions或Jenkins等工具,在代码合并前自动检查并更新依赖版本,确保上线应用的稳定性和安全性。 另外,近年来业界对于开源组件安全性的重视程度也在提高,诸如OWASP Dependency-Check这样的开源工具被广泛应用于检测项目依赖中的已知漏洞。这意味着在关注依赖完整性的同时,开发者也需要密切关注所引入第三方库的安全状态,及时修复潜在风险。 总的来说,无论是从工程实践角度还是安全维度出发,深入理解和掌握依赖管理不仅对于Spark应用至关重要,也是整个软件开发领域的一项基础技能,值得每一位开发者持续学习和探索。
2023-04-22 20:19:25
96
灵动之光
Tomcat
...示,采用容器化技术如Docker和Kubernetes,可以显著提升系统的可扩展性和响应速度。Kubernetes作为当前最流行的容器编排平台,不仅可以实现自动化的部署、扩展和管理,还能有效地管理复杂的微服务架构,确保每个服务都能高效运行,从而大幅提升网站的整体性能。 此外,云服务商提供的弹性计算资源也成为了许多企业优化性能的重要手段。阿里云ECS(Elastic Compute Service)等产品,可以根据实时流量自动调整计算资源,避免因资源不足而导致的性能下降。同时,云服务商还提供了丰富的监控和日志分析工具,帮助企业快速定位和解决问题,进一步提升网站的响应速度。 值得注意的是,除了技术层面的优化,合理的架构设计同样关键。例如,采用CDN(内容分发网络)可以将静态资源缓存在全球各地的边缘节点,减少用户访问延迟。而微前端架构则可以实现前端应用的解耦和模块化管理,提升前端渲染速度,从而改善用户体验。 总之,随着技术的不断发展,网站性能优化不再局限于单一的技术手段,而是需要综合运用多种技术和策略。通过结合容器化、弹性计算、CDN和合理的架构设计,企业可以构建更加高效、响应迅速的网站,为用户提供更好的体验。
2024-10-20 16:27:48
110
雪域高原
PostgreSQL
...可用性。 然而,为了构建真正的分布式集群以应对大数据量和高并发场景,我们需要借助如PGPool-II、pg_bouncer等中间件,或者采用逻辑复制、streaming replication等内置机制来构建跨节点的PostgreSQL集群。 3. PostgreSQL集群架构实战详解 3.1 Streaming Replication(流复制) Streaming Replication是PostgreSQL提供的原生数据复制方案,它允许主从节点之间近乎实时地进行数据同步。 sql -- 在主节点上启用流复制并设置唯一标识 ALTER SYSTEM SET wal_level = 'logical'; SELECT pg_create_physical_replication_slot('my_slot'); -- 在从节点启动复制进程,并连接到主节点 sudo -u postgres pg_basebackup -h -D /var/lib/pgsql/12/data -U repuser --slot=my_slot 3.2 Logical Replication Logical Replication则提供了更灵活的数据分发机制,可以基于表级别的订阅和发布模式。 sql -- 在主节点创建发布者 CREATE PUBLICATION my_publication FOR TABLE my_table; -- 在从节点创建订阅者 CREATE SUBSCRIPTION my_subscription CONNECTION 'host= user=repuser password=mypassword' PUBLICATION my_publication; 3.3 使用中间件搭建集群 例如,使用PGPool-II可以实现负载均衡和读写分离: bash 安装并配置PGPool-II apt-get install pgpool2 vim /etc/pgpool2/pgpool.conf 配置主从节点信息以及负载均衡策略 ... backend_hostname0 = 'primary_host' backend_port0 = 5432 backend_weight0 = 1 ... 启动PGPool-II服务 systemctl start pgpool2 4. 探讨与思考 PostgreSQL集群架构的设计不仅极大地提升了系统的稳定性和可用性,也为开发者在实际业务中提供了更多的可能性。在实际操作中,咱们得根据业务的具体需求,灵活掂量各种集群方案的优先级。比如说,是不是非得保证数据强一致性?或者,咱是否需要横向扩展来应对更大规模的业务挑战?这样子去考虑就对了。另外,随着科技的不断进步,PostgreSQL这个数据库也在马不停蹄地优化自家的集群功能呢。比如说,它引入了全局事务ID、同步提交组这些酷炫的新特性,这样一来,以后在处理大规模分布式应用的时候,就更加游刃有余,相当于提前给未来铺好了一条康庄大道。 总的来说,PostgreSQL集群架构的魅力在于其灵活性和可扩展性,它像一个精密的齿轮箱,每个组件各司其职又相互协作,共同驱动着整个数据库系统高效稳健地运行。所以,在我们亲手搭建和不断优化PostgreSQL集群的过程中,每一个细微之处都值得我们去仔仔细细琢磨,每一行代码都满满地倾注了我们对数据管理这门艺术的执着追求与无比热爱。就像是在雕琢一件精美的艺术品一样,我们对每一个细节、每一段代码都充满敬畏和热情。
2023-04-03 12:12:59
248
追梦人_
转载文章
...服务器配置与项目部署策略显得尤为重要。近期,随着Spring Boot和Docker等技术的普及,开发者在处理项目部署时有了更为便捷高效的解决方案。 例如,Spring Boot通过内嵌的Tomcat服务器简化了Java Web应用的部署流程,只需构建一个可执行的JAR或WAR文件,便能在任何支持Java环境的地方启动项目,无需繁琐的服务器配置。对于版本适配问题,Spring Boot会自动管理依赖库的版本,确保项目的稳定运行。 同时,容器化技术如Docker为软件部署提供了标准化、轻量级的方式。通过编写Dockerfile定义应用环境,开发者可以快速创建包含应用程序及其所有依赖项的镜像,并在任何安装有Docker的环境中一键部署,极大提升了部署的一致性和可移植性。 另外,云原生技术的发展也改变了传统的服务器管理模式,Kubernetes作为容器编排工具,能够实现自动化部署、扩展和管理容器化应用,有效解决了多实例、动态扩容等问题,使得项目管理和运维更加灵活高效。 总之,在Eclipse等IDE之外,掌握现代化的项目部署与服务器管理技术将有助于开发者应对更多实际场景中的挑战,提升开发效率及系统的稳定性。因此,深入学习Spring Boot、Docker以及Kubernetes等相关知识,是每一位Web开发者持续进阶的必修课。
2024-02-23 12:52:12
489
转载
转载文章
在构建和配置深度操作系统(deepin)的开发与日常使用环境过程中,除了上述详细步骤外,了解相关领域的最新动态和技术趋势也至关重要。例如,在Node.js社区中,Node.js 16.x已成为最新的LTS版本,提供了更多性能优化和新特性支持,开发者可以通过官方文档快速掌握升级方法并充分利用新版本优势(参考来源:Node.js官方网站)。同时,MySQL数据库也在不断迭代更新,MySQL 8.0带来了诸如窗口函数、Caching_sha2_password等安全性和功能性的重大改进,对于提升项目的数据处理效率和安全性具有重要意义(参考来源:MySQL官网博客)。 在云服务和镜像源方面,阿里云、腾讯云等国内服务商也推出了针对deepin系统的加速镜像源服务,用户可根据自身网络状况选择合适的镜像源以提高软件安装和更新的速度(参考来源:阿里云、腾讯云官方文档)。此外,随着Web开发技术的发展,Vue.js、React等前端框架持续火爆,配合Webpack、Vite等现代构建工具,可以更高效地搭建和维护前端项目结构(参考来源:Vue.js、React官网及技术社区文章)。 在办公领域,WPS Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
54
转载
转载文章
...边缘计算场景的应用。Docker和Kubernetes等工具正在帮助开发者更便捷地构建和部署跨平台的嵌入式应用,通过统一的容器环境简化了不同处理器架构间的移植难题。 5. 用户权限管理与安全实践:针对Linux系统安全问题,近年来有许多关于如何强化用户权限管理的研究报告和技术文章发表。例如,SELinux策略的深入解读,以及如何结合最小权限原则进行服务账户设置,避免因权限过高导致的安全风险,这些内容都是嵌入式系统安全运维的重要参考。
2023-11-23 17:18:30
79
转载
转载文章
...现故障,它会基于指定策略重新编排Pod。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
Docker
Docker , Docker是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包在轻量级可执行容器中,实现应用的便捷部署、运行和迁移。在本文上下文中,Docker被用于为团队搭建统一且易于管理的开发环境,以及部署和运行应用程序。通过创建Docker镜像和容器,团队成员可以快速复现一致的开发环境,并简化部署流程,从而提高协作效率和软件交付质量。 Dockerfile , Dockerfile是一个文本文件,包含了一系列用于构建Docker镜像的指令集合。在文章的具体示例中,Dockerfile定义了基于Node.js 14-alpine镜像的基础环境,设置了工作目录,复制并安装项目所需的package.json文件及依赖,然后将项目源代码复制到镜像中,并暴露3000端口以供服务访问,最后指定启动命令为npm start。通过执行docker build命令,Docker会根据Dockerfile中的指令逐行构建出一个定制化的Docker镜像。 Docker Compose , Docker Compose是Docker提供的一款工具,用于对多个Docker容器进行定义和编排,实现容器化应用的生命周期管理。在团队协作场景下,Docker Compose通过配置文件(如docker-compose.yml)来描述多容器应用程序的服务、网络和数据卷等组件间的依赖关系。用户只需通过一条简单的docker-compose up命令,即可一次性启动、停止或重启所有相关的服务容器,极大地简化了复杂微服务架构下的环境搭建和维护工作,增强了团队开发与协作的便利性。
2023-08-21 13:49:56
559
编程狂人
Docker
...想告诉你一个好消息:Docker可以解决这些问题。 Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。让我们一起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
477
星河万里-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
hostnamectl set-hostname new_hostname
- 更改系统的主机名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"