前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[ 提升文本表现力的HTML标签技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...相应操作,这些都大大提升了工作效率。 在信息安全领域,《Linux Journal》最近的一篇文章指出,熟练运用find、grep等命令进行日志分析与安全审计至关重要。同时,du命令结合ncdu这样的可视化工具,不仅能够帮助管理员直观了解磁盘使用情况,还能及时发现潜在的大文件问题,避免存储资源浪费。 此外,对于分布式文件系统如Hadoop HDFS或GlusterFS的管理,虽然底层原理与本地文件系统有所不同,但依然离不开ls、mkdir、cp、rm等基础命令的灵活运用。因此,在进一步学习中,读者可以关注如何将这些基础命令应用于大型集群环境,以及如何通过高级配置实现跨节点的文件操作。 在最新的Linux内核版本中,针对文件系统的优化和新特性也值得关注,例如Btrfs和ZFS等现代文件系统的引入,为用户提供更为强大且灵活的文件管理功能。综上所述,持续关注Linux操作系统的新发展动态,结合实战案例深入理解并灵活运用各项命令,是提高Linux系统管理能力的关键所在。
2023-06-16 19:29:49
512
转载
Nacos
...三方认证 为了进一步提升安全性,可以考虑集成如LDAP、AD或其他OAuth2.0等第三方认证服务。 示例代码:集成LDAP认证 在配置文件中增加如下内容: properties nacos.security.auth.system.type=ldap nacos.security.auth.ldap.url=ldap://your_ldap_server:port nacos.security.auth.ldap.base_dn=dc=example,dc=com nacos.security.auth.ldap.user.search.base=ou=people nacos.security.auth.ldap.group.search.base=ou=groups nacos.security.auth.ldap.username=cn=admin,dc=example,dc=com nacos.security.auth.ldap.password=your_ldap_admin_password 这里的示例展示了如何将Nacos与LDAP服务器进行集成,具体的URL、基础DN以及搜索路径需要根据实际的LDAP环境配置。 4. 探讨与思考 配置安全是个持续的过程,不只是启动初始的安全措施,还包括定期审计和更新策略。在企业级部署这块儿,我们真心实意地建议你们采取更为严苛的身份验证和授权规则。就像这样,比如限制IP访问权限,只让白名单上的IP能进来;再比如,全面启用HTTPS加密通信,确保传输过程的安全性;更进一步,对于那些至关重要的操作,完全可以考虑启动二次验证机制,多上一道保险,让安全性妥妥的。 此外,时刻保持Nacos版本的更新也相当重要,及时修复官方发布的安全漏洞,避免因旧版软件导致的风险。 总之,理解并实践Nacos的安全访问配置,不仅是保护我们自身服务配置信息安全的有力屏障,更是构建健壮、可靠云原生架构不可或缺的一环。希望这篇文能实实在在帮到大家,在实际操作中更加游刃有余地对付这些挑战,让Nacos变成你手中一把趁手的利器,而不是藏在暗处的安全隐患。
2023-10-20 16:46:34
335
夜色朦胧_
MemCache
...关键角色,它能极大地提升动态Web应用的性能和可扩展性。不过,你知道吗?Memcached这家伙可纯粹是个临时记忆库,它并不支持数据长期存储这功能。也就是说,一旦服务器打了个盹(重启)或者撂挑子不干了(崩溃),那存放在它脑瓜子里的所有数据,就会瞬间蒸发得无影无踪。这就是咱们今天要重点唠一唠的话题——聊聊Memcached的数据丢失那些事儿。 2. Memcached的数据特性与潜在风险 (1)内存缓存与数据丢失 Memcached的设计初衷是提供临时性的高速数据访问服务,所有的数据都存储在内存中,而非硬盘上。这就意味着,如果突然出现个意外状况,比如系统崩溃啦,或者我们有意为之的重启操作,那内存里暂存的数据就无法原地待命了,会直接消失不见,这样一来,就难免会遇到数据丢失的麻烦喽。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 将数据存入Memcached 假设此时服务器突然宕机,'key'对应的'value'在重启后将不复存在 (2)业务场景下的影响 对于一些对数据实时性要求较高但又允许一定时间内数据短暂缺失的场景,如用户会话信息、热点新闻等,Memcached的数据丢失可能带来的影响相对有限。不过,在有些场景下,我们需要长期确保数据的一致性,比如你网购时的购物车信息、积分累计记录这些情况。万一这种数据丢失了,那可能就会影响你的使用体验,严重的话,甚至会引发一些让人头疼的业务逻辑问题。 3. 面对数据丢失的应对策略 (1)备份与恢复方案 虽然Memcached本身不具备数据持久化的功能,但我们可以通过其他方式间接实现数据的持久化。例如,可以定期将Memcached中的数据备份到数据库或其他持久化存储中: python 假设有一个从Memcached获取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
84
月影清风
Superset
...面设计如何通过优化来提升用户体验。 1. 界面布局直观清晰 (1) 导航栏设计:Superset的顶部导航栏提供了用户操作的主要入口,如仪表盘、图表、SQL实验室等核心功能区域。这种设计简单易懂,就像搭积木一样模块化,让用户能够像探照灯一样迅速找到自己需要的功能,再也不用在层层叠叠的菜单迷宫里晕头转向了。这样一来,大伙儿使用起来就能更加得心应手,效率自然蹭蹭往上涨! python 这里以伪代码表示导航栏逻辑 if user_selected == 'Dashboard': navigate_to_dashboard() elif user_selected == 'Charts': navigate_to_charts() else: navigate_to_sql_lab() (2) 工作区划分:Superset的界面右侧主要为工作区,左侧为资源列表或者查询编辑器,符合大多数用户从左到右,自上而下的阅读习惯。这种分栏式设计,就像是给用户在同一个窗口里搭了个高效操作台,让他们能够一站式完成数据查询、分析和可视化所有步骤,这样一来,不仅让用户感觉操作一气呵成,流畅得飞起,还大大提升了整体使用体验,仿佛像是给界面抹上了润滑剂,用起来更加顺手、舒心。 2. 可定制化的仪表盘 Superset允许用户自由创建和配置个性化仪表盘,每个组件(如各种图表)都可以拖拽调整大小和位置,如同拼图一样灵活构建数据故事。以下是一个创建新仪表盘的例子: python 伪代码示例,实际操作是通过UI完成 create_new_dashboard('My Custom Dashboard') add_chart_to_dashboard(chart_id='sales_trend', position={'x': 0, 'y': 0, 'width': 12, 'height': 6}) 通过这种方式,用户可以根据自己的需求和喜好对仪表盘进行深度定制,使数据更加贴近业务场景,提高了数据理解和决策效率。 3. 强大的交互元素 (1) 动态过滤器:Superset支持全局过滤器,用户在一个地方设定筛选条件后,整个仪表盘上的所有关联图表都会实时响应变化。例如: javascript // 伪代码,仅表达逻辑 apply_global_filter(field='date', operator='>', value='2022-01-01') (2) 联动交互:点击图表中的某一数据点,关联图表会自动聚焦于该点所代表的数据范围,这种联动效果能有效引导用户深入挖掘数据细节,增强数据探索的趣味性和有效性。 4. 易用性与可访问性 Superset在色彩搭配、字体选择、图标设计等方面注重易读性和一致性,降低用户认知负担。同时呢,我们也有考虑到无障碍设计这一点,就比如说,为了让视力不同的用户都能舒舒服服地使用,我们会提供足够丰富的对比度设置选项,让大家可以根据自身需求来调整,真正做到贴心实用。 总结来说,Superset通过直观清晰的界面布局、高度自由的定制化设计、丰富的交互元素以及关注易用性和可访问性的细节处理,成功地优化了用户体验,使其成为一款既专业又友好的数据分析工具。在此过程中,我们不断思考和探索如何更好地平衡功能与形式,让冰冷的数据在人性化的设计中焕发出生动的活力。
2023-09-02 09:45:15
150
蝶舞花间
Mahout
...的并行处理能力来大幅提升Mahout算法的执行效率。例如,以下是一段使用Mahout-on-Spark实现协同过滤推荐算法的基础代码示例: scala import org.apache.mahout.sparkbindings._ import org.apache.mahout.math.drm._ val data: RDD[Rating] = ... // 初始化用户-物品评分数据 val drmData = DistributedRowMatrix(data.map(r => (r.user, r.product, r.rating)).map { case (u, i, r) => ((u.toLong, i.toLong), r.toDouble) }, numCols = numProducts) val model = ALS.train(drmData, rank = 10, iterations = 10) 2.2 挑战 然而,看似美好的融合背后,版本兼容性问题如同暗礁般潜藏。你知道吗,Mahout和Spark这两个家伙一直在不停地更新升级自己,就像手机系统一样,隔段时间就蹦出个新版本。这样一来呢,新版的接口或者内部构造可能就会变变样,这就意味着不是所有版本都能无缝衔接、愉快合作的,有时候也得头疼一下兼容性问题。如若不慎选择不匹配的版本组合,可能会出现运行错误、性能低下甚至完全无法运行的情况。 3. 版本冲突实例及其解决之道 3.1 实际案例 假设我们在一个项目中尝试将Mahout 0.13.x与Spark 2.4.x进行集成,可能会遇到如下错误提示(这里仅为示例,并非真实错误信息): Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$sc()Lorg/apache/spark/SparkContext; 这是因为Mahout 0.13.x对Spark的支持仅到2.3.x版本,对于Spark 2.4.x的部分接口进行了更改,导致调用失败。 3.2 解决策略 面对这类问题,我们需要遵循以下步骤来解决: - 确认兼容性:查阅Mahout官方文档或相关社区资源,明确当前Mahout版本所支持的Spark版本范围。 - 降级或升级:根据兼容性范围,决定是回退Spark版本还是升级Mahout版本以达到兼容。 - 依赖管理:在构建工具如Maven或SBT中,精确指定对应的依赖版本,确保项目中所有组件版本一致。 - 测试验证:完成上述操作后,务必进行全面的功能与性能测试,确保系统在新的版本环境中稳定运行。 4. 结论与思考 尽管Mahout与Spark集成过程中的版本冲突可能会带来一些困扰,但只要我们理解其背后的原理,掌握正确的排查方法,这些问题都是可预见且可控的。所以,在我们实际动手开发的时候,千万要像追星一样紧盯着Mahout和Spark这些技术栈的版本更新,毕竟它们一有动静,可能就会影响到兼容性。要想让Mahout和Spark这对好搭档火力全开,就得提前把这些因素琢磨透彻了。 以上内容仅是一个简要的探讨,实际开发过程中可能还会遇到更多具体问题。记住啊,当咱们碰上那些棘手的技术问题时,千万要稳住心态,有耐心去慢慢摸索,而且得乐在其中,把解决问题的过程当成一场冒险探索。这正是编写代码、开发软件让人欲罢不能的魅力所在!
2023-03-19 22:18:02
82
蝶舞花间
Datax
...一身份验证服务进一步提升Datax作业的安全性。 3. 敏感信息处理 Datax配置文件中通常会包含数据库连接信息、账号密码等敏感内容。为防止敏感信息泄露,Datax支持参数化配置,通过环境变量或者外部化配置文件的方式避免直接在任务配置中硬编码敏感信息: json "reader": { "name": "mysqlreader", "parameter": { "username": "${db_user}", "password": "${}", // ... } } 然后在执行Datax任务时,通过命令行传入环境变量: bash export db_user='datax_user' && export db_password='' && datax.py /path/to/job.json 这种方式既满足了安全性要求,也便于运维人员管理和分发任务配置。 4. 审计与日志记录 Datax提供详细的运行日志功能,包括任务启动时间、结束时间、状态以及可能发生的错误信息,这对于后期审计与排查问题具有重要意义。同时呢,我们可以通过企业内部那个专门用来收集和分析日志的平台,实时盯着Datax作业的执行动态,一旦发现有啥不对劲的地方,就能立马出手解决,保证整个流程顺顺利利的。 综上所述,Datax的安全性设计涵盖了数据传输安全、认证授权机制、敏感信息处理以及操作审计等多个层面。在用Datax干活的时候,咱们得把这些安全策略整得明明白白、运用自如。只有这样,才能一边麻溜儿地完成数据同步任务,一边稳稳当当地把咱的数据资产保护得严严实实,一点儿风险都不冒。这就像是现实生活里的锁匠师傅,不仅要手到擒来地掌握开锁这门绝活儿,更得深谙打造铜墙铁壁般安全体系的门道,确保我们的“数据宝藏”牢不可破,固若金汤。
2024-01-11 18:45:57
1144
蝶舞花间
Go Iris
Logstash
...够即时响应市场变化,提升决策速度和质量。 2. 多元化数据源的整合 企业数据来源越来越多样化,包括传统数据库、API接口、社交媒体、日志文件等。Logstash凭借其灵活的输入和输出插件体系,能够轻松对接不同数据源,实现数据的一体化管理和分析。 3. 安全合规与隐私保护 随着GDPR、CCPA等全球数据保护法规的实施,企业对数据安全和隐私保护的要求愈发严格。Logstash通过加密传输、数据脱敏等安全措施,确保数据在传输和处理过程中的安全性,帮助企业遵守法规要求,保护用户隐私。 4. 自动化与智能化升级 为了提高数据处理效率和智能化水平,Logstash引入了自动化脚本和机器学习算法,能够自动执行复杂的数据清洗、异常检测和预测分析任务,减少人工干预,提升数据分析的精度和速度。 结论 Logstash作为数据管道的核心组件,正逐步适应并引领现代数据管理的趋势。通过增强实时处理能力、优化多源数据整合、加强安全合规保障以及引入自动化与智能化技术,Logstash为企业提供了更高效、更安全、更智能的数据处理解决方案。未来,随着数据科学和人工智能技术的不断发展,Logstash有望在数据管道领域发挥更加重要的作用,助力企业实现数据驱动的创新与增长。 --- 本文深入探讨了Logstash在现代数据管道中的角色与发展趋势,强调了实时处理、数据源整合、安全合规和智能化升级四个关键方向。通过分析当前行业趋势和挑战,展示了Logstash如何通过技术创新和优化,满足企业在大数据时代的需求,为数据驱动的战略决策提供强有力的支持。
2024-09-15 16:15:13
152
笑傲江湖
Tornado
...定性都得到了超级大的提升,就像给系统装上了涡轮增压器一样,嗖嗖地快,稳稳地好。 三、Tornado如何解决网络连接不稳定或中断的问题? 网络连接不稳定或中断通常是由以下几个原因引起的:网络拥塞、路由器故障、服务提供商问题等。这些问题虽然没法彻底躲开,不过只要我们巧妙地进行网络编程,就能最大限度地降低它们对我们应用程序的影响程度,尽可能让它们少添乱。Tornado就是这样一个可以帮助我们处理这些问题的工具。 四、Tornado的使用示例 下面我们将通过几个实例来展示如何使用Tornado来处理网络连接不稳定或中断的问题。 1. 异步I/O操作 在传统的同步I/O操作中,当一个线程执行完一个任务后,会阻塞等待新的任务。这种方式在处理大量并发请求时效率较低。而异步I/O这招厉害的地方就在于,它能充分榨干多核CPU的潜能,让多个请求同时开足马力并行处理,就像一个超级服务员,能够同时服务多位顾客,既高效又灵活。Tornado这个家伙,厉害之处就在于它采用了异步I/O操作这招杀手锏,这样一来,面对蜂拥而至的高并发网络请求,它也能游刃有余地高效应对,处理起来毫不含糊。 python import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): 这里是你的业务逻辑 pass application = tornado.web.Application([ (r"/", MainHandler), ]) application.listen(8888) tornado.ioloop.IOLoop.current().start() 2. 自动重连机制 在网络连接不稳定或中断的情况下,传统的TCP连接可能会因为超时等原因断开。为了避免这种情况,我们可以设置自动重连机制。Tornado提供了一个方便的方法来实现这个功能。 python import tornado.tcpclient class MyClient(tornado.tcpclient.TCPClient): def __init__(self, host='localhost', port=80, kwargs): super().__init__(host, port, kwargs) self.retries = 3 def connect(self): for _ in range(self.retries): try: return super().connect() except Exception as e: print(f'Connect failed: {e}') tornado.ioloop.IOLoop.current().add_timeout( tornado.ioloop.IOLoop.current().time() + 5, lambda: self.connect(), ) raise tornado.ioloop.TimeoutError('Connect failed after retrying') client = MyClient() 以上就是Tornado的一些基本使用方法,它们都可以帮助我们有效地处理网络连接不稳定或中断的问题。当然,Tornado的功能远不止这些,你还可以利用它的WebSocket、HTTP客户端等功能来满足更多的需求。 五、总结 总的来说,Tornado是一个非常强大的工具,它不仅可以帮助我们提高网络应用程序的性能和稳定性,还可以帮助我们更好地处理网络连接不稳定或中断的问题。如果你是一名网络开发工程师,我强烈推荐你学习和使用Tornado。相信你会发现,它会给你带来很多惊喜和收获。 六、结语 希望通过这篇文章,你能了解到Tornado的基本概念和使用方法,并且能将这些知识运用到实际的工作和项目中。记住了啊,学习这件事儿可是没有终点线的马拉松,只有不断地吸收新知识、动手实践操作,才能让自己的技能树茁壮成长,最终修炼成一名货真价实的网络开发大神。
2023-05-20 17:30:58
169
半夏微凉-t
Apache Atlas
...,给数据贴上各种分类标签,严格执行数据安全规矩,并且时刻盯着数据使用情况,这样一来,就能轻轻松松地把数据隐私和合规性管得妥妥的。 1.1 数据隐私保护 Apache Atlas通过精细的标签体系(如PII, PHI等)来标识敏感数据,并结合角色和权限控制,确保只有授权用户才能访问特定类型的数据。例如: java // 创建一个表示个人身份信息(PII)的标签定义 EntityDefinition piiTagDef = new EntityDefinition(); piiTagDef.setName("PII"); piiTagDef.setDataType(Types.STRING_TYPE); // 添加描述并保存标签定义 AtlasTypeDefStore.createOrUpdateTypeDef(piiTagDef); // 将某个表标记为包含PII Entity entity = atlasClient.getEntityByGuid(tableGuid); entity.addTrait(new Trait("PII", Collections.emptyMap())); atlasClient.updateEntity(entity); 这段代码首先创建了一个名为"PII"的标签定义,然后将此标签应用到指定表实体,表明该表存储了个人身份信息。这样,在后续的数据查询或处理过程中,可以通过标签筛选机制限制非授权用户的访问。 1.2 合规性策略执行 Apache Atlas的另一大优势在于其支持灵活的策略引擎,可根据预设规则自动执行合规性检查。例如,我们可以设置规则以防止未经授权的地理位置访问敏感数据: java // 创建一个策略定义 PolicyDefinition policyDef = new PolicyDefinition(); policyDef.setName("LocationBasedAccessPolicy"); policyDef.setDescription("Restrict access to PII data based on location"); policyDef.setModule("org.apache.atlas.example.policies.LocationPolicy"); // 设置策略条件与动作 Map config = new HashMap<>(); config.put("restrictedLocations", Arrays.asList("CountryA", "CountryB")); policyDef.setConfiguration(config); // 创建并激活策略 AtlasPolicyStore.createPolicy(policyDef); AtlasPolicyStore.activatePolicy(policyDef.getName()); 这个策略会基于用户所在的地理位置限制对带有"PII"标签数据的访问,如果用户来自"CountryA"或"CountryB",则不允许访问此类数据,从而帮助企业在数据操作层面满足特定的地域合规要求。 2. 深入理解和探索 在实际运用中,Apache Atlas不仅提供了一套强大的API供开发者进行深度集成,还提供了丰富的可视化界面以直观展示数据的流动、关联及合规状态。这种能让数据“亮晶晶”、一目了然的数据治理体系,就像给我们的数据世界装上了一扇大窗户,让我们能够更直观、更全面地掌握数据的全貌。它能帮我们在第一时间发现那些潜藏的风险点,仿佛拥有了火眼金睛。这样一来,我们就能随时根据实际情况,灵活调整并不断优化咱们的数据隐私保护措施和合规性策略,让它们始终保持在最佳状态。 总结来说,Apache Atlas凭借其强大的元数据管理能力和灵活的策略执行机制,成为了企业在大数据环境下实施数据隐私和合规性策略的理想选择。虽然机器代码乍一看冷冰冰的,感觉不带一丝情感,但实际上它背后却藏着咱们对企业和组织数据安全、合规性的一份深深的关注和浓浓的人文关怀。在这个处处都靠数据说话的时代,咱们就手拉手,带上Apache Atlas这位好伙伴,一起为数据的价值和尊严保驾护航,朝着更合规、更安全的数据新天地大步迈进吧!
2023-11-04 16:16:43
454
诗和远方
Beego
...缺的核心部分。而提到提升数据库性能的秘密武器,数据库连接池绝对算得上是一把好手,它的重要性不容小觑!在使用Beego框架时,我们怎么才能把数据库连接池调校到最佳状态呢?别急,本文会手把手、从零开始,一步步带你揭开这个秘密,保证让你明明白白了解个透彻。 二、为什么要使用数据库连接池? 当我们频繁地操作数据库时,每次都会创建一个新的数据库连接,这不仅会消耗大量的系统资源,而且还会增加数据库的负载。为了解决这个问题,我们可以使用数据库连接池。数据库连接池,你可以想象成一个数据库连接的“共享小仓库”。它会提前准备一些数据库连接,就像把玩具预先放进收纳箱一样,都存放在这个池子里。当你的程序需要和数据库打交道时,就从这个“池子”里取出一个连接来用,用完之后呢,也不用随手扔掉,而是放回这个池子里,这样下次再需要的时候还能接着用,既方便又高效。这样既可以减少资源的浪费,又可以提高数据库的响应速度。 三、如何在Beego框架下使用数据库连接池? 在Beego框架下,我们可以通过使用开源的database/sql包来使用数据库连接池。首先,我们需要创建一个数据库连接池: go db, err := sql.Open("mysql", "user:password@/dbname") if err != nil { panic(err.Error()) } defer db.Close() pool := &sql.DB{} pool.SetMaxOpenConns(20) pool.SetMaxIdleConns(10) 这段代码首先通过sql.Open()函数打开一个数据库连接,然后定义了一个新的变量pool,类型为sql.DB。接着,我们设置了连接池的最大开放连接数为20,最大空闲连接数为10。 四、如何优化数据库连接池的配置? 在配置数据库连接池时,我们需要注意以下几个方面: 1. 设置合适的最大开放连接数和最大空闲连接数。如果最大允许的开放连接数太多了,就好比是一个接待员同时应付太多的客人,不仅会让整个系统的资源被胡乱消耗掉,变得大手大脚;而另一方面,要是最大空闲连接数设置得不够多,那就像是在高峰期,排队等待服务的顾客太少,结果就是数据库不得不频繁地忙前忙后,响应速度自然也就慢下来了。因此,这两个参数需要根据实际的业务需求来进行调整。 2. 避免频繁地关闭数据库连接。虽然数据库连接池确实是个好东西,能帮咱们有效解决频繁创建和销毁数据库连接这个大麻烦,但你要是总把它当成回收站,频繁地把连接丢回去,那这好经也可能被念歪了,会导致数据库连接资源白白浪费掉。因此,我们应该尽可能地减少数据库连接的释放次数。 3. 定期检查数据库连接池的状态。为了确保数据库连接池运转得顺顺畅畅,我们得定期给它做个全面体检,摸摸底儿,瞅瞅像当前有多少个连接在用啊,又有多少闲着没事儿干的空闲连接等等这些关键指标。这样一来,一旦有啥小毛小病的,咱们就能立马发现并及时处理掉,保证一切正常运行。 五、总结 总的来说,在Beego框架下使用数据库连接池是一个非常有效的方法,可以帮助我们提高数据库的性能。不过呢,咱们也得不断地摸索和捣鼓,才能找到那个最适合自家数据库的连接池配置。就像是找鞋子一样,不试穿几双,怎么能知道哪一双穿起来最合脚、最舒服呢?所以,对于数据库连接池的配置,咱也得慢慢尝试、逐步调整,才能找到最佳的那个“黄金比例”。同时,我们也应该注意保持良好的编程习惯,避免产生无谓的资源浪费。希望这篇内容能实实在在帮到你,让你更溜地掌握和运用Beego框架下的数据库连接池,让数据操作变得更顺手、更高效。
2023-12-11 18:28:55
528
岁月静好-t
Mahout
...快速生成个性化推荐,提升用户体验。 2. 大规模聚类分析 利用Flink的并行处理能力,Mahout能对大量数据进行高效聚类,帮助发现数据中的模式和结构。 3. 在线协同过滤 Flink接口允许Mahout实现在线协同过滤算法,实时更新用户偏好,提高推荐的准确性和时效性。 4. 数据流上的机器学习 Mahout的Flink接口支持在数据流上执行机器学习任务,如实时异常检测、预测模型更新等。 三、代码示例 构建实时推荐系统 为了更好地理解Mahout的Flink接口如何工作,下面我们将构建一个简单的实时推荐系统。哎呀,这个玩意儿啊,它能根据你过去咋用它的样子,比如你点过啥,买过啥,然后啊,它就能实时给你推东西。就像是个超级贴心的朋友,老记着你的喜好,时不时给你点惊喜! java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class RealtimeRecommendationSystem { public static void main(String[] args) throws Exception { // 创建流处理环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 假设我们有一个实时事件流,包含用户ID和商品ID DataStream> eventStream = env.fromElements( Tuple2.of("user1", "itemA"), Tuple2.of("user2", "itemB"), Tuple2.of("user1", "itemC") ); // 使用Mahout的协同过滤算法进行实时推荐 DataStream> recommendations = eventStream.map(new MapFunction, Tuple2>() { @Override public Tuple2 map(Tuple2 value) { // 这里只是一个示例,实际应用中需要调用具体的协同过滤算法 return new Tuple2<>(value.f0, "recommendedItem"); } }); // 打印输出 recommendations.print(); // 执行任务 env.execute("Realtime Recommendation System"); } } 四、结论 开启数据驱动的未来 通过整合Mahout的机器学习能力和Flink的实时计算能力,开发者能够构建出响应迅速、高效精准的数据分析系统。无论是实时推荐、大规模聚类还是在线协同过滤,这些功能都为数据分析带来了新的可能。哎呀,随着科技这玩意儿越变越厉害,咱们能见到的新鲜事儿也是一波接一波。就像是魔法一样,数据这东西,现在能帮咱们推动业务发展,搞出不少新花样,让咱们的生意越来越红火,创意源源不断。简直就像开了挂一样!
2024-09-01 16:22:51
63
海阔天空
RabbitMQ
...间件,它不仅在性能上表现优异,而且功能强大到让人咋舌。今天我们来聊聊它的用户权限控制机制,这个可是保障消息安全传输的重中之重。 1. 为什么需要权限控制? 首先,我们得搞清楚一个问题:为什么RabbitMQ要费这么大劲来搞权限控制呢?其实,原因很简单——安全。想一想吧,要是谁都能随便翻看你消息队列里的东西,那得多不安全啊!不仅会泄露你的信息,还可能被人恶意篡改或者直接删掉呢。所以啊,设置合理的权限控制就像是给兔子围了个篱笆,让它在安全的小天地里蹦跶。这样一来,咱们用RabbitMQ的时候就能更安心,也能更好地享受它带来的便利啦。 2. 权限控制的基本概念 在深入探讨具体操作之前,先来了解一下RabbitMQ权限控制的基本概念。RabbitMQ采用的是基于vhost(虚拟主机)的权限管理模型。每个vhost就像是一个小天地,里面自成一套体系,有自己的用户、队列和交换机这些家伙们。而权限控制,则是针对这些资源进行精细化管理的一种方式。 2.1 用户与角色 在RabbitMQ中,用户是访问系统的基本单位。每个用户可以被赋予不同的角色,比如管理员、普通用户等。不同的角色拥有不同的权限,从而实现了权限的分层管理。 2.2 权限类型 RabbitMQ的权限控制分为三类: - 配置权限:允许用户对vhost内的资源进行创建、修改和删除操作。 - 写入权限:允许用户向vhost内的队列发送消息。 - 读取权限:允许用户从vhost内的队列接收消息。 2.3 权限规则 权限控制通过正则表达式来定义,这意味着你可以非常灵活地控制哪些用户能做什么,不能做什么。比如说,你可以设定某个用户只能看到名字以特定字母开头的队列,或者干脆不让某些用户碰特定的交换机。 3. 实战演练 动手配置权限控制 理论讲完了,接下来就让我们一起动手,看看如何在RabbitMQ中配置权限控制吧! 3.1 创建用户 首先,我们需要创建一些用户。假设我们有两个用户:alice 和 bob。打开命令行工具,输入以下命令: bash rabbitmqctl add_user alice password rabbitmqctl set_user_tags alice administrator rabbitmqctl add_user bob password 这里,alice 被设置为管理员,而 bob 则是普通用户。注意,这里的密码都设为 password,实际使用时可要改得复杂一点哦! 3.2 设置vhost 接着,我们需要创建一个虚拟主机,并分配给这两个用户: bash rabbitmqctl add_vhost my-vhost rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "." "." 这里,我们给 alice 和 bob 都设置了通配符权限,也就是说他们可以在 my-vhost 中做任何事情。当然,这只是个示例,实际应用中你肯定不会这么宽松。 3.3 精细调整权限 现在,我们来试试更精细的权限控制。假设我们只想让 alice 能够管理队列,但不让 bob 做这件事。我们可以这样设置: bash rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "^bob-queue-" "^bob-queue-" 在这个例子中,alice 可以对所有资源进行操作,而 bob 只能对以 bob-queue- 开头的队列进行读写操作。 3.4 使用API进行权限控制 除了命令行工具外,RabbitMQ还提供了HTTP API来管理权限。例如,要获取特定用户的权限信息,可以发送如下请求: bash curl -u admin:admin-password http://localhost:15672/api/permissions/my-vhost/alice 这里的 admin:admin-password 是你的管理员账号和密码,my-vhost 和 alice 分别是你想要查询的虚拟主机名和用户名。 4. 总结与反思 通过上面的操作,相信你已经对RabbitMQ的权限控制有了一个基本的认识。不过,值得注意的是,权限控制并不是一劳永逸的事情。随着业务的发展,你可能需要不断调整权限设置,以适应新的需求。所以,在设计权限策略的时候,咱们得想远一点,留有余地,这样系统才能长久稳定地运转下去。 最后,别忘了,安全永远是第一位的。就算是再简单的消息队列系统,我们也得弄个靠谱的权限管理,不然咱们的数据安全可就悬了。希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎留言交流! --- 这就是今天的分享了,希望大家能够从中获得灵感,并在自己的项目中运用起来。记住啊,不管多复杂的系统,到最后不就是为了让人用起来更方便,生活过得更舒心嘛!加油,程序员朋友们!
2024-12-18 15:31:50
103
梦幻星空
Go Iris
...辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
459
月下独酌
Kotlin
...平台的应用开发,大大提升了开发效率和代码复用性。例如,通过Kotlin/Native技术,开发者可以将Kotlin编写的代码直接编译为原生应用,实现高性能的同时保持代码的一致性。 趋势二:社区活跃度与生态建设 随着Kotlin社区的不断壮大,各种开源项目层出不穷,从基础库到高级框架,从工具到文档,形成了一个完善的生态系统。这不仅降低了新开发者的学习门槛,也为现有开发者提供了丰富的资源和技术支持。活跃的社区氛围鼓励了知识分享和问题解决,促进了技术的快速迭代和创新。 挑战一:迁移成本与学习曲线 对于已有大量Java代码的项目,迁移至Kotlin可能会面临较高的成本,包括代码转换、团队培训以及适应新语言特性的过程。此外,Kotlin的一些新特性,如函数式编程支持和协程,对于习惯于传统编程范式的开发者来说,可能需要一定时间去理解和掌握。 挑战二:生态系统成熟度 尽管Kotlin的生态系统正在迅速发展,但与成熟的Java生态相比,某些高级库和工具可能仍处于起步阶段。这可能会影响大型项目的开发效率,尤其是对于依赖于特定框架或库的项目而言。 解决方案与展望 针对上述挑战,开发者可以从多个角度寻找解决方案。首先,利用现有的迁移工具和服务,逐步将现有代码迁移到Kotlin,同时进行团队培训,提升整体技能水平。其次,积极利用社区资源,参与开源项目,既可以获得技术支持,也能加深对Kotlin的理解。最后,随着Kotlin生态的不断完善,预期未来会有更多高质量的库和工具出现,为开发者提供更强大的支持。 总之,Kotlin作为一门功能强大、易于学习的编程语言,正以其独特的魅力和强大的生态系统,引领着现代软件开发的趋势。面对挑战,通过持续学习、优化工作流程和利用社区资源,开发者能够最大化地发挥Kotlin的优势,推动项目和自身技术能力的共同成长。
2024-08-23 15:40:12
95
幽谷听泉
Netty
...对多个连接请求,大大提升了程序处理并发任务的能力,让效率噌噌噌地往上涨。 三、Netty服务器的网络中断问题 当网络发生中断时,Netty服务器通常会产生两种异常: 1. ChannelException: 由于底层I/O操作失败而抛出的异常。 2. UnresolvedAddressException: 当尝试打开一个到不存在的地址的连接时抛出的异常。 这两种异常都会导致服务器无法正常接收和发送数据。 四、处理Netty服务器的网络中断问题 1. 使用ChannelFuture和FutureListener 在Netty中,我们可以使用ChannelFuture和FutureListener来处理网络中断问题。ChannelFuture是创建了一个用于等待特定I/O操作完成的Future对象。FutureListener是一个接口,可以监听ChannelFuture的状态变化。 例如,我们可以使用以下代码来监听一个ChannelFuture的状态变化: java channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 连接成功 } else { // 连接失败 } } }); 2. 使用心跳检测机制 除了监听ChannelFuture的状态变化外,我们还可以使用心跳检测机制来检查网络是否中断。实际上,我们可以这样理解:在用户的设备上(也就是客户端),我们设定一个任务,定期给服务器发送个“招呼”——这就是所谓的心跳包。就像朋友之间互相确认对方是否还在一样,如果服务器在一段时间内没有回应这个“招呼”,那我们就推测可能是网络连接断开了,简单来说就是网络出小差了。 例如,我们可以使用以下代码来发送心跳包: java // 创建心跳包 ByteBuf heartbeat = Unpooled.buffer(); heartbeat.writeInt(HeartbeatMessage.HEARTBEAT); heartbeat.writerIndex(heartbeat.readableBytes()); // 发送心跳包 channel.writeAndFlush(heartbeat); 3. 使用重连机制 当网络中断后,我们需要尽快重新建立连接。为了实现这个功能,我们可以使用重连机制。换句话说,一旦网络突然掉线了,我们立马麻溜地开始尝试建立一个新的连接,并且持续密切关注着新的连接状态有没有啥变化。 例如,我们可以使用以下代码来重新建立连接: java // 重试次数 int retryCount = 0; while (retryCount < maxRetryCount) { try { // 创建新的连接 Bootstrap bootstrap = new Bootstrap(); ChannelFuture channelFuture = bootstrap.group(eventLoopGroup).channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, backlog) .childHandler(new ServerInitializer()) .connect(new InetSocketAddress(host, port)).sync(); // 监听新的连接状态变化 channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 新的连接建立成功 return; } // 新的连接建立失败,继续重试 if (future.cause() instanceof ConnectException || future.cause() instanceof UnknownHostException) { retryCount++; System.out.println("Failed to connect to server, will retry in " + retryDelay + "ms"); Thread.sleep(retryDelay); continue; } } }); // 连接建立成功,返回 return channelFuture.channel(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } 五、总结 在网络中断问题上,我们可以通过监听ChannelFuture的状态变化、使用心跳检测机制和重连机制来处理。这些方法各有各的好和不足,不过总的来说,甭管怎样,它们都能在关键时刻派上用场,就是在网络突然断开的时候,帮我们快速重新连上线,确保服务器稳稳当当地运行起来,一点儿不影响正常工作。 以上就是关于如何处理Netty服务器的网络中断问题的文章,希望能对你有所帮助。
2023-02-27 09:57:28
137
梦幻星空-t
Nginx
...端渲染。这种做法不仅提升了用户体验,还大幅降低了带宽成本。 与此同时,国内也有不少公司在探索类似的解决方案。阿里巴巴旗下的云服务平台阿里云最近推出了一款名为“云缓存”的新产品,专门针对大规模分布式系统设计。这款产品借鉴了开源项目如Varnish和Nginx的经验,并在此基础上增加了智能化调度算法,使得缓存命中率提高了约30%。此外,华为云也在积极布局边缘计算领域,推出了基于Kubernetes的边缘节点服务,允许用户轻松部署和管理分布在不同地理位置的应用程序实例。 从技术角度来看,这类创新背后离不开近年来机器学习的进步。例如,通过引入深度强化学习模型,系统可以自动调整缓存策略,确保在高并发场景下依然保持稳定的响应时间。这不仅解决了传统缓存面临的冷启动问题,还有效缓解了热点资源争夺带来的性能瓶颈。 当然,这一切并非没有挑战。隐私保护法规日益严格,企业在采用新的缓存技术时必须确保符合GDPR等相关法律法规的要求。特别是在处理跨境数据传输时,如何平衡效率与合规成为了一个亟待解决的问题。 总之,无论是国际巨头还是本土企业,都在努力寻找适合自身业务发展的最佳实践。未来几年内,随着5G网络普及以及物联网设备数量激增,缓存技术将迎来更多发展机遇。而像Nginx这样的经典工具,无疑将继续扮演重要角色,在这场数字化转型浪潮中发挥不可替代的作用。
2025-04-18 16:26:46
98
春暖花开
Maven
...台部署方面有着出色的表现。用这两种工具的优点结合起来看,我们就更能掌握怎么在各种平台上好好管个项目了。这么说吧,就像是把两个厉害的工具合并成一个超级工具,让你干活儿更顺手! 2. Maven入门 构建Java世界的桥梁 Maven是一个强大的构建工具,它通过一个名为pom.xml的文件来管理项目的配置和依赖关系。这个文件就像是Java项目的“大脑”,控制着整个构建过程。让我们先来看看一个简单的pom.xml示例: xml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 com.example my-app 1.0-SNAPSHOT junit junit 4.12 test org.apache.maven.plugins maven-compiler-plugin 3.8.1 1.8 1.8 在这个例子中,我们定义了一个简单的Java项目,它依赖于JUnit,并且指定了编译器版本为Java 8。这样一来,不管是你在自己的电脑上搞开发,还是把东西搬到服务器上去跑,我们都能确保整个项目稳稳当当,每次都能得到一样的结果。 3. npm之旅 Node.js的魔法盒 与Maven类似,npm(Node Package Manager)是Node.js生态系统中的一个核心组件,它负责管理JavaScript库和模块。npm通过package.json文件来记录项目的依赖和配置信息。下面是一个基本的package.json示例: json { "name": "my-app", "version": "1.0.0", "description": "A simple Node.js application", "main": "index.js", "scripts": { "start": "node index.js" }, "author": "Your Name", "license": "ISC", "dependencies": { "express": "^4.17.1" } } 在这个例子中,我们创建了一个使用Express框架的简单Node.js应用。用npm,我们就能超级方便地装和管这些依赖,让项目的维护变得简单多了。 4. 跨平台部署的挑战与解决方案 尽管Maven和npm各自在其领域内表现出色,但在跨平台部署时,我们仍然会遇到一些挑战。例如,不同操作系统之间的差异可能会导致构建失败。为了应对这些问题,我们可以采取以下几种策略: - 标准化构建环境:确保所有开发和生产环境都使用相同的工具版本和配置。 - 容器化技术:利用Docker等容器技术来封装整个应用及其依赖,从而实现真正的跨平台一致性。 - 持续集成/持续部署(CI/CD):通过Jenkins、GitLab CI等工具实现自动化的构建和部署流程,减少人为错误。 5. 结语 拥抱变化,享受技术带来的乐趣 在这次旅程中,我们不仅了解了Maven和npm的基本概念和使用方法,还探讨了如何利用它们进行跨平台部署。技术这东西啊,变化莫测,但只要你保持好奇心,愿意不断学习,就能一步步往前走,还能从中找到不少乐子呢!不管是搞Java的小伙伴还是喜欢Node.js的朋友,都能用上这些给力的工具,让你的项目管理技能更上一层楼!希望这篇分享能够激发你对技术的好奇心,让我们一起在编程的海洋中畅游吧! --- 通过这样的结构和内容安排,我们不仅介绍了Maven和npm的基本知识,还穿插了个人思考和实际操作的例子,力求让文章更加生动有趣。希望这样的方式能让你感受到技术背后的温度和乐趣!
2024-12-07 16:20:37
31
青春印记
Apache Atlas
...持,这一突破将进一步提升企业在大规模数据处理场景下的数据安全保障能力。 因此,深入研究和实践Apache Atlas等数据脱敏工具,既是对现行法规的响应,也是对未来数据安全挑战的前瞻准备。通过合理运用数据脱敏技术,企业能在保障数据安全的前提下充分挖掘数据价值,从而赢得市场竞争优势,建立可持续发展的信任资本。同时,相关监管机构和行业组织也在积极推动数据脱敏技术的标准制定和最佳实践分享,为企业提供更清晰的指导路径。
2024-03-26 11:34:39
470
桃李春风一杯酒-t
DorisDB
...ter索引,可以大幅提升查询性能。 sql -- 创建包含主键的表 CREATE TABLE my_table ( user_id INT PRIMARY KEY, ... ); - 分区设计:根据业务需求和数据分布特性,合理设计分区策略至关重要。比如,咱们可以按照时间段给数据分区,这样做的好处可多了。首先呢,能大大减少需要扫描的数据量,让查询过程不再那么费力;其次,还能巧妙地利用局部性原理,就像你找东西时先从最近的地方找起一样,这样就能显著提升查询的效率,让你的数据查找嗖嗖快! sql -- 按天分区 CREATE TABLE my_table ( ... ) PARTITION BY RANGE (dt) ( PARTITION p20220101 VALUES LESS THAN ("2022-01-02"), PARTITION p20220102 VALUES LESS THAN ("2022-01-03"), ... ); 4. 优化策略二 SQL查询优化 - 避免全表扫描:尽量在WHERE子句中指定明确的过滤条件,利用索引加速查询。例如,假设我们已经为user_id字段创建了索引,那么以下查询会更高效: sql SELECT FROM my_table WHERE user_id = 123; - 减少数据传输量:只查询需要的列,避免使用SELECT 。同时,合理运用聚合函数和分组,避免不必要的计算和排序。 sql -- 只查询特定列,避免全表扫描 SELECT user_name, email FROM my_table WHERE user_id = 123; -- 合理运用GROUP BY和聚合函数 SELECT COUNT(), category FROM my_table GROUP BY category; 5. 优化策略三 系统配置调优 DorisDB提供了丰富的系统参数供用户调整以适应不同场景下的性能需求。比方说,你可以通过调节max_scan_range_length这个参数,来决定每次查询时最多能扫描多少数据范围,就像控制扫地机器人的清扫范围那样。再者,通过巧妙调整那些和内存相关的设置,就能让服务器资源得到充分且高效的利用,就像精心安排储物空间,让每个角落都物尽其用。 6. 结语 优化DorisDB的SQL查询性能是一个综合且持续的过程,需要结合业务特点和数据特征,从表结构设计、查询语句编写到系统配置调整等多个维度着手。每个环节都需细心打磨,才能使DorisDB在大数据洪流中游刃有余,提供更为出色的服务。每一次对DorisDB的优化,都是我们携手这位好伙伴,一起摸爬滚打、不断解锁新技能、共同进步的重要印记。这样一来,咱的数据分析之路也能走得更顺溜,效率嗖嗖往上涨,就像坐上了火箭一样快呢!
2023-05-07 10:47:25
501
繁华落尽
Datax
转载文章
...研究这些内容,有助于提升整体项目的开发效率和运维质量。 总之,在掌握了自定义Spring Boot Starter的基础之上,读者应不断跟进Spring Boot的最新发展,学习其在微服务架构、云原生部署、持续集成/持续交付等方面的最佳实践,以推动自身技术能力的迭代升级。
2023-02-10 20:49:04
270
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
env -i command
- 在干净的环境变量状态下执行命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"