前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[分布式节点]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Pig
...操作,而无需关注底层分布式系统的实现细节,极大地简化了Hadoop生态中的数据清洗、转换和加载过程。 声明式语言 , 声明式语言是一种编程范式,它强调程序逻辑的“做什么”而非“怎么做”。在Apache Pig中,声明式语言表现为Pig Latin,用户只需描述期望的结果或操作逻辑,无需详细指定具体步骤或算法。例如,在文中提到的使用Pig Latin对时间序列数据进行统计分析时,只需要声明按日期分组并对销售额求和,无需关心这个操作如何在集群上分布执行。
2023-04-09 14:18:20
609
灵动之光-t
Impala
...开发和维护。它允许在分布式计算环境中对大规模数据集进行可靠且高效的处理。Hadoop的核心组件包括Hadoop Distributed File System (HDFS) 和Yet Another Resource Negotiator (YARN),以及用于数据处理的MapReduce编程模型。在本文中,Impala作为Hadoop生态系统的一部分,为用户提供快速的关系型数据库查询能力。 Java虚拟机(JVM)选项 , Java虚拟机是Java程序运行的抽象计算机系统,它负责装载、验证、执行Java字节码并提供运行时环境。在文章中,通过配置JVM选项,可以调整Impala服务的运行行为,如内存分配、垃圾回收策略、线程并发数等,以优化其性能和并发处理能力。 并发连接 , 在数据库或服务器系统中,并发连接是指在同一时间点上,系统能够同时处理的服务请求的数量。对于Impala来说,支持更多的并发连接意味着能同时处理更多的查询请求,从而提高系统的整体吞吐量和服务响应速度。通过调整impala.conf文件中的相关参数和JVM选项,可以有效提升Impala处理并发连接的能力,确保在高负载情况下仍能保持高效稳定的数据处理和分析性能。
2023-08-21 16:26:38
421
晚秋落叶-t
Flink
...络配置抽象化,简化了分布式流处理任务中的服务间通信,进一步提升了系统的稳定性和可观察性。 另一方面,对于资源不足的问题,云服务商如AWS、阿里云等相继推出了针对大数据工作负载优化的Kubernetes托管服务,用户可以便捷地为Flink集群动态分配资源,有效避免因资源限制导致的Pod启动失败问题。 总之,随着技术的发展和社区的努力,Flink与Kubernetes的结合将会更加紧密且高效,为广大开发者带来更好的大数据处理体验。持续关注相关领域的最新动态和技术分享,无疑将有助于我们在实际运维中更好地解决类似问题,实现Flink在Kubernetes上的平稳运行与优化。
2024-02-27 11:00:14
539
诗和远方-t
Beego
...重试中间件),可以在分布式系统中有效防止雪崩效应,增强系统的稳定性和容错性。 综上所述,无论是Go语言本身的特性更新,还是社区的最佳实践分享,都在持续丰富和完善我们处理异常情况的方法论。掌握并运用这些最新技术动态,无疑将助力开发人员更好地驾驭像Beego这样的框架,构建出健壮且高效的Web应用程序。
2024-01-22 09:53:32
722
幽谷听泉
RabbitMQ
...探索与实践异步处理、分布式系统设计原理及现代云服务所提供的高级特性,将有助于我们在面对复杂、高并发的业务场景时游刃有余,确保系统的高性能和高稳定性。
2023-11-05 22:58:52
108
醉卧沙场-t
Nacos
...置信息的系统组件,在分布式系统特别是微服务架构中尤为重要。在文中提到的场景中,Nacos 担当了配置中心的角色,负责存储、分发及管理各服务的配置信息,如报错信息中的\ dataId: gatewayserver-dev-$ server.env .yaml\ 就是一个配置文件地址。当微服务启动时,会从配置中心获取并加载相应的配置,使得服务可以根据不同的环境或条件加载不同的配置内容,实现灵活的部署和运维管理。
2023-09-30 18:47:57
111
繁华落尽_t
Datax
...值。 并发度 , 在分布式系统或并行计算环境中,并发度指的是同时执行的任务数量或资源分配单元的数量。在本文上下文中,调整Datax的并发度意味着改变Datax在执行数据同步任务时可以同时处理的子任务数量,通过提高并发度,可以在一定程度上缓解因单次操作最大行数限制带来的问题,实现更高效的数据处理能力。
2023-08-21 19:59:32
525
青春印记-t
Logstash
...理策略,Kafka等分布式消息队列系统的应用也在实践中得到广泛认可。通过将Logstash与Kafka结合,能够实现数据缓冲、削峰填谷以及分布式处理,大大提升了系统的稳定性和扩展性。 因此,在解决Logstash内存不足的问题上,除了上述文章提供的基础方法外,与时俱进地了解并利用新的技术和架构方案,是现代IT运维和开发者提升数据处理效能的关键所在。
2023-03-27 09:56:11
328
翡翠梦境-t
Kubernetes
...可以帮助我们在大规模分布式环境中自动部署、扩展和管理容器应用。在Kubernetes这个大家庭里,我们可以像搭积木一样,通过创建各种各样的资源小玩意儿,比如Pods、Services这些,来描绘出我们自己的应用程序蓝图。然后,我们只要挥舞起kubectl这个神奇的小锤子,就能轻松对这些资源对象进行各种操作,就像是指挥家驾驭他的乐队一样。 三、Kubernetes权限控制的基本原理 在Kubernetes中,我们可以为不同的用户或角色设置不同的权限级别。这样一来,我们就能更灵活地掌控哪些人能接触到哪些资源,就像看门的大爷精准识别每一个进出小区的人,确保不会让捣蛋鬼误闯祸,也不会放任坏家伙搞破坏,把安全工作做得滴水不漏。 四、如何在Kubernetes中实现细粒度的权限控制? 1. 使用RBAC(Role-Based Access Control) Kubernetes提供了一种名为RBAC的角色基础访问控制系统,我们可以通过创建各种角色(Role)和绑定(Binding)来实现细粒度的权限控制。 例如,我们可以创建一个名为"my-app-admin"的角色,该角色具有修改Pod状态、删除Pod等高级权限: yaml apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: my-app-admin rules: - apiGroups: [""] resources: ["pods"] verbs: ["get", "watch", "list", "update", "patch", "delete"] 然后,我们可以将这个角色绑定到某个用户或者组上: yaml apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: my-app-admin-binding subjects: - kind: User name: user1 roleRef: kind: Role name: my-app-admin apiGroup: rbac.authorization.k8s.io 2. 使用PodSecurityPolicy 除了RBAC,Kubernetes还提供了另一种称为PodSecurityPolicy(PSP)的安全策略模型,我们也可以通过它来实现更细粒度的权限控制。 例如,我们可以创建一个PSP,该PSP只允许用户创建只读存储卷的Pod: yaml apiVersion: policy/v1beta1 kind: PodSecurityPolicy metadata: name: allow-read-only-volumes spec: fsGroup: rule: RunAsAny runAsUser: rule: RunAsAny seLinux: rule: RunAsAny supplementalGroups: rule: RunAsAny volumes: - configMap - emptyDir - projected - secret - downwardAPI - hostPath allowedHostPaths: - pathPrefix: /var/run/secrets/kubernetes.io/serviceaccount type: "" 五、结论 总的来说,通过使用Kubernetes提供的RBAC和PSP等工具,我们可以有效地实现对容器的细粒度的权限控制,从而保障我们的应用的安全性和合规性。当然啦,咱们也要明白一个道理,权限控制这玩意儿虽然厉害,但它可不是什么灵丹妙药,能解决所有安全问题。咱们还得配上其他招数,比如监控啊、审计这些手段,全方位地给咱的安全防护上个“双保险”,这样才能更安心嘛。
2023-01-04 17:41:32
99
雪落无痕-t
Datax
...款基于云计算的大规模分布式数据处理和分析服务,提供PB级别数据的在线分析能力。在本文场景下,用户通过DataX将日志数据从不同的源同步到ODPS中,以便进行进一步的大数据处理和分析操作。
2023-09-12 20:53:09
514
彩虹之上-t
NodeJS
... DDoS攻击 , 分布式拒绝服务(DDoS)攻击是一种网络攻击方式,攻击者利用多个计算机联合向目标系统发送大量请求,导致其资源耗尽而无法响应合法用户的请求。在Node.js应用中,防火墙可通过阻止特定IP地址的请求来防止此类攻击。 HTTPS协议 , HTTPS(全称Hyper Text Transfer Protocol Secure)是一种安全的超文本传输协议,它在HTTP的基础上加入SSL/TLS协议以提供加密处理和服务器身份认证功能。在Node.js应用开发中,使用HTTPS协议可以确保敏感信息(如密码)在网络传输过程中不被窃取或篡改,提高通信的安全性。 防篡改工具 , 防篡改工具是一种用于保护源代码或配置文件不被未经授权修改的技术手段,在Node.js环境里,Git hooks便是一个例子,它可以设置在特定操作前自动执行验证或检查任务,从而防止恶意代码对项目进行非法改动。 静态代码分析工具 , 静态代码分析工具是一种软件质量保障工具,它能够在不实际运行代码的情况下,通过对源代码进行扫描和解析,检测出潜在的安全漏洞、代码质量问题以及不符合规范的地方。在Node.js应用开发中,这类工具能够帮助开发者在编码阶段就发现并修复可能导致安全风险的问题。
2024-01-07 18:08:03
97
彩虹之上-t
Nacos
...? 服务发现是一种在分布式系统中自动发现服务实例的技术。在传统的单体应用中,我们只需要关心应用程序内部的服务调用。而在微服务架构中,我们需要关注的是服务之间的通信。这就需要我们有一个统一的方式来发现并定位其他服务的位置。这就是服务发现的作用。 三、如何在Nacos中实现服务间的通信? 接下来,我们就来看看如何在Nacos中实现服务间的通信。 首先,我们需要将我们的服务注册到Nacos的服务注册中心。这样一来,当其他客户端兄弟想要找这个服务玩的时候,就可以直接去服务注册中心翻一翻,找到这个服务的住址,然后轻松对接上。下面是代码示例: java import com.alibaba.nacos.api.NacosFactory; import com.alibaba.nacos.api.config.ConfigService; import com.alibaba.nacos.api.exception.NacosException; public class NacosClient { private static ConfigService configService; public static void main(String[] args) throws NacosException { // 创建ConfigService实例 configService = NacosFactory.createConfigService("127.0.0.1", 8848); // 注册服务 configService.publishConfig("service-name", "localhost:8080"); } } 在这个示例中,我们首先创建了一个ConfigService实例,然后使用publishConfig方法将我们的服务注册到了Nacos的服务注册中心。 然后,我们可以在其他的服务中通过Nacos的服务发现组件来发现并访问我们的服务。下面是代码示例: java import com.alibaba.nacos.api.NacosFactory; import com.alibaba.nacos.api.config.ConfigService; import com.alibaba.nacos.api.exception.NacosException; public class NacosClient { private static ConfigService configService; public static void main(String[] args) throws NacosException { // 创建ConfigService实例 configService = NacosFactory.createConfigService("127.0.0.1", 8848); // 获取服务地址 String serviceAddress = configService.getConfig("service-name", null, -1L, false); System.out.println("Service address: " + serviceAddress); } } 在这个示例中,我们首先创建了一个ConfigService实例,然后使用getConfig方法从Nacos的服务注册中心中获取到了我们的服务地址。 四、总结 通过上述步骤,我们已经成功地在Nacos中实现了服务间的通信。当然,这只是一个简单的示例。在实际动手操作的时候,咱们可能还会遇到更多需要解决的活儿,比如得定期给服务做个“体检”,确保它健康运作;再比如做负载均衡,好让各项任务均匀分摊,不至于让某个部分压力山大。但是,有了Nacos的帮助,这些问题都不再是难题。
2023-04-20 17:45:00
99
诗和远方-t
SeaTunnel
...nnel是一款优秀的分布式实时计算框架,它通过Flink的Stream API提供了一种处理大规模数据流的强大方式。然而,在实际应用中,我们可能会遇到数据传输速度慢的问题。这篇文章将深入探讨这个问题,并给出解决方案。 二、问题分析 1. 数据量过大 当数据量超过SeaTunnel所能处理的最大范围时,数据传输的速度就会变慢。比如,如果我们心血来潮,打算一股脑儿传输1个TB那么大的数据包,就算你用上了当今世上最快的网络通道,那个传输速度也照样能慢到让你怀疑人生。 2. 网络状况不佳 如果我们的网络环境较差,那么数据传输的速度自然会受到影响。比如,假如我们的网络有点卡,或者延迟情况比较严重,那么数据传输的速度就会像蜗牛爬一样慢下来。 三、解决方案 1. 数据分片 我们可以将大文件分割成多个小文件进行传输,这样可以大大提高数据传输的速度。例如,我们可以使用Java的File类的split方法来实现这个功能: java File file = new File("data.txt"); List files = Arrays.asList(file.split("\\G", 5)); 在上面的例子中,我们将大文件"data.txt"分割成了5个小文件。 2. 使用更高速的网络 如果我们的网络状况不佳,我们可以考虑升级我们的网络设备,或者更换到更高质量的网络服务商。 3. 使用缓存 我们可以使用缓存来存储已经传输过的数据,避免重复传输。例如,我们可以使用Redis作为缓存服务器: java Jedis jedis = new Jedis("localhost"); String data = jedis.get(key); if (data != null) { // 数据已经在缓存中,不需要再次传输 } else { // 数据不在缓存中,需要从源获取并存储到缓存中 } 在上面的例子中,我们在尝试获取数据之前,先检查数据是否已经在缓存中。 四、总结 SeaTunnel是一个强大的工具,可以帮助我们处理大规模的数据流。然而,在实际操作SeaTunnel的时候,我们免不了可能会碰上数据传输速度不给力的情况。你知道吗,如果我们灵活运用一些小技巧,就能让SeaTunnel这小子在传输数据时跑得飞快。首先,咱们可以巧妙地把数据“切片分块”,别让它一次性噎着,这样传输起来就更顺畅了。其次,挑个网速倍儿棒的环境,就像给它搬进了信息高速公路,嗖嗖的。再者,利用缓存技术提前备好一些常用的数据,随用随取,省去了不少等待时间。这样一来,SeaTunnel的数据传输速度妥妥地就能大幅提升啦! 以上就是我对解决SeaTunnel数据传输速度慢问题的一些想法和建议。如果您有任何问题,欢迎随时与我交流。
2023-11-23 21:19:10
180
桃李春风一杯酒-t
SeaTunnel
...核心计算引擎,提供了分布式、高吞吐量、低延迟的数据同步能力,使得 SeaTunnel 能够实现实时数据的可靠传输。 实时数据同步 , 实时数据同步是指在数据生成后立即或近乎立即地将其从源系统传输到目标系统的过程。SeaTunnel 作为一款实时数据同步工具,能够持续不断地捕获、处理并传输数据流,确保数据的时效性和一致性,满足业务对实时性要求较高的场景需求。 云原生(Cloud-Native) , 云原生是一种构建和运行应用程序的方法,它充分利用云计算的优势来实现敏捷开发、弹性伸缩、容错性和可管理性。在文中,随着云原生技术的发展和普及,SeaTunnel 在跨云环境下的数据同步解决方案显得更为重要,因为它能够更好地适应云环境的特性,提供无缝且高效的云间数据迁移服务。 多云环境 , 多云环境是指企业同时使用两个或以上的公有云、私有云或混合云环境,并通过统一的方式管理和操作这些云资源。在这种背景下,SeaTunnel 提供了强大的跨云数据同步功能,帮助企业用户在不同的云平台之间自由、安全地迁移和整合数据,以实现灵活部署、降低成本以及避免厂商锁定等目标。
2023-06-03 09:35:15
136
彩虹之上-t
HBase
...HBase结合,通过分布式账本实现数据不可篡改性和可追溯性,以满足日益严苛的数据完整性及合规性需求。 此外,对于希望深入了解HBase内部工作机制和最佳实践的读者,推荐阅读《HBase in Action》一书,作者细致剖析了HBase的设计原理,并结合实战案例给出了大量关于数据备份、恢复和优化的策略建议。 总之,随着技术的发展和法规的完善,HBase及其生态系统正在不断进化,为用户提供更为可靠和高效的大数据存储方案,而了解并掌握这些新趋势和工具将有利于我们在实际工作中更好地应对和预防数据丢失问题。
2023-08-27 19:48:31
414
海阔天空-t
RocketMQ
消息队列 , 在分布式系统中,消息队列是一种异步通信的中间件,用于处理和传输大量的数据或消息。它允许生产者(如应用服务)将消息发送到队列中,然后由消费者(如其他服务、模块或进程)按照先进先出(FIFO)或其他特定策略从队列中拉取并处理这些消息。在文章语境中,RocketMQ就是一款开源的消息队列系统,当生产者发送消息速度过快时,可能导致消息积压甚至丢失,此时需要对消息队列进行相应的优化配置和管理。 生产者 , 在消息队列系统中,生产者指的是生成和发布消息的一方,通常是一个服务、应用程序或系统组件。它负责将业务产生的数据包装成消息格式,并将其投递到指定的消息队列中等待被消费。文中通过Java代码模拟了一个快速发送消息的生产者,其每秒可发送大量消息至RocketMQ,导致可能产生消息堆积问题。 并发量 , 在计算机编程和系统架构中,特别是在涉及多线程或多任务处理时,并发量指的是系统在同一时间能够处理的任务数量或者说是同时执行的操作数。在文章所讨论的RocketMQ场景中,调整生产者的并发量意味着控制生产者一次性向消息队列批量发送消息的最大数量,以此来达到限制生产者发送消息速度的目的,防止消息队列因接收消息过快而无法及时处理,进而引发消息积压的问题。
2023-12-19 12:01:57
51
晚秋落叶-t
Mahout
...r Algebra(分布式线性代数)和Spark MLlib的实现,以更好地适应现代大数据处理环境。例如,在2021年发布的Mahout 0.14.0版本中,强化了与Apache Spark集成的能力,使得在大规模集群环境下运行复杂的机器学习任务变得更加高效和便捷。 进一步地,对于文本分类任务,除了经典的TF-IDF特征提取和朴素贝叶斯算法之外,研究人员和工程师也在探索深度学习方法的应用,如利用BERT、Transformer等预训练模型进行端到端的文本分类,这不仅提升了分类性能,还在一定程度上简化了特征工程的工作流程。 同时,随着隐私保护和合规要求日益严格,如何在保证数据安全性和用户隐私的前提下进行大规模文本分类成为新的挑战。近期的研究论文和实践案例中,可以看到同态加密、差分隐私等技术与Mahout等机器学习框架结合,为解决这一问题提供了新的思路。 因此,对Mahout及其在大规模文本分类领域的发展保持关注,并结合前沿技术和实践策略,将有助于我们在实际工作中更有效地应对各类文本分析任务,推动业务发展与创新。读者可以进一步阅读《Apache Mahout与Spark MLlib在大规模文本分类中的应用实践》等相关文献和技术博客,深入了解并掌握这一领域的最新趋势和技术细节。
2023-03-23 19:56:32
108
青春印记-t
MySQL
...L式join,以适应分布式搜索引擎的架构特性,提高大规模数据处理下的性能表现。 例如,在电商领域,用户行为日志、商品信息和订单数据往往分散存储在不同的索引中。借助Elasticsearch的Nested数据类型,可以在单个索引内部实现类似join的效果,减少跨索引查询带来的延迟和资源消耗。同时,Elasticsearch团队不断优化内存管理和查询执行计划,使得处理复杂关联查询的效率得到提升。 另外,针对大数据时代下对实时性要求极高的场景,如实时风控和智能推荐,业界开始采用更先进的技术方案,如图数据库与Elasticsearch结合的方式,通过图形模型表达实体间的关系,从而实现实时高效的多表关联查询。 综上所述,尽管Elasticsearch的join类型在特定场景下存在局限性,但通过持续的技术创新和最佳实践的应用,我们能够有效克服这些挑战,并充分利用Elasticsearch的优势服务于多元化的企业级搜索与分析需求。对于广大开发者和数据工程师而言,紧跟Elasticsearch的最新发展趋势,灵活运用各种查询方式,将有助于提升系统的整体性能和用户体验。
2023-12-03 22:57:33
46
笑傲江湖_t
MyBatis
...试将MyBatis与分布式缓存、数据库读写分离等技术相结合。例如,结合Redis或Memcached实现一级缓存之外的数据暂存,减少对主数据库的压力;或者根据业务场景采用分库分表策略,有效分散单一表的大数据量压力,提升查询性能。 另外,在SQL优化层面,不仅需要关注基本的索引设计、查询语句优化,还可以借助数据库自身的高级特性,如Oracle的并行查询功能,MySQL 8.0以后支持的窗口函数进行复杂分页及聚合计算等,进一步挖掘系统的性能潜力。 最后,对于微服务架构下的应用,可以通过熔断、降级、限流等手段,避免因大量并发请求导致的性能瓶颈,同时,持续监控与分析系统性能指标,结合A/B测试等方法,科学评估不同优化措施的实际效果,确保在海量数据挑战面前,系统始终保持高效稳定运行。
2023-08-07 09:53:56
56
雪落无痕
Golang
...、云计算平台和大规模分布式系统等应用。 标准库 , 在编程语言中,标准库是指由该语言官方提供并随语言发行的一系列预先编写好的功能模块。在Golang中,标准库包含了如fmt(格式化I/O)、io(输入输出操作)、os(操作系统接口)等众多内置库,为开发者提供了丰富的基础功能支持,可以直接通过import关键字引入并在程序中使用。 包(Package) , 在Golang中,包是一个组织代码的基本单元,通常对应于一个文件夹及其内部的所有源文件。它具有独立的命名空间,能够帮助开发者更好地管理代码结构和避免命名冲突。包内可以包含多个子包,每个包内的函数、变量和常量仅在该包内可见,除非它们被明确地导出以供其他包使用。通过import关键字,可以在Golang程序中导入并使用其他包提供的功能。
2023-01-22 13:27:31
497
时光倒流-t
Apache Pig
...doop是一个开源的分布式计算框架,主要用于处理和存储海量数据集。它包括两个核心组件。 Piggybank , 文中提到的Piggybank是Apache Pig的一个库,包含了一系列可重用的功能UDF(用户自定义函数),以扩展Pig Latin的功能性。通过导入Piggybank.jar,Pig用户可以便捷地使用预定义的一系列实用函数来执行复杂的数据操作,例如统计分析、字符串处理等,从而丰富和增强了Pig在处理各种数据类型和实现特定业务逻辑时的能力。
2023-03-06 21:51:07
363
岁月静好-t
ElasticSearch
...rch 是一款开源的分布式搜索引擎,具有高可用性、高性能和丰富的功能。在实际操作中,我们经常会遇到要处理海量数据并进行分页展示的情况,这时候,Elasticsearch 提供的这个叫 search_after 的参数就派上大用场啦。 一、什么是 search_after 参数 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它允许我们在前一页的基础上,根据排序字段的值获取下一页的结果。search_after 参数的核心思想是在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推,直到达到我们需要的分页数量为止。 二、为什么需要使用 search_after 参数 使用传统的 from + size 方式进行分页,如果数据量很大,那么每一页都需要加载所有满足条件的记录到内存中,这样不仅消耗了大量的内存,而且会导致 CPU 资源的浪费。用 search_after 参数来实现分页的话,操作起来就像是这样:只需要轻轻拽住满足条件的最后一项记录,就能嗖地一下翻到下一页的结果。这样做,就像给内存和CPU减负瘦身一样,能大大降低它们的工作压力和损耗。 三、如何使用 search_after 参数 使用 search_after 参数非常简单,我们只需要在 Search API 中添加 search_after 参数即可。例如,如果我们有一个商品列表,我们想要获取第一页的商品列表,我们可以这样做: bash GET /products/_search { "from": 0, "size": 10, "sort": [ { "name": { "order": "asc" } } ], "search_after": [ { "name": "Apple" } ] } 在这个查询中,我们设置了 from 为 0,size 为 10,表示我们要获取第一页的商品列表,排序字段为 name,排序顺序为升序,最后,我们设置了 search_after 参数为 {"name": "Apple"},表示我们要从名为 Apple 的商品开始查找下一页的结果。 四、实战示例 为了更好地理解和掌握 search_after 参数的使用,我们来看一个实战示例。想象一下,我们运营着一个用户评论平台,现在呢,我们特别想瞅瞅用户们最新的那些精彩评论。不过,这里有个小插曲,就是这评论数量实在多得惊人,所以我们没法一股脑儿全捞出来看个遍哈。这时,我们就需要使用 search_after 参数来进行深度分页。 首先,我们需要创建一个 user_comment 文档类型,包含用户 id、评论内容和评论时间等字段。然后,我们可以编写如下的代码来获取最新的用户评论: python from datetime import datetime import requests 设置 Elasticsearch 的地址和端口 es_url = "http://localhost:9200" 创建 Elasticsearch 集群 es = Elasticsearch([es_url]) 获取最新的用户评论 def get_latest_user_comments(): 设置查询参数 params = { "index": "user_comment", "body": { "query": { "match_all": {} }, "sort": [ { "created_at": { "order": "desc" } } ], "size": 1, "search_after": [] } } 获取第一条记录 response = es.search(params) if not response["hits"]["hits"]: return [] 记录最后一条记录的排序字段值 last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 获取下一条记录 while True: params["body"]["size"] += 1 params["body"]["search_after"] = search_after response = es.search(params) 如果没有更多记录,则返回所有记录 if not response["hits"]["hits"]: return [hit["_source"] for hit in response["hits"]["hits"]] else: last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 在这段代码中,我们首先设置了一个空的 search_after 列表,然后执行了一次查询,获取了第一条记录,并将其存储在 last_record 变量中。接着,我们将 last_record 中的 id 和 created_at 字段的值添加到 search_after 列表中,再次执行查询,获取下一条记录。如此反复,直到获取到我们需要的所有记录为止。 五、总结 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它可以让我们在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推广多获取我们需要的分页数量为止。这种方法不仅可以减少内存和 CPU 的消耗,而且还能够提高查询的效率,是一个非常值得使用的分页方式。
2023-03-26 18:17:46
576
人生如戏-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
scp local_file user@remote_host:destination_path
- 安全复制文件到远程主机。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"