前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[窗口大小动态调整与最大化控制 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...m在屏幕内的可视区域大小,还结合用户停留时长等因素进行综合评估,力求真实反映商品的实际触达效果。 深入理解并实践本文所述的方法,开发者不仅可以应用于商品曝光统计场景,还可将其拓展至更多需要监控用户界面交互的场合,比如新闻Feed流、视频列表等,从而为业务决策提供有力的数据支持。同时,在隐私保护日益严格的今天,确保在合规的前提下进行数据收集与分析也成为所有从业者不容忽视的重要课题。
2023-07-29 13:55:00
322
转载
RabbitMQ
...试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
转载文章
...的实际应用和最新发展动态。 近期,随着全球数据安全法规的不断收紧,如欧盟的GDPR和我国的《数据安全法》等,企业对数据传输安全性的要求越来越高。在这样的背景下,采用SFTP进行文件传输愈发成为众多企业的首选方案。例如,一些大型云服务提供商如AWS、阿里云等,均提供基于SFTP的安全文件传输服务,并通过优化算法提高加密传输效率,减少性能损失。 与此同时,开源社区也在积极推动SSH和SFTP协议的迭代升级以及相关库的开发优化。JSch作为一款广受欢迎的Java SSH2库,在确保数据安全的同时,也致力于提升用户体验和增强功能特性。近期发布的JSch新版本中,开发者针对连接稳定性和资源管理进行了改进,不仅提升了高并发场景下的连接成功率,还增强了对大规模文件传输的支持。 此外,随着零信任网络架构理念的普及,未来SFTP协议可能会结合更先进的身份验证机制,如多因素认证、生物识别等,以适应更严格的数据安全策略。同时,边缘计算和物联网设备的快速发展也将催生出对轻量化、低功耗环境下SFTP协议的新需求和应用场景。 总之,深入理解和熟练运用SFTP及其实现工具,将有助于我们在保障数据安全的前提下,高效完成跨系统、跨网络的文件传输任务,紧跟时代步伐,应对日益严峻的信息安全挑战。
2023-04-04 09:43:38
71
转载
Kafka
... 示例代码2:调整日志清理策略 对于日志清理策略的调整,可以通过修改Kafka配置文件server.properties来实现。以下是一个示例配置,用于延长日志段的保留时间: properties 延长日志段保留时间 log.retention.hours=24 确保在进行任何配置更改后,重启Kafka服务器以使更改生效: bash 重启Kafka服务器 service kafka-server-start.sh config/server.properties 四、最佳实践与预防措施 为了预防“InvalidProducerGroupLogPartitionLogSegmentState”错误的发生,建议采取以下最佳实践: - 定期监控:使用Kafka监控工具(如Kafka Manager)定期检查集群状态,特别是日志清理和存储情况。 - 合理配置:根据实际业务需求合理配置Kafka的参数,如日志清理策略、备份策略等,避免过度清理导致数据丢失。 - 容错机制:设计具有高容错性的生产者和消费者逻辑,能够处理临时网络中断或其他不可预测的错误。 - 定期维护:执行定期的集群健康检查和日志清理任务,及时发现并解决问题。 五、结语 从失败到成长 面对“InvalidProducerGroupLogPartitionLogSegmentState”这样的问题,虽然它可能会带来暂时的困扰,但正是这些挑战促使我们深入理解Kafka的工作机制和最佳实践。哎呀,学着怎么识别问题,然后把它们解决掉,这事儿可真挺有意思的!不仅能让你的电脑或者啥设备运行得更稳当,还不停地长本事,就像个技术侦探一样,对各种情况都能看得透透的。这不是简单地提升技能,简直是开挂啊!记住,每一次挑战都是成长的机会,让我们在技术的道路上不断前行。
2024-08-28 16:00:42
107
春暖花开
转载文章
转载文章
...一版本中引入更先进的动态数据流处理机制,使得大规模实时数据能够得到即时、流畅的可视化展现,尤其适用于金融交易、物联网监控等对时效性要求极高的场景。同时,针对日益增长的无障碍需求,amCharts 5也将改进图表元素的可访问性设计,确保视障用户通过辅助技术也能准确理解数据信息。 此外,amCharts团队正积极与各大开源社区合作,持续丰富地图库资源,并计划将更多开源地理空间数据项目纳入支持范围,让用户能更加便捷地创建符合特定业务需求的地图图表。通过这些升级,amCharts 5旨在巩固其作为行业领先的数据可视化工具的地位,赋能各行业用户高效、精准地洞察并传达复杂数据背后的价值。
2023-09-17 18:18:34
351
转载
MySQL
...MySQL来说,权限控制更是必不可少的一部分。 我们常常会遇到这样的情况:一个项目上线后,突然发现某些表的权限设置得不对劲,导致数据被误删或者被非法访问。哎呀,这个时候咱们就得赶紧去数据库里逛一圈啦,挨个瞅瞅那些表的权限设置是不是都正常,可别哪里漏了或者出啥幺蛾子!嘿,今天咱们就来唠唠怎么在MySQL里瞅瞅每个表都有啥权限呗!说起来可能有点技术含量,但只要跟着步骤走,保管你也能轻松掌握!希望我的分享能帮到大家~ 二、准备工作 连接MySQL服务器 首先,我们需要连接到我们的MySQL服务器。如果你是用命令行工具,可以直接输入以下命令: bash mysql -u root -p 然后输入你的密码。如果你用的是 Navicat 或者 DBeaver 这种图形化工具,那就好办了!直接打开工具,然后填上服务器地址、用户名和密码就行啦,就跟平时填表单似的,简单得很! 进入MySQL后,我们可以开始查看权限了。咳咳,先说在前面啊,咱们得搞清楚一件事——MySQL的那个权限系统,真的不是闹着玩的!它就像是一个超级复杂的迷宫,啥用户啦、数据库啦、表啦,全都搅和在一起,分分钟让人头大。所以,我们要一步步来,先从最基本的开始。 三、查看用户的全局权限 在MySQL中,用户级别的权限是最基础的权限设置。我们可以通过SHOW GRANTS命令来查看某个用户的全局权限。比如,如果你想查看root用户的权限,可以执行以下命令: sql SHOW GRANTS FOR 'root'@'localhost'; 这个命令会返回root用户在localhost上的所有权限。比如: plaintext GRANT ALL PRIVILEGES ON . TO 'root'@'localhost' WITH GRANT OPTION 这里的ALL PRIVILEGES表示root用户拥有所有的权限,包括对所有数据库和表的操作权限。WITH GRANT OPTION表示该用户还可以将这些权限授予其他用户。 但是,有时候我们会忘记具体设置了哪些权限,这时候就需要手动检查了。我们可以用SELECT语句查询mysql.user表来查看详细信息: sql SELECT FROM mysql.user WHERE User='root'; 这个查询会返回root用户的详细权限设置,包括是否允许登录、是否有超级权限等。 四、查看特定数据库的权限 接下来,我们来看如何查看特定数据库的权限。假设我们有一个名为my_database的数据库,想看看这个数据库的所有表的权限,可以使用SHOW GRANTS命令结合具体的数据库名: sql SHOW GRANTS FOR 'some_user'@'%' ON my_database.; 这里的some_user是我们要检查的用户,%表示可以从任何主机连接。ON my_database.表示只查看my_database数据库中的权限。 如果想看更详细的权限设置,可以通过查询mysql.db表来实现: sql SELECT FROM mysql.db WHERE Db='my_database'; 这个查询会返回my_database数据库的所有权限设置,包括用户、权限类型(如SELECT、INSERT、UPDATE等)以及允许的主机。 五、查看特定表的权限 现在,我们已经知道了如何查看整个数据库的权限,那么接下来就是查看特定表的权限了。MySQL里有个SHOW TABLE STATUS的命令,能让我们瞅一眼某个表的基本情况,比如它有多大、创建时间啥的。不过呢,要是想看权限相关的东西,还得再折腾一下才行。 假设我们有一个表叫users,想要查看这个表的权限,可以这样做: sql SHOW GRANTS FOR 'some_user'@'%' ON my_database.users; 这条命令会显示some_user用户在my_database数据库的users表上的所有权限。如果你觉得这样还不够直观,可以查询information_schema.TABLE_PRIVILEGES视图: sql SELECT FROM information_schema.TABLE_PRIVILEGES WHERE TABLE_SCHEMA='my_database' AND TABLE_NAME='users'; 这个查询会返回my_database数据库中users表的所有权限记录,包括权限类型、授权用户等信息。 六、实战演练 批量检查所有表的权限 在实际工作中,我们可能需要批量检查整个数据库中所有表的权限。其实MySQL本身没给个现成的命令能一口气看看所有表的权限,不过咱们可以用脚本自己搞掂啊! 下面是一个简单的Python脚本示例,用来遍历数据库中的所有表并打印它们的权限: python import pymysql 连接到MySQL服务器 conn = pymysql.connect(host='localhost', user='root', password='your_password') cursor = conn.cursor() 获取数据库列表 cursor.execute("SHOW DATABASES") databases = cursor.fetchall() for db in databases: db_name = db[0] 跳过系统数据库 if db_name in ['information_schema', 'performance_schema', 'mysql']: continue 切换到当前数据库 cursor.execute(f"USE {db_name}") 获取表列表 cursor.execute("SHOW TABLES") tables = cursor.fetchall() for table in tables: table_name = table[0] 查询表的权限 cursor.execute(f"SHOW GRANTS FOR 'some_user'@'%' ON {db_name}.{table_name}") grants = cursor.fetchall() print(f"Database: {db_name}, Table: {table_name}") for grant in grants: print(grant) 关闭连接 cursor.close() conn.close() 这个脚本会连接到你的MySQL服务器,依次检查每个数据库中的所有表,并打印出它们的权限设置。你可以根据需要修改脚本中的用户名和密码。 七、总结与思考 通过这篇文章,我们学习了如何查看MySQL中所有表的权限。从最高级别的全局权限,到某个数据库的权限,再细化到某张表的权限,每个环节都有一套对应的命令和操作方法,就跟搭积木一样,一层层往下细分,但每一步都有章可循!MySQL的权限管理系统确实有点复杂,感觉像是个超级强大的工具箱,里面的东西又多又专业。不过别担心,只要你搞清楚了最基本的那些“钥匙”和“门道”,基本上就能搞定各种情况啦,就跟玩闯关游戏一样,熟悉了规则就没什么好怕的! 在这个过程中,我一直在思考一个问题:为什么MySQL要设计这么复杂的权限系统?其实答案很简单,因为安全永远是第一位的。无论是企业级应用还是个人项目,我们都不能忽视权限管理的重要性。希望能通过这篇文章,让你在实际操作中更轻松地搞懂MySQL的权限系统,用起来也更得心应手! 最后,如果你还有其他关于权限管理的问题,欢迎随时交流!咱们一起探索数据库的奥秘!
2025-03-18 16:17:13
50
半夏微凉
HBase
...的。解决方法很简单,调整负载均衡策略即可。 示例代码: bash hbase shell balance_switch true 上面这条命令会开启自动负载均衡功能。当然,你也可以手动执行balancer命令强制进行一次平衡操作。 3.2 GC时间过长怎么办? GC时间过长往往意味着内存不足。这时候你需要检查HBase的堆内存设置,并适当增加Xmx参数值。 示例代码: xml hbase.regionserver.heapsize 8g 将heapsize调大一些,看看是否能缓解GC压力。 --- 4. 第三步 实战演练——真实案例分享 为了让大家更直观地感受到性能优化的过程,我来分享一个真实的案例。有一天,我们团队收到用户的吐槽:“你们这个查询也太慢了吧?等得我花都谢了!”我们赶紧查看了一下情况,结果发现是RegionServer上某个Region在搞事情,一直在上演“你进我也进”的读写冲突大戏,把自己整成了个“拖油瓶”。 解决方案: 1. 首先,定位问题区域。通过以下命令查看哪些Region正在发生大量读写: sql scan 'hbase:metrics' 2. 然后,调整Compaction策略。如果发现Compaction过于频繁,可以尝试降低触发条件: xml hbase.hregion.majorcompaction 86400000 最终,经过一系列调整后,查询速度果然得到了显著提升。这种成就感真的让人欲罢不能! --- 5. 结语 保持好奇心,不断学习进步 检查HBase集群的性能并不是一件枯燥无味的事情,相反,它充满了挑战性和乐趣。每次解决一个问题,都感觉是在玩拼图游戏,最后把所有碎片拼在一起的时候,那成就感真的太爽了,简直没法用语言形容! 最后,我想说的是,无论你是刚入门的新手还是经验丰富的老手,都不要停止学习的步伐。HBase的技术栈非常庞大,每一次深入研究都会让你受益匪浅。所以,让我们一起努力吧!💪 希望这篇文章对你有所帮助,如果你还有任何疑问,欢迎随时来找我交流哦~
2025-04-14 16:00:01
63
落叶归根
Dubbo
...o实现了全链路压测与动态扩容,确保了亿级用户的访问请求能够稳定高效地被处理。该平台的技术团队表示,通过引入Dubbo的负载均衡算法优化以及服务熔断机制,他们在高峰期成功将请求延迟降低了30%以上,极大地提升了用户体验。此外,Dubbo与Spring Cloud的深度融合也为开发者提供了更加统一的微服务治理方案,使得不同技术栈的应用程序能够无缝协作。 然而,尽管Dubbo具备诸多优势,但在实际部署过程中仍需注意潜在风险。比如,部分企业在迁移至新版本时遇到了兼容性挑战,特别是对于老旧代码库而言,如何平衡创新与稳定性始终是一个难题。对此,业内专家建议,企业应优先评估现有系统的依赖关系,制定详细的升级计划,并借助Dubbo提供的灰度发布功能逐步推进改造工作,从而降低整体改造成本。 展望未来,随着Service Mesh概念的兴起,Dubbo也在积极探索与Istio等服务网格框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
63
雪落无痕
Groovy
... 三、进阶问题 动态类型与静态类型之争 Groovy的一大特点是支持动态类型,这意味着你可以在运行时改变变量的类型。这一点确实很灵活,但也容易让人误以为所有类型都可以自由转换。实际上,Groovy在某些情况下还是会严格检查类型的。 比如,下面这段代码: groovy int number = 10 number = "twenty" 在Java里,这种类型转换是绝对不允许的,但在Groovy里,你可能会天真地认为它会自动帮你搞定。不过呢,现实情况是,Groovy直接炸了,还特么甩出个异常,说:“喂喂喂,你是不是有病啊?这类型根本不搭吧!”所以啊,哪怕Groovy自称是动态类型的“自由之翼”,该注意的类型转换规矩还是得守着,别不当回事儿。 --- 四、总结 拥抱变化,享受编程的乐趣 写到这里,我想跟大家聊聊我的感受。Groovy虽然看似简单,但它的每一个设计都有其背后的逻辑。一开始上手的时候,肯定会被各种“不支持的语法”绊住脚,别担心,这其实就是我们学习的必经之路啊!每一次踩坑,都是一次成长的机会。 最后,送给大家一句话:编程不是为了追求完美,而是为了找到最适合自己的方式。如果你愿意花点时间去了解Groovy的独特之处,你会发现它不仅是一个工具,更是一种思维方式。所以,别怕犯错,勇敢地去尝试吧!
2025-03-13 16:20:58
61
笑傲江湖
转载文章
...业务领域内的技术发展动态进行分析研究。 高级程序员 高级程序员学名,工程师。 到了这个level,英文名可改叫做 engineer 或 developer。此时你的功力开始增强,这与你平时的积累努力是分不开的,祝贺你~ 此时的你不仅可以完成任务,开始注重代码的质量,能够写出工业级的代码。你的经验可胜任模块级的系统设计,承担完成较为复杂的技术,能有效的自我管理,有帮助别人快速解决问题(trouble shooting)的能力。 此阶段你需要经历到7、8年左右的体验,中间要经历一段深刻自我历练的过程。 有时给人致命一击其实是心里的小蟊贼。一般人在5年前后遇到一个门槛,碰到天花板+彷徨期,或者你打心眼里不在喜欢编程,可尝试转为其它角色,如产品经理,售前售后支持等岗位,也不失为好选择。 当我们熬过这段儿,就会“山随平野尽,江入大荒流“,渐入佳境矣。 高级程序员定义软件功能、做开发计划推进和管理。可以带几个个帮手把产品规划的功能实现,你是团队中的”大手“,遇到难题也是你亲自攻艰克难。 所以,一个高级程序员,他的职责很清晰: 1、负责产品核心复杂功能的方案设计、编码实现 2、负责疑难BUG分析诊断、攻关解决 架构师 到了架构师级别,想必你已经学会降龙十八掌,可登堂入世,成为一位准(lao)专(you)家(tiao)。 我们大喊声:“单打独斗,老衲谁也不惧!“,遂开始领导一众技术高手,指点武功,来设计和完成一个系统,大多是分布式,高并发的系统架构平台。 架构师的任务是为公司产品的业务问题提供高质量技术解决方案,主要着眼于系统的"技术实现" 。 架构师的主要分类: 可能每条产品线都设置了架构师,也可能多条生产品线的的后端是由一个架构师设计的平台提供,所以架构师也是有所不同的,其分类如下: 软件架构师 信息架构师 网站架构师 其主要职责如下: 1、需求分析:“知彼”有时比“知已”还重要。管理市场,产品等的需求,确立关键需求。坚持技术上的优秀与需求的愿景统一,提升技术负债意识,提供技术选项,风险预判,工期等解决方案。 2、架构设计:在产品功能中抽取中非功能的需求,由关键需求变成概念型架构。列出功能树,分层治之,如用户界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
755
转载
RabbitMQ
...来获取队列名称,同时调整了routing_key参数的赋值方式。这种改动虽然简单,但却能显著提升程序的健壮性和可读性。 --- 5. 总结与展望 从失败中学习,向成功迈进 回想起这次经历,我既感到懊恼又觉得幸运。真后悔啊,当时要是多花点时间去了解API的新变化,就不会在这上面浪费那么多精力了。不过话说回来,这次小挫折也让我学到了教训,以后会更注意避免类似的错误,而且也会更加重视代码的质量。 最后想对大家说一句:技术的世界瞬息万变,没有人能够永远站在最前沿。但只要保持好奇心和学习热情,我们就一定能找到通往成功的道路。毕竟,正如那句经典的话所说:“失败乃成功之母。”只要勇敢面对挑战,总有一天你会发现,那些曾经让你头疼不已的问题,其实都是成长路上不可或缺的一部分。 希望这篇文章对你有所帮助!如果你也有类似的经历或者见解,欢迎随时交流哦~
2025-03-12 16:12:28
105
岁月如歌
Go Gin
...通过定义一个包含固定大小缓冲区的Pool,每次处理请求时可以从Pool中获取已有的缓冲区,处理完成后将其放回Pool以便后续使用。这种方式避免了频繁创建和销毁临时对象,从而提升了程序的性能和稳定性。文中提到的示例展示了如何使用sync.Pool来存储和复用字节切片,模拟了在高并发环境下对内存资源的有效管理。
2025-04-07 16:03:11
65
时光倒流
转载文章
...于“在线字符串编辑与动态回文判定”的研究报告。研究者提出了一种新颖的在线算法,能够在字符串实时更新过程中高效地判断其是否为回文,并能快速找到使字符串变为非回文所需的最少编辑操作。这一成果不仅对于文本处理、数据压缩等领域具有重要价值,也对解决类似的编程挑战提供了新的思路。 此外,在ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
ElasticSearch
...咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
MemCache
...到集群中,实现资源的动态扩展和负载均衡。通过使用Kubernetes的服务发现和自动缩放功能,可以确保Memcached服务在高并发场景下保持良好的性能和稳定性。 同时,借助现代云平台提供的监控和日志服务,如Prometheus和ELK Stack,可以实时监控Memcached的运行状态,及时发现并定位性能瓶颈,实现故障快速响应和自动化优化。此外,通过集成Redisson等开源库或自定义实现,Memcached可以支持更多高级特性,如事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
38
人生如戏
转载文章
...跟时代步伐,关注行业动态和技术伦理问题,才能使自己的作品更具前瞻性和社会责任感。
2023-03-18 20:09:36
89
转载
NodeJS
... 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
33
海阔天空
Tornado
...提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
DorisDB
...四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
122
醉卧沙场
Go-Spring
...context来控制调用的超时时间。在每次调用失败时,我们记录详细的错误信息和调用次数。这种做法有助于在出现问题时快速响应和诊断。 结论 通过上述实践,我们可以看到GoSpring如何通过结构化错误处理和日志记录来提升应用的健壮性和维护性。哎呀,兄弟!如果咱们能好好执行这些招数,那可真是大有裨益啊!不仅能大大缩短遇到问题时,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
Apache Lucene
...来又非常灵活,想怎么调整都行,真是让人大呼过瘾。然而,即便是如此强大的工具,也并非没有挑战。本文将深入探讨一个常见的错误——org.apache.lucene.analysis.TokenStream$EOFException: End of stream,并尝试通过实例代码来揭示其背后的原因与解决之道。 第一部分:理解 TokenStream 和 EOFException TokenStream 是 Lucene 提供的一个抽象类,它负责将输入的文本分割成一系列可处理的令牌(tokens),这些令牌是构成文本的基本单位,例如单词、符号等。当 TokenStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pstree -p $$
- 以树状结构展示当前shell进程及其子进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"