前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[获取Docker容器内部服务的IP地址 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Docker
...想告诉你一个好消息:Docker可以解决这些问题。 Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。让我们一起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
477
星河万里-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 容器编排技术 -- Kubernetes 给容器和Pod分配内存资源 1 Before you begin 2 创建一个命名空间 3 配置内存申请和限制 4 超出容器的内存限制 5 配置超出节点能力范围的内存申请 6 内存单位 7 如果不配置内存限制 8 内存申请和限制的原因 9 清理 这篇教程指导如何给容器分配申请的内存和内存限制。我们保证让容器获得足够的内存 资源,但是不允许它使用超过限制的资源。 Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube. 你的集群里每个节点至少必须拥有300M的内存。 这个教程里有几个步骤要求Heapster , 但是如果你没有Heapster的话,也可以完成大部分的实验,就算跳过这些Heapster 步骤,也不会有什么问题。 检查看Heapster服务是否运行,执行命令: kubectl get services --namespace=kube-system 如果Heapster服务正在运行,会有如下输出: NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGEkube-system heapster 10.11.240.9 <none> 80/TCP 6d 创建一个命名空间 创建命名空间,以便你在实验中创建的资源可以从集群的资源中隔离出来。 kubectl create namespace mem-example 配置内存申请和限制 给容器配置内存申请,只要在容器的配置文件里添加resources:requests就可以了。配置限制的话, 则是添加resources:limits。 本实验,我们创建包含一个容器的Pod,这个容器申请100M的内存,并且内存限制设置为200M,下面 是配置文件: memory-request-limit.yaml apiVersion: v1kind: Podmetadata:name: memory-demospec:containers:- name: memory-demo-ctrimage: vish/stressresources:limits:memory: "200Mi"requests:memory: "100Mi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在这个配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
494
转载
Docker
Docker是一种流行的虚拟容器化技术,它允许开发者们将应用和所有其依赖封装在一起,并在运行时以虚拟容器的形式发布它们。在Docker中,虚拟容器是一种小巧的虚拟环境,它可以迅速启动并与其他虚拟容器和主机进行交互。 当您在Docker中运行虚拟容器时,您可能需要从虚拟容器外部接入应用。这可能涉及到与虚拟容器的网络链接、端口转发、虚拟容器的网络地址等问题。下面是一些接入Docker虚拟容器的方法: docker run -p 8080:80 nginx 上述命令将Nginx虚拟容器的80端口转发到主机的8080端口。现在,您可以通过接入主机的http://localhost:8080地址来接入Nginx服务器。 docker inspect container_name 如果您需要知道Docker虚拟容器的网络地址,可以使用上面的命令。它会输出一个JSON格式的数据,包括虚拟容器的网络配置信息和其他详细信息。 如果您正在使用Docker Compose,可以在docker-compose.yml文件中使用ports关键字来映射端口。例如: ports: - "8080:80" 此配置将将Nginx虚拟容器的80端口转发到主机的8080端口。 除了上述方法,还有其他方式可以从Docker虚拟容器外部接入应用。如果您想深入了解Docker虚拟容器网络和端口转发的更多细节,请查看Docker官方文档。
2023-06-15 13:54:04
280
编程狂人
Docker
Docker 是一款容器技术,可将应用及其附属程序封装在一个容器中,使其可以容易地在不同的系统和环境下运行。而迅雷是一款流行的获取客户端,如果您想在 Docker 中运行迅雷,必须先部署 Docker 和迅雷。下面是Docker怎么部署迅雷的详细步骤。 步骤一:部署 Docker 在开始部署迅雷之前,您必须在您的系统中部署 Docker。 yum install docker-ce 以上命令在CentOS 7上部署 Docker。在 Ubuntu 18.04 上部署 Docker,请执行以下指令: apt install docker-ce 步骤二:获取 迅雷 Docker 镜像 获取迅雷 Docker 镜像,您必须在命令行中执行以下指令: docker pull liumiaocn/thunder-linux 步骤三:开启 迅雷 Docker 容器 在获取完成之后,您必须开启 Docker 容器。请执行以下指令: docker run --name thunder -d -v /tmp/.X11-unix:/tmp/.X11-unix -v ${HOME}/Downloads:/root/Downloads -e DISPLAY=$DISPLAY liumiaocn/thunder-linux:latest thunder 以上命令将新建名为“ thunder”的 Docker 容器,并将它连接到 X11 服务器以显示应用窗口。容器将您的获取存储在本地计算机的 ~/Downloads 目录中。 步骤四:运行 迅雷 现在,您可以通过执行以下指令来开启 迅雷: docker exec -it thunder thunder 既然您已经进入了容器,现在就可以运行迅雷。完成此操作后,您可以通过执行以下指令来离开容器: exit
2023-01-28 13:49:08
526
程序媛
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包成一个可移植、自包含的镜像,能够在不同的Linux操作系统上以一致的方式运行。在本文中,用户通过手动输入Docker命令来管理(如创建、启动、停止和进入容器)这些容器。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件应用商店,其中包含了大量由社区和官方发布的预构建Docker镜像。用户可以通过docker pull命令从Docker Hub下载所需的镜像,以便快速部署和运行各种应用程序或服务。 容器 , 在Docker环境下,容器是一种轻量级、独立运行的一组进程,它们与主机和其他容器共享内核,但每个容器拥有自己独立的文件系统、网络配置和资源限制。容器提供了隔离且一致的运行环境,使得应用程序可以在不同环境中实现无缝迁移和快速部署。 端口映射 , 端口映射是在Docker容器与宿主机之间建立的一种网络通信机制,通过-p选项在docker run命令中指定。例如,-p 80:80表示将宿主机的80端口与容器内部的80端口进行映射,这样外部客户端可以通过访问宿主机的80端口来与容器内的服务进行通信。 Docker Compose , 尽管文章没有直接提到,但它是Docker生态中的一个重要工具,用于定义和运行多容器应用程序。通过编写一个YAML格式的docker-compose.yml文件,可以轻松地定义一组相关联的服务以及它们之间的依赖关系,然后使用一条命令来启动和协调所有容器的生命周期。 Kubernetes(简称K8s) , 虽然在给出的文章摘要中未详细阐述,但在现代云原生架构中,Kubernetes是一个流行的开源容器编排系统,它可以自动化容器应用的部署、扩展和管理。在文中提及的新版Docker优化了与Kubernetes的集成体验,意味着用户能够更加便捷地将基于Docker的容器部署到Kubernetes集群中,实现大规模容器集群的高效管理和调度。
2023-03-26 21:05:17
324
软件工程师
Nginx
...和交互的部分)与后端服务(处理业务逻辑、数据存储和API接口的部分)明确地划分开来。在这种架构下,前端通常使用HTML、CSS、JavaScript等技术构建用户界面,并通过HTTP/HTTPS协议向后端发起异步请求获取数据;而后端专注于提供API接口供前端调用,处理数据并返回结果。在文章中,当部署前后端分离项目时,需要合理配置Nginx以正确转发和处理前端页面和后端API请求。 Docker容器化技术 , Docker是一种开源的应用容器引擎,通过容器化技术为开发者和系统管理员提供了一种标准化的打包、分发和运行应用的方式。在文中,Docker用于将前后端应用分别封装成独立的容器,每个容器包含了运行应用所需的所有依赖环境,使得应用可以在任何安装了Docker的主机上快速部署且运行效果一致。 Nginx反向代理服务器 , Nginx是一个高性能的HTTP和反向代理服务器,同时支持TCP/UDP代理、邮件代理、负载均衡等功能。在部署前后端分离项目的情境中,Nginx作为反向代理服务器,接收来自客户端的HTTP请求,并根据配置规则将请求转发至相应的服务。例如,它可以将静态资源请求直接指向存放前端文件的本地目录,将/api开头的请求转发给后端Docker容器中的服务处理,从而实现前后端之间的通信和信息传递。
2023-07-29 10:16:00
55
时光倒流_
Docker
...panel,还有哪些服务器管理工具推荐? 1. 为什么我们需要服务器管理工具? 嗨,朋友们!最近我在折腾服务器的时候,突然意识到一个问题——管理服务器真的太麻烦了!尤其是当你需要部署各种服务、配置环境、监控性能时,简直就像在玩拼图游戏,一不小心就可能把整个系统搞崩。 我之前用过宝塔面板和1panel,它们确实简化了很多操作,但总觉得少了点什么。于是我就开始琢磨:难道就没有更酷炫、更灵活的工具了吗?经过一番研究,我发现了一些非常有趣的服务器管理工具,特别是结合Docker使用后,简直是如虎添翼! 所以今天,咱们就来聊聊这些工具,看看它们能不能成为你心目中的“神器”。 --- 2. Docker 让一切都变得简单 首先,我们得谈谈Docker。Docker是什么?简单来说,它是一种容器化技术,可以让你的应用程序及其依赖项打包成一个独立的“容器”,然后轻松地运行在任何支持Docker的环境中。 举个例子吧,假如你想在一个全新的服务器上安装WordPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、发布订阅模式 1.1 列表的局限 通过队列的 rpush 和 lpop 可以实现消息队列(队尾进队头出),但是消费者需要不停地调用 lpop 查看 List 中是否有等待处理的消息(比如写一个 while 循环)。 为了减少通信的消耗,可以 sleep()一段时间再消费,但是会有两个问题: 1、如果生产者生产消息的速度远大于消费者消费消息的速度,List 会占用大量的内存。 2、消息的实时性降低。 list 还提供了一个阻塞的命令:blpop,没有任何元素可以弹出的时候,连接会被阻塞。 基于 list 实现的消息队列,不支持一对多的消息分发。 1.2 发布订阅模式 除了通过 list 实现消息队列之外,Redis 还提供了一组命令实现发布/订阅模式。 这种方式,发送者和接收者没有直接关联(实现了解耦),接收者也不需要持续尝试获取消息。 1.2.1 订阅频道 首先,我们有很多的频道(channel),我们也可以把这个频道理解成 queue。订阅者可以订阅一个或者多个频道。消息的发布者(生产者)可以给指定的频道发布消息。只要有消息到达了频道,所有订阅了这个频道的订阅者都会收到这条消息。 需要注意的注意是,发出去的消息不会被持久化,因为它已经从队列里面移除了,所以消费者只能收到它开始订阅这个频道之后发布的消息。 下面我们来看一下发布订阅命令的使用方法。 订阅者订阅频道:可以一次订阅多个,比如这个客户端订阅了 3 个频道。 subscribe channel-1 channel-2 channel-3 发布者可以向指定频道发布消息(并不支持一次向多个频道发送消息): publish channel-1 2673 取消订阅(不能在订阅状态下使用): unsubscribe channel-1 1.2.2 按规则(Pattern)订阅频道 支持 ?和 占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
Docker
Docker 是一个非常普及的容器化技术,它能够让程序员在不同的环境中创建和执行应用程序。但是,有时候在使用 Docker 的过程中,我们也许会碰到一个非常奇怪的问题:时钟不正确。 在 Docker 容器中,时钟通常会在启动容器时自动与主机时钟同步化。但是,当我们在容器中执行持续执行的程序或者服务时,时钟也许会出现偏移或者不同步化的情况,这会导致程序产生异常或者错误。 这种情况的原因通常是容器内部的时钟与主机系统的时钟存在差异。当容器内的时钟发生偏移时,我们可以使用 Docker 提供的命令行工具来手动进行时钟同步化,例如: docker run --rm -it --privileged alpine /bin/sh hwclock -s 上述命令将登录 Alpine 容器,并使用 hwclock 命令将内部时钟与主机时钟同步化。在其它容器中,您可以使用相同的方法处理时钟不同步化的问题。 另外,如果您需要在容器中执行数据库或其它需要精确时间的应用程序时,您可以考虑使用特定的 Docker 镜像来处理时钟同步化问题,例如: docker run --rm -it --privileged centos /bin/sh yum -y install ntp ntpdate pool.ntp.org 上述命令将在 CentOS 容器中安装 NTP 服务,并使用 ntpdate 命令从 pool.ntp.org 同步化时钟。在其它镜像中,您也可以使用类似的方法来处理时钟同步化问题。 总而言之,时钟不正确是 Docker 容器中常见的问题,但是我们可以使用 Docker 提供的命令行工具或者特定镜像来手动同步化时钟,从而处理这个问题。
2023-10-26 12:53:07
467
程序媛
MySQL
... MySQL 数据库服务器 IP 地址或服务器名称, user 是接入 MySQL 数据库所使用的账户名, -p 是要求输入口令,用于校验登陆。 接着,我们可以查看 MySQL 中当前所有的数据库,使用 的命令为: SHOW DATABASES; 然后,我们需要选择一个数据库进行操作,使用的命令为: USE database; 其中, database 表示需要操作的数据库名称。 现在,我们已经成功进入到了 MySQL 数据库中,可以看到库中的表格基本信息,使用命令如下: SHOW TABLES; 执行该命令后,MySQL 将会显示该库中所有的表名称。 最后,我们可以查看特定表中的所有信息,使用的命令如下: DESCRIBE table; 其中, table 表示需要查看的表名称。 通过上述基础操作,我们可以轻松地了解 MySQL 数据库中的基础表信息。
2023-08-18 09:15:20
63
算法侠
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术,使开发者可以打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上运行。在本文中,用户遇到的问题就是在使用Docker下载镜像时遇到了网络连接问题。 Registry-Mirrors , 在Docker环境配置中,registry-mirrors是指Docker客户端用于加速拉取官方Docker Hub镜像或其他私有仓库镜像的镜像源地址列表。当Docker pull命令尝试从默认仓库下载镜像时,如果registry-mirrors中有可用的镜像源,Docker会优先尝试从此处下载,以提高下载速度和稳定性。文中提到的问题就是由于registry-mirrors配置了错误的镜像仓库地址导致无法正常下载镜像。 Daemon.json , Daemon.json是Docker守护进程的配置文件,位于Linux系统中的/etc/docker/目录下。此文件用于设置Docker守护进程的启动参数,如本文所述,可以通过修改daemon.json文件来配置registry-mirrors、HTTP代理等全局Docker服务参数。当用户遇到无法下载镜像的问题时,正是在这个文件中找到了并修复了指向错误镜像仓库地址的配置项。
2023-04-18 10:38:27
371
算法侠
Docker
Docker 是一种实用工具,它可以精简开发、检验和发布过程。在大部分情况中,我们需要永久存储数据来保留重要的信息,包括数据库数据。Docker 可以容易地实现数据库案例,使得数据库的管控变得更加方便。 如果你要利用 Docker 启动数据库案例,你需要先获取你想要发布的数据库映像。例如,若要发布 MySQL,你可以直接在 Docker Hub 上查找 MySQL 映像,然后获取最新版本。 docker pull mysql 接下来,我们需要新建一个新的 Docker 虚拟环境,以便安装和管控 MySQL 服务。 docker run --name mysql -e MYSQL_ROOT_PASSWORD=your_password -d mysql 这个命令将在后台启动一个 MySQL 服务虚拟环境。然后你可以利用以下命令验证 MySQL 是否正在启动: docker ps 然后,我们可以利用以下命令连接到虚拟环境中启动的 MySQL 服务。 docker exec -it mysql mysql -uroot -pyour_password 接下来,我们可以在虚拟环境中为我们的数据库新建新的用户和数据库。 CREATE DATABASE your_database; CREATE USER 'your_user'@'%' IDENTIFIED BY 'your_password'; GRANT ALL PRIVILEGES ON your_database. TO 'your_user'@'%'; FLUSH PRIVILEGES; 现在我们已经成功地在 Docker 虚拟环境中安装和配置了 MySQL 服务,并且已经成功新建了新的数据库和用户。
2024-01-12 17:40:23
536
代码侠
Apache Atlas
...以直接通过JMX接口获取详细的内存、线程池、服务调用等运行时数据,以便于进行深度性能分析和问题定位。 与此同时,业界也涌现出诸多针对Apache Atlas的第三方监控解决方案,如集成Prometheus和Grafana进行实时可视化监控,不仅能够展示Atlas的核心性能指标,还能实现预警通知,大大提升了运维效率和系统稳定性。 此外,对于企业级部署场景,结合Kubernetes或Docker等容器化技术进行资源调度和自动化运维,亦成为提升Apache Atlas集群整体性能和可用性的有效途径。专家建议,用户在实践中应结合自身业务需求和IT环境特点,灵活运用各类监控手段,并持续关注Apache Atlas项目动态与最佳实践分享,以期最大化利用这一强大工具的价值。
2023-08-14 12:35:39
449
岁月如歌-t
转载文章
...据中心部署,适用于微服务架构中众多服务和应用的配置管理。 分布式部署 , 在计算机网络和系统架构领域,分布式部署是指将一个系统或应用的不同组件部署在多个独立的物理或虚拟服务器上,各组件之间通过网络进行通信和协作。在本文语境下,Apollo的分布式部署指按照特定指南将其三个核心服务(configservice、adminservice、portal)分别部署在不同的服务器或容器中,以达到高可用、可扩展的目标。 Apollo-ConfigService , Apollo项目中的一个关键服务模块,负责配置数据的存储、读取以及变更推送等功能。ConfigService与数据库交互,存储和管理所有应用和服务的配置信息,并通过服务发现机制与其它服务组件协同工作,确保配置数据的实时性和一致性。 Eureka , Eureka是一个由Netflix开发的服务注册与发现工具,用于实现微服务架构中的服务治理。在Apollo的上下文中,Eureka.service.url字段被用作Apollo-ConfigService服务的注册地址,在数据库中配置此地址是为了让其他服务能准确找到并连接到ConfigService,从而获取或更新配置信息。
2023-04-16 10:44:16
329
转载
SpringBoot
...他们记那些枯燥无味的内部IP地址。这时候,我们可以使用反向代理服务器,如Nginx,来进行转发。 同时,随着HTTPS的普及,越来越多的网站都开始使用SSL来加密数据传输。想要给咱们的应用程序套上SSL安全防护罩,那就得在反向代理服务器那块儿也安装并设置好SSL证书才行。 这篇文章将以Spring Boot为例,讲解如何使用Nginx进行反向代理,并配置SSL证书,以及在Spring Boot中获取请求路径的方法。 二、Nginx的反向代理配置 首先,我们需要在Nginx中配置反向代理。以下是一个简单的配置示例: server { listen 80; server_name example.com; location / { proxy_pass http://127.0.0.1:8080; } } 这个配置的意思是,当用户访问example.com的时候,Nginx会将请求转发到127.0.0.1的8080端口。这样一来,外部的朋友们就可以直接通过example.com这个网址,轻轻松松地访问到我们的应用程序啦! 三、Nginx的SSL配置 接下来,我们将配置Nginx的SSL证书。首先,我们需要生成一个自签名的SSL证书。这可以通过openssl命令来完成。 csharp openssl req -newkey rsa:2048 -nodes -keyout key.pem -x509 -days 365 -out cert.pem 然后,我们需要在Nginx的配置文件中添加SSL的相关配置。 bash server { listen 443 ssl; server_name example.com; ssl_certificate cert.pem; ssl_certificate_key key.pem; location / { proxy_pass http://127.0.0.1:8080; } } 四、Spring Boot中的请求路径获取 在Spring Boot中,我们可以通过HttpServletRequest对象的getRequestURI()方法来获取请求的完整路径。例如: typescript @RequestMapping("/path") public String handlePath(HttpServletRequest request) { String path = request.getRequestURI(); return "Hello, " + path; } 五、总结 以上就是使用Nginx进行反向代理,并配置SSL证书,以及在Spring Boot中获取请求路径的方法。通过这种方式,我们可以实现一个安全且易于访问的应用程序。 六、参考资料 1. Nginx官方文档 https://nginx.org/en/docs/ 2. Spring Boot官方文档 https://docs.spring.io/spring-boot/docs/current/reference/html/ 感谢您的阅读!如果您有任何问题或建议,欢迎随时联系我。
2024-01-22 11:19:49
386
落叶归根_t
Tomcat
...令行管理Tomcat服务之后,我们了解到这对于提升运维效率与开发调试过程具有重要意义。随着技术的不断迭代更新,对于Tomcat的高效管理以及优化配置的需求也日益增强。实际上,Tomcat 9及以上版本提供了更多高级特性以支持更灵活的服务管理,并对JVM调优和日志管理进行了改进。 例如,在最新的Tomcat 10中,官方引入了全局JVM配置文件(catalina.properties),允许用户集中管理所有服务实例的JVM参数,极大地简化了多实例环境下的运维工作。同时,日志系统亦与时俱进,支持与Log4j2、Slf4j等现代日志框架集成,便于开发者根据实际需求进行定制化日志输出和级别调整。 此外,对于大规模部署场景,容器化和自动化工具(如Docker和Kubernetes)的运用,使得基于命令行的Tomcat服务管理更为便捷且标准化。借助这些工具,运维人员可以实现一键部署、滚动升级以及动态伸缩等复杂操作,有效提升了服务的稳定性和可扩展性。 因此,掌握命令行管理只是万里长征的第一步,结合最新技术和最佳实践持续深化对Tomcat乃至整个Java应用服务器生态的理解与应用,才能更好地应对云时代下快速变化的技术挑战,从而在实践中不断提升自身技术水平和工作效率。
2023-02-24 10:38:51
317
月下独酌
Apache Atlas
....sh); 启动所有服务(如:bin/start-all.sh); 浏览器访问http://localhost:21000进行初始化设置。 以下是使用Apache Atlas创建一个项目的基本代码示例: javascript // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 三、集群部署模式 集群部署模式适合中大型企业或团队使用,可以提高系统的可用性和性能。 1. 部署步骤 在多台机器上安装并启动Apache Atlas的所有服务; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在集群中创建一个项目的代码示例: php-template // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 四、混合部署模式 混合部署模式结合了单机和集群的优势,既可以提供较高的性能,又可以保证数据的安全性和可靠性。 1. 部署步骤 在单台机器上安装并启动Apache Atlas的服务,作为中央控制节点; 在多台机器上安装并启动Apache Atlas的服务,作为数据处理节点; 使用Zookeeper进行服务注册和发现; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在混合部署中创建一个项目的代码示例: javascript // 创建中央控制节点 GET http://localhost:21000/api/v2/projects // 获取Zookeeper集群的地址 GET http://localhost:2181/_clusterinfo // 创建数据处理节点 POST http://localhost:21000/api/v2/nodes { "hostName": "data-node-1", "port": 21001, "role": "DATA_NODE" } // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 五、微服务部署模式 微服务部署模式是近年来越来越流行的一种部署方式,可以让企业更加灵活地应对业务的变化和需求的增长。 1. 部署步骤 将Apache Atlas分解为多个微服务,例如:项目管理、数据目录、元数据存储等; 使用Docker进行容器化部署; 使用Kubernetes进行服务编排和管理; 使用Apache Atlas API进行项目管理和其他操作。 以下是使用Apache Atlas在微服务部署中创建一个项目的代码示例: javascript // 安装并启动项目管理微服务 docker run -d --name atlas-project-management my-atlas-project-management-image // 安装并启动数据目录微服务 docker run -d --name atlas-data-directory my-atlas-data-directory-image // 安装并启动元数据存储微服务 docker run -d --name atlas-metadata-storage my-atlas-metadata-storage-image // 创建项目 POST http://localhost:21000/api/v2/project { "name": "my_project", "description": "My first project with Apache Atlas" } 总结 Apache Atlas有多种部署模式供用户选择,用户可以根据自己的需求和技术条件来选择最合适的部署方式。甭管您选择哪种部署方式,Apache Atlas都能像个小助手一样,帮助企业老铁们把数据资产打理得井井有条,妥妥地保护好这些宝贝资源。
2023-07-31 15:33:19
456
月下独酌-t
Netty
...lection找不到服务器选择策略”问题的深度解析与解决之道 在深入使用Netty这一高性能、异步事件驱动的网络应用程序框架时,我们可能会遇到一个常见的异常提示:“CannotFindServerSelection找不到服务器选择策略”。这句话其实就是在说,我们在设置的时候,可能马虎大意了,没把服务器地址或者地址类型给整明白,就像是拼图少了关键一块,让整个配置过程卡壳了。这篇东西,咱们就围着这个话题转悠,我会带着大伙儿瞅瞅实例代码,掰开揉碎了细细讲讲,一起摸清楚这背后的门道,再聊聊怎么机智地躲过这类问题的坑。 1. 问题概述 无法找到服务器选择策略 在Netty中,当我们尝试连接到远程服务器时,需要明确指定服务器的地址信息。如果在配置的时候,你忘记或者不小心设错了服务器地址,Netty这个家伙就像丢了指南针的探险家,完全找不到北,不知道该连接哪个目标服务器。这时候,它就会抛出一个“CannotFindServerSelection找不到服务器选择策略”的大异常,就像是在跟你说:“喂喂喂,我迷路了,快帮我看看地址对不对!”这就好比你要去朋友家做客,但没有拿到具体地址,自然就迷失了方向。 2. 配置示例与问题分析 首先,让我们通过一段简单的Netty客户端初始化代码来直观理解这个问题: java EventLoopGroup group = new NioEventLoopGroup(); Bootstrap bootstrap = new Bootstrap(); bootstrap.group(group) .channel(NioSocketChannel.class) // 指定通道类型 .handler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder(), new StringEncoder(), new SimpleClientHandler()); } }); // 错误的服务器地址配置方式(未指定服务器地址) bootstrap.connect(); // 这里没有提供服务器地址和端口,将会导致"CannotFindServerSelection"异常 // 正确的服务器地址配置方式 bootstrap.connect(new InetSocketAddress("localhost", 8080)); // 提供具体的服务器地址和端口 上述代码中,错误的bootstrap.connect()调用并未传入任何服务器地址信息,因此会触发异常。而正确的做法是提供一个InetSocketAddress对象,包含目标服务器的IP地址和端口号。 3. 地址类型的影响 此外,除了确保服务器地址已正确设置外,还需注意的是地址类型的选择。例如,在上述代码中,我们使用了NioSocketChannel作为通信通道,对应的服务器地址类型应为InetSocketAddress。如果你的应用恰好需要用到Unix Domain Socket或者其他一些特别的地址类型,那你就得相应地“变通”一下,调整你的地址类型和通道实现方式,就像是在玩拼图游戏一样,不同的场景要选用不同的拼图块儿。 java // 使用Unix Domain Socket的场景 bootstrap.channel(UnixSocketChannel.class); bootstrap.connect(new DomainSocketAddress("/path/to/socket")); 4. 思考与探讨 面对“CannotFindServerSelection”这样的问题,我们不仅要学会从错误信息中找出关键线索,更要深刻理解Netty框架的工作原理,以确保在配置环节做到万无一失。这就像是平时计划出门旅行一样,不仅得清楚自己要奔向哪个具体的地方(服务器地址),还必须挑对最合适的座驾或交通工具(通道类型),才能一路顺风、顺利到达目的地。 总结来说,当你在使用Netty时遇到“CannotFindServerSelection找不到服务器选择策略”的问题时,别忘了检查两点:一是是否设置了确切的服务器地址;二是所使用的通道类型与地址类型是否匹配。只要把这两个关键点搞定了,咱们就能轻轻松松解决这个麻烦,确保咱们的网络编程之路一路绿灯,畅通无阻地向前冲。
2023-06-18 15:58:19
172
初心未变
Nacos
...就是咱们的Nacos服务在尝试拽取并加载一个叫“gatewayserver-dev-${server.env}.yaml”的配置文件时,不幸出了点岔子。那么,这个错误具体是由什么原因引起的呢? 通过对网络上的各种资源进行查找和研究,我们发现这个问题可能是由以下几个方面的原因导致的: 1. 配置文件路径错误 首先,我们需要确认配置文件的实际路径是否正确。如果路径错误,那么Nacos服务自然无法正常加载配置文件,从而引发错误。 2. 配置文件内容错误 其次,我们需要查看配置文件的内容是否正确。要是配置文件里的内容没对上,Nacos服务在努力读取解析配置文件的时候就会卡壳,这样一来,就免不了会蹦出错误提示啦。 3. 系统环境变量设置错误 此外,我们也需要检查系统环境变量是否设置正确。要是环境变量没设置对,Nacos服务就像个迷路的小朋友,找不到环境变量这个关键线索,这样一来啊,它就读不懂配置文件这个“说明书”了,导致整个加载和解析过程都可能出乱子。 三、解决方法 了解了上述问题分析的结果后,我们可以采取以下步骤来进行问题的解决: 1. 检查配置文件路径 首先,我们需要确保配置文件的实际路径是正确的。可以手动访问文件路径,看是否能够正常打开。如果不能,那么就需要调整文件路径。 2. 检查配置文件内容 其次,我们需要查看配置文件的内容是否正确。可以对比配置文件和实际运行情况,看看是否存在差异。如果有差异,那么就需要修改配置文件的内容。 3. 设置系统环境变量 最后,我们需要检查系统环境变量是否设置正确。你可以用命令行工具这个小玩意儿来瞅瞅环境变量是怎么设置的,然后根据你遇到的具体情况,灵活地进行相应的调整。 四、代码示例 为了更好地理解上述解决方法,我们可以编写一段示例代码来展示如何使用Nacos服务来加载配置文件。以下是示例代码: typescript import com.alibaba.nacos.api.ConfigService; import com.alibaba.nacos.api.NacosFactory; import com.alibaba.nacos.api.exception.NacosException; public class NacosConfigDemo { public static void main(String[] args) throws NacosException { // 创建ConfigService实例 ConfigService configService = NacosFactory.createConfigService("localhost", 8848); // 获取数据 String content = configService.getConfigValue("dataId", "group", null); System.out.println(content); } } 这段代码首先创建了一个ConfigService实例,然后调用了getConfigValue方法来获取指定的数据。嘿,注意一下哈,在我们调用那个getConfigValue的方法时,得带上三个小家伙。第一个是"dataId",它代表着数据的身份证号码;第二个是"group",这个家伙呢,负责区分不同的分组类别;最后一个参数是"null",在这儿它代表租户ID,不过这里暂时空着没填。在实际应用中,我们需要根据实际情况来填写这三个参数的值。 五、结语 总的来说,当我们在使用Nacos服务时遇到“Nacos error, dataId: gatewayserver-dev-${server.env}.yaml”这样的错误时,我们需要从配置文件路径、内容和系统环境变量等方面进行全面的排查,并采取相应的措施来进行解决。同时,咱们也要留意,在敲代码的过程中,得把Nacos的相关API彻底搞懂、灵活运用起来,这样才能更好地驾驭Nacos服务,让它发挥出更高的效率。
2024-01-12 08:53:35
171
夜色朦胧_t
Kubernetes
...bernetes中的服务发现机制及其实现原理 在现代微服务架构中,服务发现是至关重要的一个环节。而说到Kubernetes,这可是容器编排领域的大哥大啊,它内建的服务发现机制,那可是我们摸透并灵活运用的“金钥匙”。本文将带您一起探索Kubernetes中的服务发现机制及其背后的实现原理,并通过代码实例来直观展示这一过程。 1. Kubernetes服务发现概述 首先,让我们揭开Kubernetes服务发现的神秘面纱。在Kubernetes这个大家庭里,每一个应用程序或者是一堆小应用程序,它们都喜欢化身为一个叫做Pod的小家伙去干活。而这个Pod呢,就是Kubernetes世界里的最小服务单位,相当于每个小分队的“队员”。为了让这些散落在各个角落的Pod能够顺畅地“对话”、协同工作,并且一起对外提供服务,Kubernetes特意引入了一个叫做Service的好主意。简单来说,Service就像是Pod的好帮手或者是一个超级智能调度员,它把一群干着同样工作的Pod们聚在一起,并给它们提供了一个公共的“大门”,让大家都能通过这个入口方便地找到并使用它们的服务。同时呢,这个Service还像是一块招牌,确保了这群Pod在网络世界中的身份标识始终稳定可靠,不会让人找不到北。 2. Kubernetes服务发现的实现原理 2.1 Service资源 在Kubernetes中创建一个Service时,我们实际上是定义了一个逻辑意义上的抽象层,它会根据选择的Selector(标签选择器)来绑定后端的一组Pod。Kubernetes会为这个Service分配一个虚拟IP地址(ClusterIP),这就是服务的访问地址。当客户端向这个ClusterIP发起请求时,kube-proxy组件会负责转发请求到对应的Pod。 yaml apiVersion: v1 kind: Service metadata: name: my-service spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376 上述YAML配置文件定义了一个名为my-service的Service,它会选择标签app=MyApp的所有Pod,并暴露80端口给外部,请求会被转发到Pod的9376端口。 2.2 kube-proxy的工作机制 kube-proxy是Kubernetes集群中用于实现Service网络代理的重要组件。有多种模式可选,如iptables、IPVS等,这里以iptables为例: - iptables:kube-proxy会动态更新iptables规则,将所有目标地址为目标Service ClusterIP的流量转发到实际运行Pod的端口上。这种方式下,集群内部的所有服务发现和负载均衡都是由内核级别的iptables规则完成的。 bash 这是一个简化的iptables示例规则 -A KUBE-SVC-XXXXX -d -j KUBE-SEP-YYYYY -A KUBE-SEP-YYYYY -m comment --comment "service/my-service" -m tcp -p tcp -j DNAT --to-destination : 3. DNS服务发现 除了通过IP寻址外,Kubernetes还集成了DNS服务,使得服务可以通过域名进行发现。每个创建的Service都会自动获得一个与之对应的DNS记录,格式为..svc.cluster.local。这样一来,应用程序只需要晓得服务的名字,就能轻松找到对应的服务地址,这可真是把不同服务之间的相互调用变得超级简便易行,就像在小区里找邻居串门一样方便。 4. 探讨与思考 Kubernetes的服务发现机制无疑为分布式系统带来了便利性和稳定性,它不仅解决了复杂环境中服务间互相定位的问题,还通过负载均衡能力确保了服务的高可用性。在实际做开发和运维的时候,如果能真正搞明白并灵活运用Kubernetes这个服务发现机制,那可是大大提升我们工作效率的神器啊,这样一来,那些烦人的服务网络问题引发的困扰也能轻松减少不少呢。 总结来说,Kubernetes的服务发现并非简单的IP映射关系,而是基于一套成熟且灵活的网络模型构建起来的,包括但不限于Service资源定义、kube-proxy的智能代理以及集成的DNS服务。这就意味着我们在畅享便捷服务的同时,也要好好琢磨并灵活运用这些特性,以便随时应对业务需求和技术挑战的瞬息万变。 以上就是对Kubernetes服务发现机制的初步探索,希望各位读者能从中受益,进一步理解并善用这一强大工具,为构建高效稳定的应用服务打下坚实基础。
2023-03-14 16:44:29
128
月影清风
Linux
...的关键特性 1. 微服务化:将大型应用分解为多个小型、独立的服务,每个服务具有独立的生命周期管理,便于快速迭代和部署。 2. 容器化:利用Docker等容器技术实现应用的轻量化封装,提高资源利用率和跨平台移植性。 3. 服务网格:通过引入服务网格(如Istio、Linkerd等),提供细粒度的服务间通信管理和治理能力,增强网络的可观察性和可靠性。 4. 自动化的网络策略:利用政策驱动的网络配置,实现网络资源的动态调整和优化,提高网络效率和安全性。 5. 面向API的网络设计:强调以API为中心的网络设计,支持API的快速开发、部署和管理,适应微服务架构的特性和需求。 实施云原生网络架构的挑战与机遇 实施云原生网络架构并非一蹴而就,企业需要克服技术、组织和文化等方面的挑战。首先,在技术层面,需要具备先进的网络技术和工具,如服务网格、自动化运维平台等。其次,组织层面的变革同样重要,需要培养跨部门协作的能力,以及适应快速变化的敏捷文化。最后,文化层面的转变,鼓励创新和实验,接受失败作为成长的一部分,对于成功实施云原生网络架构至关重要。 结论 云原生网络架构是未来网络发展的必然趋势,它不仅提升了网络的灵活性、可扩展性和安全性,也为业务创新提供了无限可能。面对这一变革,企业需紧跟技术前沿,积极拥抱变化,通过持续的技术投资、组织优化和文化重塑,实现网络架构的现代化转型,从而在激烈的市场竞争中保持领先优势。
2024-09-17 16:01:33
25
山涧溪流
Consul
在微服务架构日益普及的当下,Consul 作为服务发现与配置管理的重要工具,其跨语言支持能力对于开发者的使用体验至关重要。除了本文提及的 Java 和 Go 客户端库外,Consul 社区及第三方开发者持续为更多编程语言提供客户端支持,进一步拓宽了 Consul 的应用领域和适用范围。 例如,在 Python 社区中,HashiCorp 官方维护的 python-consul 库深受开发者喜爱,它提供了全面且易于使用的接口,方便 Python 开发者进行服务注册、发现及 KV 存储操作。近期更新中,该库更是优化了对异步IO的支持,显著提升了在高并发场景下的性能表现。 此外,Node.js 领域的consul-api库也保持着活跃的维护状态,不断跟进 Consul 服务的新特性,以满足现代 JavaScript 和 TypeScript 开发者的需求。最近一次版本升级,引入了对 Consul Connect 的深度集成,增强了服务间通信的安全性和可管理性。 然而,正如文中所提醒的那样,尽管社区驱动的客户端库能极大地扩展 Consul 的兼容性,但不同语言版本库的功能完整度和更新时效性可能存在差异。因此,开发者在选择具体语言的客户端库时,需密切关注官方发布动态,并结合项目需求和技术栈特点,做出最适合自己的决策。同时,随着云原生技术的发展和Kubernetes等容器编排系统的广泛应用,Consul也在积极探索与这些平台的深度集成,未来有望提供更多针对云环境的服务治理解决方案,值得广大开发者关注与期待。
2023-08-15 16:36:21
442
月影清风-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chmod u+x file
- 给文件所有者添加执行权限。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"