前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[参数设置]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Impala
...的优化器。 调整资源设置:Impala的性能受到许多资源因素的影响,如内存、CPU、磁盘等。你可以通过调整这些参数来优化查询性能。比如说,你完全可以尝试给Impala喂饱更多的内存,或者把更重的计算任务分配给那些运算速度飞快的核心CPU,就像让短跑健将去跑更重要的赛段一样。 使用分区:分区是一种有效的方法,可以将大型表分割成较小的部分,从而提高查询性能。你知道吗,通过给数据分区这么一个操作,你就能把它们分散存到多个不同的硬件设备上。这样一来,当你需要查找信息的时候,效率嗖嗖地提升,就像在图书馆分门别类放书一样,找起来又快又准! 缓存查询结果:Impala有一个内置的查询缓存机制,可以将经常使用的查询结果缓存起来,减少不必要的计算。此外,Impala还可以利用Hadoop的内存管理机制,将结果缓存在HDFS上。 以上只是优化Impala查询性能的一小部分方法。实际上,还有很多其他的技术和工具可以帮助你提高查询性能。关键在于,你得像了解自家后院一样熟悉你的数据和工作负载,这样才能做出最棒、最合适的决策。 总结 Impala是一种强大的查询工具,能够在大数据环境中提供卓越的查询性能。如果你想让你的Impala查询速度嗖嗖提升,这里有几个小妙招可以试试:首先,设计查询时要够精明合理,别让它成为拖慢速度的小尾巴;其次,灵活调整资源分配,确保每一份计算力都用在刀刃上;最后,巧妙运用分区功能,让数据查找和处理变得更加高效。这样一来,你的Impala就能跑得飞快啦!最后,千万记住这事儿啊,你得像了解自家的后花园一样深入了解你的数据和工作负载,这样才能够做出最棒、最合适的决策,一点儿都不含糊。
2023-03-25 22:18:41
487
凌波微步-t
Kibana
...用户登录记录,你可以设置时间过滤器来限定这个范围。 代码示例: json GET /logs/_search { "query": { "range": { "@timestamp": { "gte": "now-7d/d", "lt": "now/d" } } } } 2.3 使用索引模式进行多角度数据切片 索引模式允许你根据不同的字段来创建视图,从而从不同角度观察数据。比如说,你有个用户信息的大台账,里面记录了各种用户的小秘密,比如他们的位置和年龄啥的。那你可以根据这些小秘密,弄出好几个不同的小窗口来看,这样就能更清楚地知道你的用户都分布在哪儿啦! 代码示例: json PUT /users/_mapping { "properties": { "location": { "type": "geo_point" }, "age": { "type": "integer" } } } 2.4 利用可视化工具进行高级数据切片 Kibana的可视化工具(如图表、仪表板)提供了强大的数据可视化能力,使我们可以直观地看到数据之间的关系。比如说,你可以画个饼图来看看各种产品卖得咋样,比例多大;还可以画个时间序列图,看看每天的销售额是涨了还是跌了。 代码示例: 虽然直接通过API创建可视化对象不是最常见的方式,但你可以通过Kibana的界面来设计你的可视化,并将其导出为JSON格式。下面是一个简单的示例,展示了如何通过API创建一个简单的柱状图: json POST /api/saved_objects/visualization { "attributes": { "title": "Sales by Category", "visState": "{\"title\":\"Sales by Category\",\"type\":\"histogram\",\"params\":{\"addTimeMarker\":false,\"addTooltip\":true,\"addLegend\":true,\"addTimeAxis\":true,\"addDistributionBands\":false,\"scale\":\"linear\",\"mode\":\"stacked\",\"times\":[],\"yAxis\":{},\"xAxis\":{},\"grid\":{},\"waterfall\":{} },\"aggs\":[{\"id\":\"1\",\"enabled\":true,\"type\":\"count\",\"schema\":\"metric\",\"params\":{} },{\"id\":\"2\",\"enabled\":true,\"type\":\"terms\",\"schema\":\"segment\",\"params\":{\"field\":\"category\",\"size\":5,\"order\":\"desc\",\"orderBy\":\"1\"} }],\"listeners\":{} }", "uiStateJSON": "{}", "description": "", "version": 1, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"index\":\"sales\",\"filter\":[],\"highlight\":{},\"query\":{\"query_string\":{\"query\":\"\",\"analyze_wildcard\":true} }}" } }, "references": [], "migrationVersion": {}, "updated_at": "2023-09-28T00:00:00.000Z" } 3. 思考与实践 在实际操作中,数据切片并不仅仅是简单的过滤和查询,它还涉及到如何有效地组织和呈现数据。这就得咱们不停地试各种招儿,比如说用聚合函数搞更复杂的统计分析,或者搬出机器学习算法来预测未来的走向。每一次尝试都可能带来新的发现,让数据背后的故事更加生动有趣。 4. 结语 数据切片是数据分析中不可或缺的一部分,它帮助我们在海量数据中寻找有价值的信息。Kibana这家伙可真不赖,简直就是个数据分析神器,有了它,我们实现目标简直易如反掌!希望本文能为你提供一些灵感和思路,让你在数据分析的路上越走越远! --- 以上就是本次关于如何在Kibana中实现数据切片的技术分享,希望能对你有所帮助。如果你有任何疑问或想了解更多内容,请随时留言讨论!
2024-10-28 15:42:51
43
飞鸟与鱼
SeaTunnel
...通过调整配置文件中的参数,增加数据库连接池的大小 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password", "connectionPoolSize": 50 // 增加连接池大小 } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "connectionPoolSize": 50 // 增加连接池大小 } } } 4.3 示例三:避免锁争用 java // 在配置文件中添加适当的并发控制策略 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "concurrency": 10 // 设置并发度 } } } 4.4 示例四:验证SQL语句 java // 在配置文件中明确指定要执行的SQL语句 { "source": { "type": "sql", "config": { "sql": "SELECT FROM source_table" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "table": "target_table", "sql": "INSERT INTO target_table (column1, column2) VALUES (?, ?)" } } } 5. 总结与展望 在这次探索中,我们不仅学习了如何处理数据库事务提交失败的问题,还了解了如何通过实际操作来解决这些问题。虽然在这个过程中遇到了不少挑战,但正是这些挑战让我们成长。未来,我们将继续探索更多关于数据集成和处理的知识,让我们的旅程更加丰富多彩。 希望这篇技术文章能够帮助你在面对类似问题时有更多的信心和方法。如果你有任何疑问或建议,欢迎随时与我交流。让我们一起加油,不断进步!
2025-02-04 16:25:24
112
半夏微凉
Hadoop
...里头有语法错误,或者设置得不太合理,就可能导致YARN ResourceManager启动时栽跟头,初始化失败。此时需要检查并修复配置文件。 3. YARN环境变量设置不当 YARN的运行还需要一些环境变量的支持,例如JAVA_HOME、HADOOP_HOME等。如果这些环境变量设置不当,也会导致YARN ResourceManager初始化失败。此时需要检查并设置正确的环境变量。 4. YARN服务未正确启动 在YARN环境中,还需要启动一些辅助服务,例如NameNode、DataNode、Zookeeper等。如果这些服务未正确启动,也会导致YARN ResourceManager初始化失败。此时需要检查并确保所有服务都已正确启动。 如何解决“YARN ResourceManager初始化失败”? 了解了问题的原因后,接下来就是如何解决问题。根据上述提到的各种可能的原因,我们可以采取以下几种方法进行尝试: 1. 增加集群资源 对于因为集群资源不足而导致的问题,最直接的解决办法就是增加集群资源。这可以通过添加新的服务器,或者升级现有的服务器硬件等方式实现。 2. 修复配置文件 对于因为配置文件错误而导致的问题,我们需要仔细检查所有的配置文件,找出错误的地方并进行修复。同时,咱也得留意一下,改动配置文件这事儿,就像动了机器的小神经,可能会带来些意想不到的“副作用”。所以呢,在动手修改前,最好先做个全面体检——也就是充分测试啦,再给原来的文件留个安全备份,这样心里才更有底嘛。 3. 设置正确的环境变量 对于因为环境变量设置不当而导致的问题,我们需要检查并设置正确的环境变量。如果你不清楚环境变量到底该怎么设置,别担心,这里有两个实用的解决办法。首先呢,你可以翻阅一下Hadoop官方网站的官方文档,那里面通常会有详尽的指导步骤;其次,你也可以尝试在互联网上搜一搜相关的教程或者攻略,网上有很多热心网友分享的经验,总有一款适合你。 4. 启动辅助服务 对于因为辅助服务未正确启动而导致的问题,我们需要检查并确保所有服务都已正确启动。要是服务启动碰到状况了,不妨翻翻相关的文档资料,或者找专业的高手来帮帮忙。 总结 总的来说,解决“YARN ResourceManager初始化失败”这个问题需要我们具备一定的专业知识和技能。但是,只要我们有足够多的耐心和敏锐的观察力,就可以按照上面提到的办法,一步一步地把各种可能性都排查个遍,最后稳稳地找到那个真正能解决问题的好法子。最后,我想说的是,虽然这是一个比较棘手的问题,但我们只要有足够的信心和毅力,就一定能迎刃而解!
2024-01-17 21:49:06
568
青山绿水-t
RocketMQ
...; - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
92
半夏微凉
MyBatis
...的JDBC代码和手动设置参数以及获取结果集的工作。MyBatis可以使用简单的XML或注解进行配置和原始映射,将接口和Java的POJOs(Plain Old Java Objects,普通的Java对象)映射成数据库中的记录。MyBatis框架提供了丰富的事务管理功能,通过配置可以灵活地设置事务隔离级别,确保数据的一致性和可靠性。
2024-11-12 16:08:06
32
烟雨江南
Beego
...l.DB。接着,我们设置了连接池的最大开放连接数为20,最大空闲连接数为10。 四、如何优化数据库连接池的配置? 在配置数据库连接池时,我们需要注意以下几个方面: 1. 设置合适的最大开放连接数和最大空闲连接数。如果最大允许的开放连接数太多了,就好比是一个接待员同时应付太多的客人,不仅会让整个系统的资源被胡乱消耗掉,变得大手大脚;而另一方面,要是最大空闲连接数设置得不够多,那就像是在高峰期,排队等待服务的顾客太少,结果就是数据库不得不频繁地忙前忙后,响应速度自然也就慢下来了。因此,这两个参数需要根据实际的业务需求来进行调整。 2. 避免频繁地关闭数据库连接。虽然数据库连接池确实是个好东西,能帮咱们有效解决频繁创建和销毁数据库连接这个大麻烦,但你要是总把它当成回收站,频繁地把连接丢回去,那这好经也可能被念歪了,会导致数据库连接资源白白浪费掉。因此,我们应该尽可能地减少数据库连接的释放次数。 3. 定期检查数据库连接池的状态。为了确保数据库连接池运转得顺顺畅畅,我们得定期给它做个全面体检,摸摸底儿,瞅瞅像当前有多少个连接在用啊,又有多少闲着没事儿干的空闲连接等等这些关键指标。这样一来,一旦有啥小毛小病的,咱们就能立马发现并及时处理掉,保证一切正常运行。 五、总结 总的来说,在Beego框架下使用数据库连接池是一个非常有效的方法,可以帮助我们提高数据库的性能。不过呢,咱们也得不断地摸索和捣鼓,才能找到那个最适合自家数据库的连接池配置。就像是找鞋子一样,不试穿几双,怎么能知道哪一双穿起来最合脚、最舒服呢?所以,对于数据库连接池的配置,咱也得慢慢尝试、逐步调整,才能找到最佳的那个“黄金比例”。同时,我们也应该注意保持良好的编程习惯,避免产生无谓的资源浪费。希望这篇内容能实实在在帮到你,让你更溜地掌握和运用Beego框架下的数据库连接池,让数据操作变得更顺手、更高效。
2023-12-11 18:28:55
528
岁月静好-t
Datax
...哪儿,还得填一些关键设置,比如说线程数量。 json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "123456", "connection": [ { "jdbcUrl": ["jdbc:mysql://localhost:3306/testdb"], "table": ["user_info"] } ] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://localhost:9000", "fileType": "text", "path": "/user/datax/user_info", "fileName": "user_info.txt", "writeMode": "append", "column": [ "id", "name", "email" ], "fieldDelimiter": "\t" } } } ], "setting": { "speed": { "channel": 4 } } } } 在这段配置中,"channel": 4 这一行非常重要。它指定了DataX应该使用多少个线程来处理数据。这里的数字可以根据你的实际情况调整。比如说,如果你的电脑配置比较高,内存和CPU都很给力,那就可以试试设大一点的数值,比如8或者16。 5. 实战演练 为了更好地理解DataX的多线程处理,我们来看一个具体的实战案例。假设你有一个名为 user_info 的表,其中包含用户的ID、姓名和邮箱信息。现在你想把这部分数据同步到HDFS中。 首先,你需要确保已经安装并配置好了DataX。接着,按照上面的步骤创建一个JSON配置文件。这里是一些关键点: - 数据库连接:确保你提供的数据库连接信息(用户名、密码、JDBC URL)都是正确的。 - 表名:指定你要同步的表名。 - 字段列表:列出你要同步的字段。 - 线程数:根据你的需求设置合适的线程数。 保存好配置文件后,就可以运行DataX了。打开命令行,输入以下命令: bash python datax.py /path/to/your/config.json 注意替换 /path/to/your/config.json 为你的实际配置文件路径。运行后,DataX会自动启动指定数量的线程来处理数据同步任务。 6. 总结与展望 通过本文的介绍,你应该对如何使用DataX实现数据同步的多线程处理有了初步了解。多线程不仅能加快数据同步的速度,还能让你在处理海量数据时更加得心应手,感觉轻松不少。当然啦,这仅仅是DataX功能的冰山一角,它还有超多酷炫的功能等你来探索呢! 希望这篇文章对你有所帮助!如果你有任何问题或建议,欢迎随时留言交流。我们一起探索更多有趣的技术吧!
2025-02-09 15:55:03
76
断桥残雪
ActiveMQ
... // 创建会话,并设置为事务性 Session session = connection.createSession(true, Session.SESSION_TRANSACTED); // 创建目标队列 Destination destination = session.createQueue("TestQueue"); // 创建生产者并发送消息 MessageProducer producer = session.createProducer(destination); TextMessage message = session.createTextMessage("Hello, World!"); producer.send(message); // 提交事务 session.commit(); 以上是一个简单的ActiveMQ生产者示例,但真实的高并发场景中,频繁的创建、销毁对象及事务操作可能对性能产生显著影响。 3. 性能瓶颈排查策略 (1) 资源监控:首先,我们需要借助ActiveMQ自带的JMX监控工具或第三方监控系统,实时监控CPU使用率、内存占用、磁盘I/O、网络流量等关键指标,从而定位可能存在的性能瓶颈。 (2) 线程池分析:深入到ActiveMQ内部,其主要的执行单元是线程池,因此,观察并分析ActiveMQ ThreadPool的工作状态,如活跃线程数、阻塞任务数等,有助于发现因线程调度问题导致的性能瓶颈。 (3) 消息堆积排查:若发现消息积压严重,应检查消费者消费速度是否跟得上生产者的发送速度,或者查看是否有未被正确确认的消息造成堆积,例如: java MessageConsumer consumer = session.createConsumer(destination); while (true) { TextMessage msg = (TextMessage) consumer.receive(); // 处理消息 // ... // 提交事务 session.commit(); } 此处,消费者需确保及时提交事务以释放已消费的消息,否则可能会形成消息堆积。 (4) 配置调优:针对上述可能的问题,可以尝试调整ActiveMQ的相关配置参数,比如增大内存缓冲区大小、优化线程池配置、启用零拷贝技术等,以提升高并发下的性能表现。 4. 结论与思考 排查ActiveMQ在高并发环境下的性能瓶颈是一项既具挑战又充满乐趣的任务。每一个环节,咱们都得把它的工作原理摸得门儿清,然后结合实际情况,像对症下药那样来点实实在在的优化措施。对开发者来说,碰到高并发场景时,咱们可以适时地把分布式消息中间件集群、负载均衡策略这些神器用起来,这样一来,ActiveMQ就能更溜地服务于我们的业务需求啦。在整个这个过程中,始终坚持不懈地学习新知识,保持一颗对未知世界积极探索的心,敢于大胆实践、勇于尝试,这种精神头儿,绝对是咱们突破瓶颈、提升表现的关键所在。 以上内容仅是初步探讨,具体问题需要根据实际应用场景细致分析,不断挖掘ActiveMQ在高并发下的潜力,使其真正成为支撑复杂分布式系统稳定运行的强大后盾。
2023-03-30 22:36:37
602
春暖花开
Nginx
...che_bypass设置如何影响缓存? 1. 初识Nginx与缓存 嗨,朋友们!今天我们来聊聊Nginx中的一个非常重要的功能——缓存。如果你在互联网上摸爬滚打过一段时间,那你一定知道缓存的重要性。它就像家里的冰箱似的,帮我们存点常用的“干货”,这样就不用每次用的时候都从零开始折腾啦! Nginx作为一个高性能的HTTP服务器和反向代理服务器,它也提供了强大的缓存机制。通过缓存,我们可以显著提高网站的响应速度,减轻后端服务器的压力。但是,缓存也不是万能的。对了,有时候咱们可不能光顾着用缓存,还得先看看情况再决定是不是真的要用它,而不是一股脑儿地直接掏出缓存里的东西就完事了。这就是Nginx的proxy_cache_bypass指令出场的时候了。 想象一下,你正在吃一份昨天剩下的披萨,突然发现里面放了你讨厌的洋葱。哎,遇到这种情况你咋整?是硬着头皮吃完呢,还是直接倒掉重新来一份?说到这个,Nginx里的proxy_cache_bypass就有点像你嘴里的味蕾,专门负责挑三拣四——它会根据一些特定条件,决定到底是直接找后端服务器要新鲜数据,还是老老实实从缓存里拿现成的。 2. proxy_cache_bypass的基本概念 首先,让我们来搞清楚什么是proxy_cache_bypass。简单说啊,这个指令用来用来决定Nginx到底要不要走缓存,还是直接甩给后端服务器去处理。有点像你在点餐时是先看看菜单上的现成选项呢,还是直接跟厨师说“来点新鲜的”!你可以把它理解成一个开关,这个开关要么连着个变量,要么是一堆条件。只要这些条件一达成,Nginx就说:“好嘞,不走缓存了,咱们直接来!” 举个例子,假设你有一个电商网站,用户可以根据自己的偏好来筛选商品。要是用户点了个“只看最新商品”的选项,那这个请求就别用缓存了啊。为啥呢?因为它要的是刚出炉的数据,可不是什么昨天的老黄历!这时候,你就可以使用proxy_cache_bypass来告诉Nginx,这个请求不应该被缓存。 nginx location /products { proxy_cache my_cache; proxy_cache_bypass $http_x_update; proxy_pass http://backend_server; } 在这个配置中,$http_x_update是一个自定义的HTTP头,当你在请求头中添加这个头时,Nginx就会绕过缓存,直接向后端服务器发送请求。 3. 深入探讨proxy_cache_bypass的工作原理 现在,让我们更深入地探讨一下proxy_cache_bypass是如何工作的。哈哈,这玩意儿可机灵了!就像个老练的管家,能根据具体情况 deciding(做决定)要不要用缓存,该出手时就出手,不该用的时候绝不浪费资源~ 首先,Nginx会检查proxy_cache_bypass指令中指定的条件。如果条件成立,Nginx会跳过缓存,直接向后端服务器发送请求。如果条件不成立,Nginx则会尝试从缓存中获取响应。 举个例子,假设你正在开发一个新闻网站,用户可以选择查看“热门新闻”或者“最新新闻”。对于“最新新闻”,你可能希望每次请求都获取最新的数据,而不是使用缓存。你可以这样配置: nginx location /latest_news { proxy_cache my_cache; proxy_cache_bypass $arg_force_update; proxy_pass http://news_backend; } 在这个例子中,$arg_force_update是一个查询参数,当你在URL中添加?force_update=1时,Nginx就会绕过缓存。 4. 实际应用中的proxy_cache_bypass 好了,现在我们已经了解了proxy_cache_bypass的基本概念和工作原理,接下来让我们看看它在实际应用中的具体例子。 假设你正在运营一个在线教育平台,学生可以在平台上观看课程视频。为了提高用户体验,你决定为每个学生提供个性化的推荐视频。这种时候,你大概更想每次都拿到最新鲜的推荐列表,而不是老是翻那堆缓存里的东西吧? nginx location /recommendations { proxy_cache my_cache; proxy_cache_bypass $http_x_user_id; proxy_pass http://video_server; } 在这个配置中,$http_x_user_id是一个自定义的HTTP头,当你在请求头中添加这个头时,Nginx就会绕过缓存。 5. 总结与展望 总之,proxy_cache_bypass是Nginx缓存机制中一个非常有用的工具,它允许我们在特定条件下绕过缓存,直接向后端服务器发送请求。用好了这个指令啊,就好比给网站的缓存装了个聪明的小管家,让它该存啥不该存啥都安排得明明白白的。这样不仅能加快网页加载速度,还能让用户打开网站的时候感觉特别顺畅,那体验感直接拉满! 未来,随着互联网技术的不断发展,我相信proxy_cache_bypass会有更多的应用场景。说不定哪天啊,它就更聪明了,自己能分得清哪些请求得绕开缓存走,哪些直接就能用缓存搞定。不管咋说呢,咱们都得对新玩意儿保持那份好奇,老想着学点新鲜的,让自己一直进步才行啊! 最后,我想说的是,Nginx不仅仅是一个工具,它更像是一个伙伴,陪伴着我们一起成长。希望这篇文章能对你有所帮助,如果有任何问题或者想法,欢迎随时交流!
2025-04-18 16:26:46
98
春暖花开
Apache Atlas
...事儿的好伙伴。 三、设置基础环境与配置 首先,我们需要在Apache Atlas环境中设置好数据脱敏规则。登录到Atlas的管理界面,找到数据资产管理模块,创建一个新的数据实体(例如,用户表User)。在这里,你可以为每个字段指定脱敏策略。 java // 示例代码片段 DataEntity userEntity = new DataEntity(); userEntity.setName("User"); userEntity.setSchema(new DataSchema.Builder() .addField("userId", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.PARTIAL) .setMaskCharacter('') .setLength(5) // 显示前5位 .build()) .addField("email", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.FULL) .build()) .build()); 四、编写脱敏策略 在上述代码中,DataMaskingPolicy类定义了具体的脱敏策略。MaskType枚举允许我们选择全遮盖(FULL)、部分遮盖(PARTIAL)或其他方式。setMaskCharacter()定义了替换字符,setLength(5)则设置了显示的长度。当你想要在某些字段中保留部分真实的细节时,咱们就可以灵活地给这些字段设定一个合适的长度,并选择相应的掩码方式,这样一来,既保护了隐私,又不失实用性,就像是给信息穿上了“马赛克”外套一样。 五、关联数据脱敏策略到实际操作 接下来,我们需要确保在执行SQL查询时能应用这些策略。这通常涉及到配置数据访问层(如JDBC、Spark SQL等),让它们在查询时自动调用Atlas的策略。以下是一个使用Hive SQL的示例: sql -- 原始SQL SELECT userId, email FROM users; -- 添加脱敏处理 SELECT userId.substring(0, 5) as 'maskedUserId', email from users; 六、监控与调整 实施数据脱敏策略后,我们需要监控其效果,确保数据脱敏在实际使用中没有意外影响业务。根据反馈,可能需要调整策略的参数,比如掩码长度或替换字符,以达到最佳的保护效果。 七、总结与最佳实践 Apache Atlas的数据脱敏功能并非一蹴而就,它需要时间和持续的关注。要知道,要想既确保数据安然无恙又不拖慢工作效率,就得先摸清楚你的数据情况,然后量身定制适合的保护策略,并且在实际操作中灵活调整、持续改进这个策略!就像是守护自家宝贝一样,既要看好门,又要让生活照常进行,那就得好好研究怎么把门锁弄得既安全又方便,对吧!记住了啊,数据脱敏可不是一劳永逸的事儿,它更像是个持久战,需要随着业务发展需求的不断演变,还有那些法规要求的时常更新,我们得时刻保持警惕,持续地对它进行改进和调整。 通过这篇文章,你已经掌握了在Apache Atlas中实施数据脱敏策略的基本步骤。但在实际动手干的时候,你可能得瞅瞅具体项目的独特性跟需求,量身打造出你的解决方案才行。听好了,对一家企业来说,数据安全可是它的命根子,而做好数据脱敏这步棋,那就是走向合规这条大道的关键一步阶梯!祝你在数据治理的旅程中顺利!
2024-03-26 11:34:39
469
桃李春风一杯酒-t
DorisDB
...DB提供了丰富的系统参数供用户调整以适应不同场景下的性能需求。比方说,你可以通过调节max_scan_range_length这个参数,来决定每次查询时最多能扫描多少数据范围,就像控制扫地机器人的清扫范围那样。再者,通过巧妙调整那些和内存相关的设置,就能让服务器资源得到充分且高效的利用,就像精心安排储物空间,让每个角落都物尽其用。 6. 结语 优化DorisDB的SQL查询性能是一个综合且持续的过程,需要结合业务特点和数据特征,从表结构设计、查询语句编写到系统配置调整等多个维度着手。每个环节都需细心打磨,才能使DorisDB在大数据洪流中游刃有余,提供更为出色的服务。每一次对DorisDB的优化,都是我们携手这位好伙伴,一起摸爬滚打、不断解锁新技能、共同进步的重要印记。这样一来,咱的数据分析之路也能走得更顺溜,效率嗖嗖往上涨,就像坐上了火箭一样快呢!
2023-05-07 10:47:25
501
繁华落尽
Apache Atlas
...络不稳定时,可以通过设置HTTP客户端库的重试参数,在请求失败后按照预设规则自动重新发起请求。例如,在Python requests库中,可以通过配置Retry对象来设定总重试次数、重试间隔以及针对特定HTTP状态码进行重试,以增加在不稳定网络环境下成功获取数据的概率。
2024-01-10 17:08:06
410
冬日暖阳
Mongo
...ngod服务的命令行参数来指定存储引擎。例如,若要明确指定使用WiredTiger引擎启动MongoDB服务器,可以这样做: bash mongod --storageEngine wiredTiger --dbpath /path/to/your/data/directory 这里,--storageEngine 参数用于设置存储引擎类型,而--dbpath 参数则指定了数据库文件存放的位置。 请注意,虽然InMemory存储引擎也存在,但它主要适用于纯内存计算场景,即所有数据仅存储在内存中且不持久化,因此不适合常规数据存储需求。 4. 探讨与思考 选择合适的存储引擎对于任何数据库架构设计都是至关重要的。随着MongoDB的不断成长和进步,核心团队慧眼识珠,挑中了WiredTiger作为默认配置。这背后的原因呢,可不光是因为这家伙在性能上表现得超级给力,更因为它对现代应用程序的各种需求“拿捏”得恰到好处。比如咱们常见的实时分析呀、移动应用开发这些热门领域,它都能妥妥地满足,提供强大支持。不过呢,每个项目都有自己独特的一套规矩和限制,摸清楚不同存储引擎是怎么运转的、适合用在哪些场合,能帮我们更聪明地做出选择,让整个系统的性能表现更上一层楼。 总结来说,MongoDB如今已经将WiredTiger作为其默认且推荐的存储引擎,但这并不妨碍我们在深入研究和评估后根据实际业务场景选择或切换存储引擎。就像一个经验老道的手艺人,面对各种不同的原料和工具,咱们得瞅准具体要干的活儿和环境条件,然后灵活使上最趁手的那个“秘密武器”,才能真正鼓捣出既快又稳、超好用的数据库系统来。
2024-01-29 11:05:49
203
岁月如歌
Datax
...述解压后的目录结构,设置如下环境变量: bash export DATAX_HOME=绝对路径/to/datax-最新版本-number/bin export PATH=$DATAX_HOME:$PATH 2. 配置DataX运行时依赖 在conf目录下找到runtime.properties文件,配置JVM参数及Hadoop、Spark等运行时依赖。以下是一份参考样例: properties JVM参数配置 设置内存大小为1G yarn.appMaster.resource.memory.mb=1024 yarn.appMaster.heap.memory.mb=512 executor.resource.memory.mb=512 executor.heap.memory.mb=256 executor.instances=1 如果有Hadoop环境 hadoop.home.dir=/path/to/hadoop hadoop.security.authentication=kerberos hadoop.conf.dir=/path/to/hadoop/conf 如果有Spark环境 spark.master=local[2] spark.executor.memory=512m spark.driver.memory=512m 3. 配置DataX任务配置文件 在conf目录下创建一个新的XML配置文件,例如my_data_sync.xml,用于定义具体的源和目标数据源、数据传输规则等信息。以下是简单的配置示例: xml 0 0 五、启动DataX任务 配置完成后,我们可以通过DataX CLI命令行工具来启动我们的数据同步任务: bash $ ./bin/datax job submit conf/my_data_sync.xml 此时,DataX会按照my_data_sync.xml中的配置内容,定时从MySQL数据库读取数据,并将其写入到HDFS指定的路径上。 六、总结 通过本文的介绍,相信您已经对DataX的基本安装及配置有了初步的认识和实践。在实际操作的时候,你可能还会碰到需要根据不同的业务情况,灵活调整DataX任务配置的情况。这样一来,才能让它更好地符合你的数据传输需求,就像是给它量身定制了一样,更加贴心地服务于你的业务场景。不断探索和实践,DataX将成为您数据处理与迁移的强大助手!
2024-02-07 11:23:10
362
心灵驿站-t
转载文章
...ubst函数接收两个参数,第一个参数为模式字符串(包含%通配符),第二个参数为目标模式。当对文件名列表应用此函数时,它会查找与模式字符串相匹配的元素,并将匹配部分按照目标模式进行替换。例如,在文中提到的oname函数中,通过两次调用patsubst函数,实现了将源文件名(如.c和.S)的扩展名替换为.o,从而生成对应的目标文件名。 自动化变量($@) , 在Makefile中,自动化变量是在规则执行过程中根据上下文自动设置的特殊变量。其中$@代表当前规则的目标文件集,即正在构建或更新的目标文件名。在文章描述中,当定义OBJECTDIR依赖关系链时,使用了自动化变量$@来表示目标目录obj_native,当make执行到这一规则时,会根据这个变量的值创建对应的目录。 APPS变量 , 在项目构建和管理中,APPS变量是一个用户自定义的变量,用来存储需要包含在Contiki系统中的应用程序列表。在文章中,假设APPS变量被赋值为antelope unit-test,那么在编译过程中,会根据这个变量的值去查找并包含指定目录下相应名称的源文件和Makefile文件。通过wildcard和foreach函数结合,可以遍历多个预定义的目录路径,找到所有与APPS变量中列出的应用程序相关的源代码和配置文件,并将它们添加到CONTIKI_SOURCEFILES变量中,以便后续进行编译链接操作。
2023-03-28 09:49:23
282
转载
CSS
...我们可以使用CSS来设置这个标题的字体大小和颜色,以及这段文字的行高和颜色。下面是相应的CSS代码: css .container { background-color: f0f0f0; } .title { font-size: 2em; color: 333; } .para { line-height: 1.5; color: 666; } 这样,我们就成功地设置了容器的背景色,标题的字体大小和颜色,以及段落的行高和颜色。这就是CSS的基本用法,也是我们在后续讨论中需要用到的基础知识。 第3章 JS函数未定义的原因 回到我们一开始提出的问题,“js函数未定义是怎么回事?”这个问题实际上是在问:“为什么我在某个地方使用了一个函数,但是却出现了函数未定义的错误?”这个问题的答案可能有很多,下面我们一一来看一下。 第一个可能的原因是,我们确实没有定义这个函数。比如说,我们有一个名为helloWorld的函数,但是在其他地方却忘记定义它了。这种情况简直是最直截了当的啦,解决起来也超级简单,你只需要在需要用到这个函数的地方给它加上一个定义就OK啦,就像给菜加点盐那么简单。 javascript function helloWorld() { console.log("Hello, world!"); } helloWorld(); // 输出 "Hello, world!" 第二个可能的原因是,我们虽然定义了这个函数,但是在使用的时候却拼错了函数名或者写错了参数。这种情况也比较多见,特别是在大型项目中,很容易出现这种错误。 javascript function helloWorld() { console.log("Hello, world!"); } helloWord(); // 报错,因为函数名拼错了 第三个可能的原因是,我们使用的函数在一个作用域内是可以访问的,但是在另一个作用域内却不可以访问。这种情况比较复杂,需要我们深入理解作用域的概念才能解决。 javascript let x = 1; if (true) { function foo() { console.log(x); // 输出 1 } } else { function foo() { console.log(x); // 报错,因为x在else的作用域内不可访问 } } foo(); // 报错,因为foo在if的作用域外不可访问 以上就是“js函数未定义是怎么回事”的一些可能原因,我们在日常开发中需要根据具体的情况进行分析和处理。 第4章 如何避免“js函数未定义”的问题? 避免“js函数未定义”的问题,其实有很多方法。下面我们就来介绍一些常用的技巧。 首先是要注意命名规范。当我们在创建函数的时候,可别忘了给它起个既规范又有意思的名字。就像咱们常说的“驼峰式命名法”,就是一种挺实用的命名规则,你可以把函数名想象成一只可爱的小骆驼,每个单词首字母都像驼峰一样高高地耸起来,这样一来,不仅看起来顺眼,读起来也朗朗上口,更容易让人记住。这样可以让我们的代码更加清晰易懂,也可以减少出错的可能性。 其次是要注意作用域的限制。在JavaScript这个编程语言里,每个函数都拥有自己的独立小天地,也就是作用域。这就意味着,当我们呼唤一个函数来干活的时候,得留个心眼儿,千万要注意别跨出这个小天地去调用还没被定义过的函数,否则就可能闹出“函数未定义”的乌龙事件。 最后是要注意版本兼容性。假如我们正在玩转一些最新的JavaScript黑科技,但心里也得惦记着那些还在用老旧浏览器的用户群体。这就意味着,咱们还得琢磨琢磨怎么在这些老爷爷级别的浏览器上,找到能兼容这些新特性的备选方案,让它们也能顺畅运行起来。这就意味着咱们得摸清楚各个浏览器的不同版本之间是怎么个兼容法,还有学会如何运用各种小工具和技巧来对付这些可能出现的兼容性问题。 总之,“js函数未定义”的问题是一个比较常见的问题,但是只要我们注意一些基本的原则和技巧,就能够有效地避免这个问题。希望本文能够对你有所帮助,如果你还有其他的问题,欢迎随时联系我。
2023-08-12 12:30:02
429
岁月静好_t
Docker
...6.80.0/24并设置了默认网关。 三、IP地址与Docker容器 1. IP地址基础概念 IP地址(Internet Protocol Address)是互联网协议的核心组成部分,用于唯一标识网络中的设备。根据IPv4协议,IP地址由32位二进制组成,通常被表示为四个十进制数,如192.168.1.1。在Docker这个大家庭里,每个小容器都会被赋予一个独一无二的IP地址,这样一来,它们之间就可以像好朋友一样自由地聊天交流,不仅限于此,它们还能轻松地和它们所在的主机大哥,甚至更远的外部网络世界进行沟通联络。 2. Docker容器IP地址分配 在Docker默认的桥接网络(bridge)模式中,每个容器会获取一个属于172.17.0.0/16范围的私有IP地址。另外,你还可以选择自己动手配置一些个性化的网络设置,像是“host”啦、“overlay”啦,或者之前我们提到的那个“vlan”,这样就能给容器分配特定的一段IP地址,让它们各用各的,互不干扰。 四、VLAN与IP地址在Docker网络中的关系 1. IP地址在VLAN网络中的角色 当Docker容器运行在一个包含VLAN网络中时,它们会继承VLAN网络的IP地址配置,从而在同一VLAN内相互通信。比如,想象一下容器A和容器B这两个家伙,他们都住在VLAN 10这个小区里面,虽然住在不同的单元格,但都能通过各自专属的“门牌号”(也就是VLAN标签)和“电话号码”(IP地址)互相串门聊天,完全不需要经过小区管理员——宿主机的同意或者帮忙。 2. 跨VLAN通信 若想让VLAN网络内的容器能够与宿主机或其他VLAN网络内的容器通信,就需要配置多层路由或者使用VXLAN等隧道技术,使得数据包穿越不同的VLAN标签并在相应的IP地址空间内正确路由。 五、结论 综上所述,VLAN与IP地址在Docker网络场景中各有其核心作用。VLAN这个小家伙,就像是咱们物理网络里的隐形隔离墙和保安队长,它在幕后默默地进行逻辑分割和安全管理工作。而IP地址呢,更像是虚拟化网络环境中的邮差和导航员,主要负责在各个容器间传递信息,同时还能带领外部的访问者找到正确的路径,实现内外的互联互通。当这两者联手一起用的时候,就像是给网络装上了灵动的隔断墙,既能灵活分区,又能巧妙地避开那些可能引发“打架”的冲突风险。这样一来,咱们微服务架构下的网络环境就能稳稳当当地高效运转了,就像一台精密调校过的机器一样。在咱们实际做项目开发这事儿的时候,要想把Docker网络策略设计得合理、实施得妥当,就得真正理解并牢牢掌握这两者之间的关系,这可是相当关键的一环。
2024-02-12 10:50:11
479
追梦人_t
转载文章
...Request是请求参数,里面有timeout超时时间,以及向服务端请求的参数 public class Request {private static final UUID uuid = UUID.randomUUID();private String seq = uuid.toString();private Object object;private long timeOut;public Object getObject() {return object;}public Request setObject(Object object) {this.object = object;return this;}public String getSeq() {return seq;}public long getTimeOut() {return timeOut;}public Request setTimeOut(long timeOut) {this.timeOut = timeOut;return this;} } 核心的RequestTask类,用于接受服务端的返回结果,超时中断 public class RequestTask {private boolean isDone = Boolean.FALSE;private ReentrantLock lock = new ReentrantLock();private Condition condition = lock.newCondition();Object response;//客户端请求服务端后,立即调用此方法获取返回结果,timeout为超时时间public Object getResponse(long timeOut) {if (!isDone) {try {lock.lock();//此步等待timeout时间,阻塞,时间达到后,自动执行,此步是超时中断的关键步骤if (condition.await(timeOut, TimeUnit.MILLISECONDS)) {if (!isDone) {return new TimeoutException();}return response;} } catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();} }return response;}public RequestTask setResponse(Object response) {lock.lock();try{//此步是客户端收到服务端的响应结果后,写入responsethis.response = response;//并唤起上面方法的阻塞状态,此时阻塞结束,结果正常返回condition.signal();isDone = true;}finally{lock.unlock();}return this;}public boolean isDone() {return isDone;}public RequestTask setDone(boolean done) {isDone = done;return this;} } ReceiveHandle客户端接收到服务端的响应结果处理handle public class ReceiveHandle extends SimpleChannelInboundHandler {protected void channelRead0(ChannelHandlerContext channelHandlerContext, Object o) throws Exception {Response response = (Response) o;//通过seq从请求工厂找到请求的RequestTaskRequestTask requestTask = RequestFactory.get(response.getSeq());//将响应结果写入RequestTaskrequestTask.setResponse(response);} } RequestFactory请求工厂 public class RequestFactory {private static final Map<String, RequestTask> map = new ConcurrentHashMap<String, RequestTask>();public static void put(String uuid, RequestTask requestTask) {map.put(uuid, requestTask);}public static RequestTask get(String uuid) {return map.get(uuid);} } 注: 本人利用业余时间手写了一套轻量级的rpc框架,里面有用到 https://github.com/zhangta0/bigxiang 本篇文章为转载内容。原文链接:https://blog.csdn.net/CSDNzhangtao5/article/details/103075755。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:28:16
83
转载
Etcd
...通过调整日志级别(如设置为debug模式),可以获得详细的内部处理流程。同时,结合分布式追踪系统如Jaeger,可以收集和可视化Etcd调用链路,理解跨节点间的通信延迟和错误来源。 bash 设置etcd日志级别为debug ETCD_DEBUG=true etcd --config-file=/etc/etcd/etcd.conf.yaml 4. 性能调优与压力测试 在了解了基本的监控和诊断手段后,我们还可以利用像etcd-bench这样的工具来进行压力测试,模拟大规模并发读写请求,评估Etcd在极限条件下的性能表现,并据此优化配置参数。 bash 使用etcd-bench进行基准测试 ./etcd-bench -endpoints=localhost:2379 -total=10000 -conns=100 -keys=100 在面对复杂的生产环境时,人类工程师的理解、思考和决策至关重要。用上这些监视和诊断神器,咱们就能化身大侦探,像剥洋葱那样层层深入,把躲藏在集群最旮旯的性能瓶颈和一致性问题给揪出来。这样一来,Etcd就能始终保持稳如磐石、靠谱无比的运行状态啦!记住了啊,老话说得好,“实践出真知”,想要彻底驯服Etcd这匹“分布式系统的千里马”,就得不断地去摸索、试验和改进。只有这样,才能让它在你的系统里跑得飞快,发挥出最大的效能,成为你最得力的助手。
2023-11-29 10:56:26
386
清风徐来
Flink
...作,但你可以通过配置参数来影响它的生成。例如: java env.setParallelism(4); // 设置并行度为4 这条语句会影响ExecutionPlan中任务的并行执行方式。更高的并行度通常能让吞吐量变得更好,但同时也可能会让网络通信变得更复杂,增加不少额外的工作量。 3. 探索背后的秘密 JobGraph与ExecutionPlan的互动 现在,让我们思考一下JobGraph和ExecutionPlan之间的关系。可以说,JobGraph是ExecutionPlan的基础,没有一个清晰的JobGraph,就无法生成有效的ExecutionPlan。ExecutionPlan就是JobGraph的具体操作指南,它告诉你怎么把这些抽象的想法变成实实在在的计算任务。 思考与探讨: - 在设计你的Flink应用程序时,是否考虑过JobGraph的结构对最终性能的影响? - 你有没有尝试过调整ExecutionPlan的某些参数来提升应用程序的效率? 4. 实践中的挑战与解决方案 最后,我想分享一些我在使用Flink过程中遇到的实际问题及解决方案。 问题1:数据倾斜导致性能瓶颈 - 原因分析:数据分布不均匀可能导致某些算子处理的数据量远大于其他算子,从而形成性能瓶颈。 - 解决办法:可以通过重新设计JobGraph,比如引入更多的分区策略或调整算子的并行度来缓解这个问题。 问题2:内存溢出 - 原因分析:长时间运行的任务可能会消耗大量内存,尤其是在处理大数据集时。 - 解决办法:合理设置Flink的内存管理策略,比如增加JVM堆内存或利用Flink的内存管理API来控制内存使用。 --- 好了,朋友们,这就是我对Flink中的JobGraph和ExecutionPlan的理解和分享。希望这篇文章能让你深深体会到它们的价值,然后在你的项目里大展身手,随意挥洒!如果你有任何疑问或者想要进一步讨论的话题,欢迎随时留言交流! 记住,学习技术就像一场旅行,重要的是享受过程,不断探索未知的领域。希望我们在数据流的世界里都能成为勇敢的探险家!
2024-11-05 16:08:03
112
雪落无痕
Dubbo
...康的服务上。 4. 参数优化 - 调优配置:合理设置Dubbo的相关参数,如超时时间、重试次数、序列化方式等,以适应不同的业务需求。 - 并发控制:通过合理的线程池配置和异步调用机制,有效管理并发请求,避免资源瓶颈。 四、实战案例 案例一:服务缓存实现 java // 配置本地缓存 @Reference private MyService myService; public void doSomething() { // 获取缓存,若无则从远程调用获取并缓存 String result = cache.get("myKey", () -> myService.doSomething()); System.out.println("Cache hit/miss: " + (result != null ? "hit" : "miss")); } 案例二:动态负载均衡 java // 创建负载均衡器实例 LoadBalance loadBalance = new RoundRobinLoadBalance(); // 配置服务列表 List serviceUrls = Arrays.asList("service1://localhost:8080", "service2://localhost:8081"); // 动态选择服务实例 String targetUrl = loadBalance.choose(serviceUrls); MyService myService = new RpcReference(targetUrl); 五、总结与展望 通过上述的实践分享,我们可以看到,Dubbo的性能优化并非一蹴而就,而是需要在实际项目中不断探索和调整。哎呀,兄弟,这事儿啊,关键就是得会玩转Dubbo的各种酷炫功能,然后结合你手头的业务场景,好好打磨打磨那些参数,让它发挥出最佳状态。就像是调酒师调鸡尾酒,得看人下菜,看场景定参数,这样才能让产品既符合大众口味,又能彰显个性特色。哎呀,你猜怎么着?Dubbo这个大宝贝儿,它一直在努力学习新技能,提升自己呢!就像咱们人一样,技术更新换代快,它得跟上节奏,对吧?所以,未来的它呀,肯定能给咱们带来更多简单好用,性能超棒的功能!这不就是咱们开发小能手的梦想嘛——搭建一个既稳当又高效的分布式系统?想想都让人激动呢! 结语 在分布式系统构建的过程中,性能优化是一个持续的过程,需要开发者具备深入的理解和技术敏感度。嘿!小伙伴们,如果你是Dubbo的忠实用户或者是打算加入Dubbo大家庭的新手,这篇文章可是为你量身打造的!我们在这里分享了一些实用的技巧和深刻的理解,希望能激发你的灵感,让你在使用Dubbo的过程中更得心应手,共同创造分布式系统那片美丽的天空。快来一起探索,一起成长吧!
2024-07-25 00:34:28
411
百转千回
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除文件中相邻的重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"