前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[多核CPU利用率提升]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HBase
...源瓶颈识别 (1) CPU瓶颈 当系统频繁出现CPU使用率过高,或RegionServer响应延迟明显增加时,可能意味着CPU成为了限制HBase性能的关键因素。通过top命令查看服务器资源使用情况,定位到消耗CPU较高的进程或线程。 (2) 内存瓶颈 HBase大量依赖内存进行数据缓存以提高读取效率,如果内存资源紧张,会直接影响系统的整体性能。通过JVM监控工具(如VisualVM)观察堆内存使用情况,判断是否存在内存瓶颈。 (3) 磁盘I/O瓶颈 数据持久化与读取速度很大程度上受磁盘I/O影响。如果发现RegionServer写日志文件或者StoreFile的速度明显不如以前快了,又或者读取数据时感觉它变“迟钝”了,回应时间有所延长,那很可能就是磁盘I/O出状况啦。 3. 针对服务器资源不足的HBase优化策略 (1) JVM调优 java export HBASE_REGIONSERVER_OPTS="-Xms4g -Xmx4g -XX:MaxDirectMemorySize=4g" 以上代码是为RegionServer设置JVM启动参数,限制初始堆内存大小、最大堆内存大小以及直接内存大小,根据服务器实际情况调整,避免内存溢出并保证合理的内存使用。 (2) BlockCache与BloomFilter优化 在hbase-site.xml配置文件中,可以调整BlockCache大小以适应有限内存资源: xml hfile.block.cache.size 0.5 同时启用BloomFilter来减少无效IO,提升查询性能: xml hbase.bloomfilter.enabled true (3) Region划分与负载均衡 合理规划Region划分,避免单个Region过大导致的资源集中消耗。通过HBase自带的负载均衡机制,定期检查并调整Region分布,使各个RegionServer的资源利用率趋于均衡: shell hbase balancer (4) 磁盘I/O优化 选择高速稳定的SSD硬盘替代低速硬盘,并采用RAID技术提升磁盘读写性能。此外,针对HDFS层面,可以通过增大HDFS块大小、优化DataNode数量等方式减轻磁盘I/O压力。 4. 结论与思考 面对服务器资源不足的情况,我们需要像一个侦探一样细致入微地去分析问题所在,采取相应的优化策略。虽然HBase本身就挺能“长大个儿”的,可在资源有限的情况下,咱们还是可以通过一些巧妙的配置微调和优化小窍门,让它在满足业务需求的同时,也能保持高效又稳定的运行状态,就像一台永不停歇的小马达。这个过程就像是一个永不停歇的探险和实践大冒险,我们得时刻紧盯着HBase系统的“脉搏”,灵活耍弄各种优化小窍门,确保它不论在什么环境下都能像顽强的小强一样,展现出无比强大的生命力。
2023-03-02 15:10:56
473
灵动之光
Flink
...异步I/O操作是一种提升系统性能和效率的关键技术手段。它允许Flink在执行流数据处理任务时,与外部系统(如数据库、消息队列等)进行非阻塞的数据交换。具体来说,当Flink需要从外部系统读取或写入数据时,不会等待该操作完成,而是继续执行其他任务,直到外部系统准备好数据后通过回调机制通知Flink进行后续处理,从而避免了CPU空闲等待,提高了系统的吞吐量和响应速度。 AsyncFunction接口 , AsyncFunction是Apache Flink提供的一种用于实现异步数据处理的接口。在Flink流处理作业中,用户可以通过自定义实现AsyncFunction来创建异步算子。当DataStream上的元素被传递给AsyncFunction时,它会启动一个异步任务,并在任务完成后将结果收集或传递到下一个处理阶段。这样可以确保即使在等待外部系统响应期间,Flink也能高效地利用资源处理其他数据,提升了整体系统的并发能力和实时性。
2024-01-09 14:13:25
492
幽谷听泉-t
Hadoop
...调度与资源管理,以期提升资源利用率和系统的整体稳定性。 同时,对于企业用户而言,如何根据自身业务特点和数据处理需求,定制化调整YARN的各项参数配置,也成为了提高集群运行效率的重要课题。业界专家建议定期回顾和审计YARN的配置文件,并结合最新的Hadoop官方文档以及社区的最佳实践,不断优化ResourceManager的工作负载均衡策略。 因此,无论是关注Hadoop核心组件的最新发展动态,还是探索与现代云原生技术的融合路径,亦或是针对具体应用场景进行深度调优,都是广大大数据工程师在解决类似ResourceManager初始化失败问题后,值得进一步研究和探讨的方向。
2024-01-17 21:49:06
567
青山绿水-t
RocketMQ
...繁地执行,会消耗大量CPU资源,从而影响系统的整体性能。 java // 示例:创建大量无用的对象可能导致内存溢出 public class MemoryOverflowExample { public static void main(String[] args) { List list = new ArrayList<>(); while (true) { list.add(new String("Memory is precious!")); } } } 3. RocketMQ与JVM内存管理 在使用RocketMQ的过程中,例如生产者发送消息或消费者消费消息时,如果不合理地管理内存,也可能触发上述问题。比如,你要是突然一股脑儿地发好多好多消息,或者把一大堆消息都堆在那儿不去处理,这就像是给内存施加了巨大的压力。你想啊,内存它也会“吃不消”,于是乎就可能频繁地进行垃圾回收(GC),甚至严重的时候还会“撑爆”,也就是内存溢出啦。 java import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message; public class RocketMQProducerExample { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); producer.start(); for (int i = 0; i < Integer.MAX_VALUE; i++) { // 这里假设发送海量消息,极端情况下易引发内存溢出 Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); producer.send(msg); } producer.shutdown(); } } 4. 针对RocketMQ的内存优化策略 面对这样的挑战,我们可以从以下几个方面着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
91
半夏微凉
转载文章
...机系统性能需求的不断提升,内存管理技术的研究与应用愈发关键。近期,Google的tcmalloc和Facebook的jemalloc因其高效的内存分配策略在业界持续引发关注。2023年初,有开发者在GitHub上发布了对这两种内存分配器在大规模数据处理场景下的对比评测报告,结果显示,在特定条件下,jemalloc能有效减少大对象分配时的延迟,而tcmalloc在小对象频繁分配回收的场景中表现更优。 而在操作系统内核层面,Linux内核社区正在积极改进伙伴系统算法以适应新兴硬件架构的需求,例如针对非均匀内存访问(NUMA)节点的优化,以及通过合并多个小页以减少内存碎片的技术探索。此外,Slab分配器也在不断迭代升级,新的研究指出,通过引入智能缓存替换策略,可以进一步降低slab分配器的内存浪费,提高整体系统的资源利用率。 同时,随着持久化内存、异构计算等新型硬件技术的发展,内存管理面临全新挑战。研究人员正尝试将传统内存管理模式与这些新技术相结合,如Intel Optane DC持久性内存的管理方案,以及针对GPU等加速设备的内存池设计,力求在保证高效的同时,最大限度地发挥新型硬件的潜力。 综上所述,无论是用户空间还是内核空间的内存管理,都处于一个快速演进和技术革新的阶段,对于软件开发者和系统工程师而言,紧跟最新的研究成果和最佳实践,无疑是提升系统性能和稳定性的关键所在。
2023-02-26 20:46:17
231
转载
Spark
...通过内存计算技术显著提升了大数据处理速度,并支持SQL查询、流处理、机器学习等多种计算模型,能够在一个统一的平台上处理批处理和实时数据。 DataFrame API , DataFrame是Apache Spark中一种重要的编程抽象,类似于关系型数据库中的表结构。DataFrame API允许用户以更为直观且高性能的方式操作结构化数据。相较于RDD(弹性分布式数据集),DataFrame提供了更多的优化机会,包括列式存储、执行计划优化以及与SQL引擎的无缝集成,使得数据处理过程更加高效和便捷。 Partitioner , 在Apache Spark中,Partitioner是一个用于决定如何将数据集划分为多个分区的策略。它在数据并行处理时起到关键作用,确保数据能够在集群节点间均衡分布,提高任务执行效率。当处理大量小文件时,可以通过自定义Partitioner来按照某种规则将小文件整合或分类,从而减少I/O开销,提升整体性能。 DataSource V2 , DataSource V2是Apache Spark 3.0版本引入的新接口,旨在提供更灵活、高效的读写数据源方式。它允许开发者实现更细粒度的数据分区和读取策略,尤其适用于处理大量小文件场景,可以降低磁盘I/O次数,提高数据读取速度,进而优化Spark的整体性能。 动态资源分配 , 动态资源分配是Apache Spark的一项资源管理特性,可根据当前作业负载动态调整各个Spark应用程序所占用的集群资源(如CPU核心数、内存大小等)。在处理大量小文件等复杂工作负载时,合理运用动态资源分配策略有助于提高系统资源利用率和作业执行效率。
2023-09-19 23:31:34
45
清风徐来-t
HBase
...用的时间比例。 - CPU利用率:集群中各节点的CPU使用率。 2.2 使用JMX监控 HBase提供了丰富的JMX接口,通过这些接口我们可以获取上述指标。比如说呀,你可以用 jconsole 这个工具连到你的 HBase 节点上,看看它的内存用得怎么样,GC 日志里有没有啥问题之类的。 示例代码: java import javax.management.MBeanServer; import javax.management.ObjectName; public class HBaseJMXExample { public static void main(String[] args) throws Exception { MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); ObjectName name = new ObjectName("Hadoop:service=HBase,name=Master,sub=MasterStatus"); Integer load = (Integer) mbs.getAttribute(name, "AverageLoad"); System.out.println("当前HBase Master的平均负载:" + load); } } 这段代码展示了如何通过Java程序读取HBase Master的负载信息。虽然看起来有点复杂,但只要理解了基本原理,后续操作就简单多了! --- 3. 第二步 深入分析——聚焦热点问题 当我们拿到整体性能数据后,接下来就需要深入分析具体的问题所在。这里我建议大家按照以下几个方向逐一排查: 3.1 Region分布不均怎么办? 如果发现某些RegionServer的压力过大,而其他节点却很空闲,这可能是由于Region分布不均造成的。解决方法很简单,调整负载均衡策略即可。 示例代码: bash hbase shell balance_switch true 上面这条命令会开启自动负载均衡功能。当然,你也可以手动执行balancer命令强制进行一次平衡操作。 3.2 GC时间过长怎么办? GC时间过长往往意味着内存不足。这时候你需要检查HBase的堆内存设置,并适当增加Xmx参数值。 示例代码: xml hbase.regionserver.heapsize 8g 将heapsize调大一些,看看是否能缓解GC压力。 --- 4. 第三步 实战演练——真实案例分享 为了让大家更直观地感受到性能优化的过程,我来分享一个真实的案例。有一天,我们团队收到用户的吐槽:“你们这个查询也太慢了吧?等得我花都谢了!”我们赶紧查看了一下情况,结果发现是RegionServer上某个Region在搞事情,一直在上演“你进我也进”的读写冲突大戏,把自己整成了个“拖油瓶”。 解决方案: 1. 首先,定位问题区域。通过以下命令查看哪些Region正在发生大量读写: sql scan 'hbase:metrics' 2. 然后,调整Compaction策略。如果发现Compaction过于频繁,可以尝试降低触发条件: xml hbase.hregion.majorcompaction 86400000 最终,经过一系列调整后,查询速度果然得到了显著提升。这种成就感真的让人欲罢不能! --- 5. 结语 保持好奇心,不断学习进步 检查HBase集群的性能并不是一件枯燥无味的事情,相反,它充满了挑战性和乐趣。每次解决一个问题,都感觉是在玩拼图游戏,最后把所有碎片拼在一起的时候,那成就感真的太爽了,简直没法用语言形容! 最后,我想说的是,无论你是刚入门的新手还是经验丰富的老手,都不要停止学习的步伐。HBase的技术栈非常庞大,每一次深入研究都会让你受益匪浅。所以,让我们一起努力吧!💪 希望这篇文章对你有所帮助,如果你还有任何疑问,欢迎随时来找我交流哦~
2025-04-14 16:00:01
63
落叶归根
转载文章
...u 硬件虚拟化是需要CPU支持,如果CPU不支持将无法创建KVM虚拟机 六、虚拟化技术 全虚拟化:全虚拟化代表有:KVM 半虚拟化:半虚拟化代表有Hypervisor 针对IO层面半虚拟化要比全虚拟化要好,因为磁盘IO多一层必定会慢。一般说IO就是网络IO和磁盘IO 因为这两个相对而言是比较慢的 ; 提示: Qemu和KVM的最大区别就是,如果一台物理机内存直接4G,创建一个vm虚拟机分配内存分4G,在创建一个还可以分4G。支持超配,但是Qemu不支持; 七、虚拟化使用场景分类 服务器虚拟化:解决资源利用率低的问题 桌面虚拟化:有一些弊端,图形显示层面会有问题 应用虚拟化:没接触过,公司比较穷买不起,基本上只有银行等国企才会用Xenapp ICA 八、虚拟化工具KVM介绍 KVM 全称:Kernel-based Virtual Machine(内核级虚拟化机器) 原本由以色列人创建,现在被红帽收购 ESXI 虚拟套件,现在是免费使用 VMware vSphere Hypervisor – 安装和配置 提示:一台服务器首选ESXI 九、KVM安装 调整虚拟机 虚拟化Intel使用的是Intel VT-X ; 虚拟化AMD使用的是AMD-V 创建虚拟机步骤 1.准备虚拟机硬盘 2.需要系统iso镜像3.需要安装一个vnc的客户端来连接 查看系统环境 [root@linux-node1 ~] cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) [root@linux-node1 ~] uname -r 3.10.0-327.36.2.el7.x86_64 检查是否有vmx或者svm [root@linux-node1 ~] grep -E '(vmx|svm)' /proc/cpuinfo 安装kvm用户态模块 [root@linux-node1 ~] yum list|grep kvm libvirt-daemon-kvm.x86_64 1.2.17-13.el7_2.5 updates pcp-pmda-kvm.x86_64 3.10.6-2.el7 base qemu-kvm.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-common.x86_64 10:1.5.3-105.el7_2.7 updates qemu-kvm-tools.x86_64 10:1.5.3-105.el7_2.7 updates [root@linux-node1 ~] yum install qemu-kvm qemu-kvm-tools libvirt -y libvirt 用来管理kvm kvm属于内核态,不需要安装。但是需要一些类似于依赖的 kvm属于内核态,不需要安装。但是需要安装一些类似于依赖的东西 启动 [root@linux-node1 ~] systemctl start libvirtd.service [root@linux-node1 ~] systemctl enable libvirtd.service 启动之后我们可以使用ifconfig进行查看,libvirtd已经为我们安装了一个桥接网卡 libvirtd为我们启动了一个dnsmasqp,这个主要是用来dhcp连接的,这个工具会给我们的虚拟机分配IP地址 [root@linux-node1 ~] ps -ef|grep dns nobody 5233 1 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelper root 5234 5233 0 14:27 ? 00:00:00 /sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_leaseshelperoot 5310 2783 0 14:31 pts/0 00:00:00 grep --color=auto dns 查看磁盘空间大小 最好是20G以上 [root@linux-node1 tmp] df -h 上传镜像 提示:如果使用rz上传镜像可能会出现错误,所以我们使用dd命令,复制系统的镜像。只需要挂载上光盘即可 [root@linux-node1 opt] dd if=/dev/cdrom of=/opt/CentOS-7.2.iso [root@linux-node1 opt] ll total 33792 -rw-r--r-- 1 root root 34603008 Jun 12 18:18 CentOS-7.2-x86_64-DVD-1511.iso 下载VNC 下载地址:http://www.tightvnc.com/download/2.8.5/tightvnc-2.8.5-gpl-setup-64bit.msi 安装完VNC如下图 创建磁盘 提示: qemu-img软件包是我们安装qemu-kvm-tools 依赖给安装上的 [root@linux-node1 opt] qemu-img create -f raw /opt/CentOS-7.2-x86_64.raw 10GFormatting '/opt/Centos-7-x86_64.raw', fmt=raw size=10737418240 [root@linux-node1 opt] [root@linux-node1 opt] ll /opt/Centos-7-x86_64.raw -rw-r--r-- 1 root root 10737418240 Oct 26 14:53 /opt/Centos-7-x86_64.raw-f 制定虚拟机格式,raw是裸磁盘/opt/Centos 存放路径 10G 代表镜像大小 安装启动虚拟机的包 [root@linux-node1 tmp] yum install -y virt-install 安装虚拟机 [root@linux-node1 tmp] virt-install --help 我们可以指定虚拟机的CPU、磁盘、内存等 [root@linux-node1 opt] virt-install --name CentOS-7.2-x86_64 --virt-type kvm --ram 1024 --cdrom=/opt/CentOS-7.2.iso --disk path=/opt/CentOS-7.2-x86_64.raw --network network=default --graphics vnc,listen=0.0.0.0 --noautoconsole --name = 给虚拟机起个名字 --ram = 内存大小 --cdrom = 镜像位置,就是我们上传iso镜像的位置,我放在/tmp下了 --disk path = 指定磁盘--network network= 网络配置 default 就会用我们刚刚ifconfig里面桥接的网卡--graphics vnc,listen= 监听vnc, 分区说明 提示:我们不分交换分区,因为公有云上的云主机都是没有交换分区的 十、Libvirt介绍 libvirt是一个开源免费管理工具,可以管理KVM、VMware等 他需要起一个后台的进程,它提供了API。像openstack就是通过libvirt API来管理虚拟机 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vcp4lgAZ-1596980494935)(libvirt.jpg)] 二、KVM虚拟机和VMware区别 虚拟机监控程序(KVM)是虚拟化平台的根基。从传统供应商到各种开源替代品,可供选择的虚拟机监控程序有很多。 VMware 是一款实现虚拟化的热门产品,可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。 基于内核的虚拟机(KVM)则是 Linux® 系统上的一种开源解决方案。 VMware vSphere 与 VMware ESXi VMware 可以提供 ESXi 虚拟机监控程序和 vSphere 虚拟化平台。VMware ESXi 是一个能够直接安装到物理服务器上的裸机虚拟机监控程序,可以帮你整合硬件。你可以用 VMware 的虚拟化技术来创建和部署虚拟机(VM),从而现代化改造自己的基础架构,来交付和管理各种新旧应用。 选用 VMware vSphere 后,你需要使用 VMware 的控制堆栈来管理虚拟机,而且有多个许可证授权级别可供使用。 KVM 开源虚拟化技术 KVM 是一种开源虚拟化技术,能将 Linux 内核转变成可以实现虚拟化的虚拟机监控程序,而且可以替代专有的虚拟化技术(比如 VMware 提供的专有虚拟化技术)。 迁移到基于 KVM 的虚拟化平台,你就可以检查、修改和完善虚拟机监控程序背后的源代码。能够访问源代码,就如同掌握了开启无限可能的钥匙,能够让你虚拟化传统工作负载和应用,并为云原生和基于容器的工作负载奠定基础。由于 KVM 内置于 Linux 内核中,所以使用和部署起来非常方便。 KVM 虚拟机和 VMware vSphere 的主要区别 VMware 可以提供一个完善稳定的虚拟机监控程序,以及出色的性能和多样化的功能。但是,专有虚拟化会阻碍你获得开展云、容器和自动化投资所需的资源。解除供应商锁定,你就可以任享自由、灵活与丰富的资源,从而为未来的云原生和容器化环境打下基础。 生产就绪型的 KVM 具有支持物理和虚拟基础架构的功能,可以让你以更低的运营成本为企业工作负载提供支持。相比使用 VMware vSphere 等其他解决方案,选用基于 KVM 的虚拟化选项能够带来很多优势。 开源Linux KVM的优势: 更低的总拥有成本,从而省下运营预算,用来探索现代化创新技术。 不再受供应商捆绑。无需为不用的产品付费,也不会受到软件选择限制。 跨平台互操作性:KVM 可以在 Linux 和 Windows 平台上运行,所以你可以充分利用现有的基础架构投资。 出色简便性:可以通过单个虚拟化平台,在数百个其他硬件或软件上创建、启动、停止、暂停、迁移和模板化数百个虚拟机。 卓越性能:应用在 KVM 上的运行速度比其他虚拟机监控程序都快。 开源优势:不但能访问源代码,还能灵活地与各种产品集成。 享受 Linux 操作系统的现有功能: 安全防护功能 内存管理 进程调度器 设备驱动程序 网络堆栈 红帽 KVM 企业级虚拟化的优势 选择红帽® 虚拟化,就等于选择了 KVM。红帽虚拟化是一款适用于虚拟化服务器和技术工作站的完整基础架构解决方案。红帽虚拟化基于强大的红帽企业 Linux® 平台和 KVM 构建而成,能让你轻松、敏捷、安全地使用资源密集型虚拟化工作负载。红帽虚拟化可凭借更加优越的性能、具有竞争力的价格和值得信赖的红帽环境,帮助企业优化 IT 基础架构。 红帽的虚拟化产品快速、经济、高效,能够帮助你从容应对当前的挑战,并为未来的技术发展奠定基础。VMware 等供应商提供的纵向扩展虚拟化解决方案不但成本高昂,而且无法帮助企业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 业完成所需的转型,因而难以支持在混合云中运行云原生应用。要转而部署混合云环境,第一步要做的就是摆脱专有虚拟化。 红帽虚拟化包含 sVirt 和安全增强型 Linux(SELinux),是红帽企业 Linux 专为检测和预防当前 IT 环境中的复杂安全隐患而开发的技术。 借助红帽虚拟化,你可以尽享开源虚拟机监控程序的所有优势,还能获得企业级技术支持、更新和补丁,使你的环境保持最新状态,持续安心运行。开源和 RESTful API,以及 Microsoft Windows 的认证,可帮你实现跨平台的互操作性。提供的 API 和软件开发工具包(SDK)则有助于将我们的解决方案扩展至你现有和首选管理工具,并提供相关支持。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34799070/article/details/107900861。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-06 08:58:59
121
转载
Netty
...接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...每个节点都具有自己的CPU、内存和存储资源。当执行复杂的查询时,任务被分解并在所有节点上并行执行,随后将结果合并返回给用户。这种架构模式显著提升了大规模数据分析的性能,因为它能够充分利用集群中的所有硬件资源。 ACID特性 , ACID是Atomic(原子性)、Consistency(一致性)、Isolation(隔离性)和Durability(持久性)四个单词首字母组成的缩写,在数据库管理系统领域代表了一组确保事务正确执行的关键属性。在Postgres-XL中,无论是单个节点还是整个集群层面,都提供了全面的ACID支持。这意味着即使在分布式环境中,数据库也能确保事务要么全部成功执行,要么全部回滚;始终维护数据库的一致状态;隔离并发事务以防止相互干扰;并且一旦事务提交,其影响就会永久保存在数据库中。 全局事务管理器(GTM, Global Transaction Manager) , 全局事务管理器是Postgres-XL分布式数据库集群中的关键组件,负责协调和管理跨多个数据节点的事务。GTM为分布式环境下的事务分配全局唯一标识符(GXID),并提供全局一致的快照视图,以确保事务在整个集群范围内的一致性和可见性。此外,为了提高性能和可用性,Postgres-XL部署了GTM Proxy实例,这些代理可以减轻GTM的压力,并优化与协调器之间的通信效率。在Postgres-XL中,GTM对于保证数据的完整性和事务的正确执行至关重要。
2023-01-30 11:09:03
94
转载
转载文章
...A可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
JQuery插件下载
...实用工具。该插件充分利用了jQuery库的强大功能,实现了一种灵活且适应性强的侧边栏解决方案。其核心特性在于响应式设计,能够根据浏览器窗口大小自动调整布局,确保在包括IE9在内的各种现代浏览器上都能够完美展现。flyPanels的主要用途是创建可隐藏和滑动显示的侧边栏菜单,不仅限于此,它还可用于集成联系表单、搜索面板等多种组件,极大丰富了网站或应用的交互体验。通过简单的配置与API调用,开发者可以轻松实现侧边栏内容的动态切换与展示效果优化,无论是桌面端还是移动设备,都能让用户享受到流畅自然的滑动效果与便捷的操作方式。总之,flyPanels是一款轻量级但功能全面的jQuery插件,旨在提升网页界面的空间利用率及用户体验,是构建现代化、响应式网站的理想选择。 点我下载 文件大小:699.13 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-04 17:43:38
89
本站
JQuery插件下载
...,这对于提高界面空间利用率和改善多任务处理视图极为便利。此外,它还支持拖拽功能,使得用户可以根据需求自由调整Panel在页面上的位置,从而增加了布局设计的灵活性。更进一步,该插件包含了关闭Panel的功能,使得用户能够便捷地隐藏或移除不需要的内容,简化界面并保持工作区的清爽。综合来看,LobiPanel有效地结合了jQueryUI强大的交互能力和Bootstrap优雅的设计风格,为开发者提供了一个功能强大且易于使用的工具,以提升基于Bootstrap构建的网页应用的用户界面功能与可用性。 点我下载 文件大小:983.08 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-11 15:07:24
64
本站
JQuery插件下载
...展开的形式呈现,极大提升了网页空间利用率和信息组织结构的清晰度。开发者只需在项目中引入jQuery库以及配套的base.css样式文件,即可轻松实现手风琴效果的动态切换,大大简化了开发流程与维护成本。总的来说,“jquery扁平风格的手风琴特效”是一个兼顾美观与实用性的高效工具,尤其适合应用于各类网站导航菜单、内容摘要展示、设置面板等场景,助力开发者打造出既符合现代审美又具有良好兼容性的高品质网页应用。 点我下载 文件大小:127.41 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-16 12:27:14
62
本站
Java
...发编程的支持有了显著提升。新版本引入了Actor模型的改进版——JSR 4204,使得Java开发者能够更轻松地构建无状态、无并发问题的分布式系统。 此外,Java 17引入了JEP 395,即“Coroutines for the Java Virtual Machine”,这允许程序员在单线程环境中编写异步代码,提高了代码的简洁性和可读性。Coroutine技术结合了轻量级线程和协程的优点,使得Java程序员能更好地处理高并发场景下的任务切换。 对于线程池管理,Java 17也提供了新的优化,如对线程池大小动态调整的支持,有助于在保证系统性能的同时避免资源浪费。而Java社区对于并行计算和GPU加速的探索也在不断深入,例如Project Loom计划中的ZGC垃圾收集器,旨在提供更好的线程安全性与性能。 同时,随着微服务架构的流行,Java并发编程的挑战也转向了如何设计和管理复杂的分布式系统。研究者们正在探索如何在分布式环境中实现高效的线程通信,如零拷贝、低延迟网络编程等。 总的来说,Java多线程技术的发展不仅体现在语言层面的更新,更在于如何帮助开发者解决实际问题,提高系统的并发性能和可扩展性。无论是企业级应用开发还是新兴技术领域,Java的并发编程能力都将发挥关键作用。
2024-04-10 16:02:45
375
码农
HTML
...开发社区中兴起了一股利用WebGL和Three.js等技术构建高度真实、立体且可交互的三维虚拟雪景的热潮。例如,某知名电商网站在其冬季促销活动中,就成功运用了基于物理引擎的雪花飘落动画,不仅增强了视觉冲击力,还极大提升了用户的沉浸式体验。 此外,随着Web性能优化的重要性日益凸显,开发者们也开始关注如何在保证页面美观的同时,最大限度地减少动画效果对页面加载速度和CPU使用率的影响。一些轻量级的JavaScript库如Snowfall.js,可以高效生成逼真的下雪效果,并能根据设备性能自动调整雪花数量和运动轨迹,实现了美感与性能的兼顾。 同时,在响应式网页设计领域,针对不同设备和屏幕尺寸自适应的下雪特效也成为研究热点。设计师们正在不断尝试创新方法,使得雪花飘落效果在移动端小屏上同样流畅自然,从而确保跨平台、跨设备的一致性用户体验。 总的来说,网页下雪特效作为增强网页视觉吸引力和互动性的一种手段,其背后的实现原理和技术趋势值得广大前端开发者持续关注与深入学习。而通过不断跟踪最新的实战案例与技术解析,我们将更好地理解并应用这些技术,创造出更为惊艳且高效的网页动态效果。
2023-08-21 12:02:08
458
软件工程师
JQuery
...理器添加到父元素上,利用事件冒泡机制捕获子元素触发的事件。例如,在处理大型列表渲染场景时,事件委托可以显著提高性能和内存利用率。 另外,值得注意的是,由于异步加载内容或SPA(单页应用)的流行,确保所有代码按预期顺序执行显得尤为重要。一种策略是利用生命周期钩子函数(如React的componentDidMount),以确保在组件渲染完成后再进行事件绑定。 在实际项目中,还需要关注无障碍访问性问题,比如确保按钮元素具有明确的role属性,并正确设置tabindex以便键盘操作,从而提升网站对残障用户的友好度。 综上所述,无论是jQuery还是其他现代前端技术栈,在处理按钮点击事件这类常见的交互逻辑时,开发者都应关注代码质量、性能优化及用户体验等多个维度,结合最新的开发理念和技术趋势,持续改进和完善代码实现。
2023-03-10 18:35:11
148
码农
转载文章
...动版本的升级不仅能够提升兼容性,确保在新旧操作系统中稳定运行,还可能解决潜在的网络连接问题和性能瓶颈。 时至今日,尽管该型号的1.0版驱动支持WinXP、Vista及Win7系统,但考虑到微软已停止对这些老旧系统的官方支持,用户在使用过程中可能会面临安全风险或无法利用到最新的无线技术标准。因此,建议用户前往腾达官网查看W311U或其他新型号产品的最新驱动,确保与Windows 10等现代操作系统完美兼容,并享受更高的网络传输速度和安全性。 此外,对于无线网络设备的优化配置,除了关注驱动更新外,了解基本的Wi-Fi设置技巧、无线信号优化策略同样重要。例如,合理选择无线信道以减少干扰、采用5GHz频段提升带宽利用率、开启QoS功能保障关键应用流畅度等。同时,针对老旧设备,在硬件条件允许的情况下,升级至支持802.11ac或Wi-Fi 6标准的无线网卡,将极大地改善网络体验。 总之,紧跟时代步伐,定期检查并更新无线网卡驱动,结合实际应用场景进行深度优化配置,是确保无线网络高效稳定运行的关键举措。
2023-06-04 16:02:43
278
转载
Docker
...86架构的支持亦有望提升整体集群的稳定性和资源利用率。未来,我们期待看到更多的开发者和企业能够充分利用这一特性,推动软件交付方式的创新和升级。 总之,Docker对x86架构的支持是容器技术生态发展的重要里程碑,它将在持续推动云计算和DevOps领域进步的同时,为全球范围内的企业和开发者带来更高的效率和更佳的实践体验。
2023-08-31 13:21:01
540
代码侠
Docker
...得开发者能够更便捷地利用Docker进行云原生应用开发与部署。 实际上,容器技术已在全球范围内被广泛应用,不仅限于软件开发领域。例如,在大数据处理中,Apache Spark等框架通过与Docker结合,实现任务的快速分发与资源隔离;在微服务架构设计上,企业纷纷采用容器化技术来提升服务的独立性、灵活性与可扩展性。 此外,安全问题一直是容器技术的重要议题。随着《容器安全最佳实践》等相关指导文档的发布,行业对于如何确保容器镜像安全、控制容器间通信、以及实施运行时安全策略等方面有了更为深入的理解和解决方案。 与此同时,为满足持续增长的复杂IT环境需求,诸如AWS Fargate、Google Cloud Run等无服务器容器服务应运而生,它们允许用户无需管理底层基础设施即可运行容器,大大降低了运维成本并提升了资源利用率。 总之,Docker作为容器化技术的领军者,其功能及应用领域的拓展不断推动着云计算生态的发展。在实际工作中,了解并熟练运用Docker的各项命令仅仅是第一步,紧跟技术潮流、掌握相关最佳实践、以及适时引入新的容器服务模式,将有助于我们更好地驾驭这一强大的工具,助力业务高效稳定运行。
2023-05-01 12:17:30
285
算法侠
Docker
在深入理解了如何利用Docker搭建NPM环境后,我们不妨关注一下近期Docker和Node.js生态系统的发展动态。2022年,Docker推出了新的版本,强化了容器的安全性和性能优化,同时也改善了与Kubernetes等编排工具的集成体验,这对于构建更稳定、安全且易于部署的NPM应用具有重要意义。 另一方面,Node.js也在不断迭代升级中,最新发布的16.x LTS版本为开发者提供了更多现代JavaScript特性和性能改进,配合Docker使用能进一步提升开发效率。例如,通过改进的npm包管理器,现在可以更高效地处理依赖关系,并在Docker环境中实现更快捷的安装与更新。 此外,社区中关于容器化开发实践的讨论也日益活跃。许多开发者分享了他们如何结合Docker Compose进行多服务架构下的NPM项目管理,以及如何利用持续集成/持续部署(CI/CD)工具链,在Docker容器中自动完成NPM项目的构建测试与发布流程,从而显著提高了软件交付的速度和质量。 同时,针对跨平台兼容性和微服务架构的需求,Docker与Node.js的结合应用正成为越来越多企业级项目的选择。为了更好地理解和运用这一技术栈,推荐读者关注官方文档更新、参与线上研讨会,并查阅相关的最佳实践案例,以紧跟技术潮流,提升自身在容器化开发领域的技能水平。
2023-12-05 10:01:06
529
逻辑鬼才
Java
...发标记与整理,极大地提升了大规模应用在高并发、低延迟场景下的性能表现。 同时,OpenJDK社区也在持续优化其他垃圾回收器。例如,Shenandoah GC是OpenJDK的一个实验性项目,它通过使用“并发压缩”技术来减少GC暂停时间,适用于那些无法接受长时间STW(Stop-The-World)的应用程序。尽管其设计理念与ZGC有相似之处,但Shenandoah更加注重降低中等规模堆内存环境下的停顿时间。 此外,对于云原生和容器化环境下的Java应用,新一代的Epsilon垃圾回收器提供了“无操作”模式,仅专注于资源占用最小化,特别适合于短生命周期或对响应时间要求极为严格的微服务场景。 综上所述,随着技术的发展,Java垃圾回收领域的研究和创新从未止步,不断为开发者提供更高效、更灵活的内存管理工具,以适应日益复杂的软件系统需求。对于系统管理员和技术决策者而言,紧跟这些最新的垃圾回收技术动态,结合实际业务场景进行合理选择和调优,是提升系统整体性能和稳定性的关键所在。
2023-11-22 10:36:57
339
逻辑鬼才
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
history | tail -n 10
- 查看最近十条历史记录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"