前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[结构化HTML内容组织方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
SpringCloud
...互,提供了丰富的数据结构支持以及分布式的Java对象模型。在本文中,Redisson被用来实现基于Redis的分布式锁服务,其RLock接口提供了获取、释放锁的功能,帮助开发者更方便地管理分布式环境下的并发控制。 公平锁 , 公平锁是一种特殊的锁,在多个线程请求同一个锁时,按照请求的顺序进行排队,先请求的线程优先获得锁。在分布式环境下,公平锁确保了所有服务获取锁的机会均等,减少了因为抢占锁顺序导致的死锁可能性。文中提及可以通过Redisson提供的FairLock来实现全局排序规则,以预防死锁的发生。
2023-03-19 23:46:57
89
青春印记
Kubernetes
...构建和运行应用程序的方法论,旨在充分利用云计算的弹性和可扩展性。云原生应用设计时考虑到了分布式、微服务、容器化、自动化部署、持续集成/持续部署(CI/CD)以及基础设施即代码(IaC)等特性,以实现高度灵活、快速迭代和成本效益高的应用开发和运营。 名词 , Kubernetes。 解释 , Kubernetes,简称K8s,是一款开源的容器编排系统,由Google开发并于2014年开源。Kubernetes提供了一套自动化的机制来部署、扩展和管理容器化应用,支持跨多个物理或虚拟服务器的部署,同时提供了资源调度、自动重启、滚动更新、服务发现等功能。它通过抽象出一组API和工具,使得开发者能够集中精力编写应用代码,而不是管理底层的基础设施。 名词 , 微服务。 解释 , 微服务是一种架构风格,将单一应用程序分解为一组小的、独立部署的服务,每个服务专注于特定的业务功能。这种架构允许各个服务独立开发、部署和扩展,提高了系统的可维护性和可扩展性。微服务通常通过API进行通信,可以运行在不同的服务器上,甚至可以运行在不同的数据中心或云环境中,支持快速迭代和独立发布。在云原生背景下,微服务与容器技术(如Docker)、Kubernetes等结合,形成了灵活、高效、可伸缩的应用部署方式。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
Gradle
... 检查依赖 最直接的方法是检查你的项目依赖。确保你把所有必需的库都加进去了,尤其是那些带有注解处理器的库。举个例子,如果你正在使用Lombok,那么你需要在你的build.gradle文件中添加对应的依赖: groovy dependencies { compileOnly 'org.projectlombok:lombok:1.18.24' annotationProcessor 'org.projectlombok:lombok:1.18.24' } 这里的关键在于同时添加compileOnly和annotationProcessor依赖,这样既可以避免在运行时出现类冲突,又能确保编译时能够找到所需的处理器。 2.2 配置Gradle插件 有时候,问题可能出在Gradle插件的配置上。确保你使用的是最新版本的Gradle插件,并且根据需要调整插件配置。例如,如果你使用的是Android插件,确保你的build.gradle文件中有类似这样的配置: groovy android { ... compileOptions { annotationProcessorOptions.includeCompileClasspath = true } } 这条配置确保了编译类路径中的注解处理器可以被正确地发现和应用。 2.3 手动指定处理器位置 如果上述方法都不能解决问题,你还可以尝试手动指定处理器的位置。这可以通过修改build.gradle文件来实现。例如: groovy tasks.withType(JavaCompile) { options.compilerArgs << "-processorpath" << configurations.annotationProcessorPath.asPath } 这段代码告诉编译器去特定路径寻找处理器,而不是默认路径。这样做的好处是你可以在不同环境中灵活地控制处理器的位置。 3. 实战演练 从错误走向成功 在这个过程中,我遇到了不少挑战。一开始,我还以为这只是个简单的依赖问题,结果越挖越深,才发现事情比我想象的要复杂多了。我渐渐明白,光是加个依赖可不够,还得琢磨插件版本啊、编译选项这些玩意儿,配置这事儿真没那么简单。这个过程让我深刻体会到了软件开发中的细节决定成败的道理。 经过一番探索后,我终于找到了解决问题的关键所在——正确配置注解处理器的路径。这样做不仅把眼前的问题搞定了,还让我以后遇到类似情况时心里有谱,知道该怎么应对了。 4. 总结与展望 总之,“Could not find 'META-INF/services/javax.annotation.processing.Processor'”是一个常见但又容易让人困惑的问题。读完这篇文章,我们知道了怎么通过检查依赖、配置Gradle插件,还有手动指定处理器路径等方法来搞定这个难题。虽然过程中遇到了不少挑战,但正是这些问题推动着我们不断学习和成长。 未来,我希望继续深入研究更多高级主题,比如如何优化构建流程、提升构建效率等。我觉得每次努力试一试,都能让我们变得更牛,也让咱们的项目变得更强更溜!希望我的分享能帮助你在面对类似问题时不再感到迷茫,而是充满信心地去解决问题! --- 希望这篇文章除了提供解决问题的技术指导外,还能让你感受到作为开发者探索未知的乐趣。编程之路虽长,但每一步都值得珍惜。
2024-11-29 16:31:24
81
月影清风
转载文章
本篇文章为转载内容。原文链接:https://blog.csdn.net/senlinmu110/article/details/122086258。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 在前期的推文《SAP软件付款条件的配置及应用介绍》中详细介绍了付款条件的配置及应用,那篇文章中提到了分期付款,但没有展开详细的介绍说明,今天在此文中补充上。 我们知道付款条件配置好后,在做发票凭证时候可以输入付款条件,但是那个付款条件的字段只能输入一个值(如下图) 那么如果遇到一笔款项要分多期支付,并且每一期对应的付款条件不同,比如公司要支付供应商10000元,但和供应商商定可以分三期支付,一期支付20%,对应的付款条件为Z001,二期支付30%,对应的付款条款为Z002,三期支付剩余50%,对应的付款条件为Z003。 SAP如何处理上面这样的业务场景? SAP软件发票凭证录入界面的付款条件字段只能输入一个付款条件代码,我们可以想象下系统要处理这样的分期付款,那么这个付款条件代码就必须能关联到三个不同的付款条件,即它要包含三个具体的付款条件,SAP软件也就是基于这样逻辑设计的,所以对于分期付款的付款条件可以把它看做是一个付款条件组,它包含了三个具体的付款条款(如下图)。 详细信息直接访问下面链接吧,懒得一点点粘贴了 https://mp.weixin.qq.com/s/WnUEKH5TpoQjsFM66E1Yxg 推荐阅读: 《DEMO:接口以XML为入参》 《DEMO:接口以Json为入参》 《Odata 增删改查详例》 《ODATA CREATE_DEEP_ENTITY 详例》 《RESTful DEMO 一:SAP 如何提供 RESTful Web 服务》 《RESTful DEMO 四 :增删改查及调用》 《十年老码农搬砖习惯和技巧》 《我这个老码农是怎么debug标准程序的》 《我是怎样调试BAPI的,以F-02为例》 《动态批量修改任意表任意字段的值》 《动态获取查询条件的一个小Demo》 《使用cl_gui_docking_container 实现多ALV》 《VOFM 修改 组单开票时 会计凭拆分规则》 《DEMO SUBMIT 某程序并获取该程序ALV数据》 《DEMO:S/4 1809 FAGLL03H 增加字段增强》 《几个ABAP实用模板,体力活就别一行行敲了,复制粘贴得了》 《DEMO:BTE增强实现凭证创建检查》 《SAP Parallel Accounting(平行分类账业务)配置+操作手册+BAPI demo程序》 《CC02修改确认日期BAPI:Processing of change number was canceled》 《我是怎样调试BAPI的,以F-02为例》 《女儿的部分书单》 《推荐几本小说吧,反正过年闲着也是闲着,看看呗》 《我是不是被代码给耽误了……不幸沦为一名程序员……》 《三亚自由行攻略(自己穷游总结)》 《苏州游记》 《杂谈:说走就走的旅行没那么难》 《溜达:无锡》 《记码农十周年(20110214--20210214)》 《不一样的SAP干货铺群:帅哥靓妹、红包、烤羊腿!》 《杂谈:几种接口》 《干货来袭:2020年公众号内容汇总》 《DEMO search help 增强 ( vl03n KO03 等)》 《录BDC时 弹出的公司代码框问题》 《动态获取查询条件的一个小Demo》 《动态批量修改任意表任意字段的值》 WDA Demo WDA DEMO 0:开启服务 设置hosts WDA DEMO 02: 简单介绍 WDA DEMO 03: 根据选择条件查询并显示 WDA DEMO 04: select options 查询并显示 WDA DEMO 05:两个table联动展示数据 WDA DEMO 06: 创建事务代码 WDA DEMO 07 页面跳转及全局变量的使用 WDA DEMO 08 全局变量方式二 WDA DEMO 09 ALV 简单展示 WDA DEMO 1:简单查询并显示结果 WDA DEMO 10 代码模块化整理 WDA DEMO 11 根据BAPI/Function创建WDA Debug 系列 DEBUG 系列一:Dump debug DEBUG 系列二:Configure Debugger Layer DEBUG系列三:使用 F9 和 watch point DEBUG系列四:第三方接口debug DEBUG系列五:Update 模式下的function debug DEBUG系列六:后台JOB debug DEBUG系列七:保存测试参数 DEBUG系列八:Debug弹出框 debug系列九:SM13查看update更新报错 DEBUG系列十:Smartforms debug DEBUG系列十一:GGB1 debug Debug系列十二:QRFC 队列 debug 本篇文章为转载内容。原文链接:https://blog.csdn.net/senlinmu110/article/details/122086258。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 21:25:44
141
转载
Kylin
...我才找到了正确的配置方法。 一个常见的问题是,如何设置Kylin的存储位置。默认情况下,Kylin会将元数据存储在HBase中。不过,如果你想把元数据存在本地的文件系统里,只需要调整一下kylin.metadata.storage这个参数就行啦。这可以显著提高开发阶段的效率,但在生产环境中并不推荐这样做。 properties 设置Kylin元数据存储为本地文件系统 kylin.metadata.storage=fs:/path/to/local/directory 另一个重要的配置是Kylin的Cube构建策略。Cube是Kylin的核心概念之一,它用于加速查询响应时间。不同的Cube构建策略会影响查询性能和存储空间的占用。我曾经因为选择了错误的构建策略而导致Cube构建速度极慢。后来,通过调整kylin.cube.algorithm参数,我成功地优化了Cube构建过程。 properties 设置Cube构建策略为INMEM kylin.cube.algorithm=INMEM 4. Kylin部署与监控 最后,我们来谈谈Kylin的部署与监控。Kylin提供了多种部署方式,包括单节点部署、集群部署等。对于初学者来说,单节点部署可能更易于理解和操作。但是,随着数据量的增长,单节点部署很快就会达到瓶颈。这时,就需要考虑集群部署方案。 在部署过程中,我遇到的一个主要问题是服务之间的依赖关系。Kylin依赖于Hadoop和HBase,如果这些服务没有正确配置,Kylin将无法启动。要搞定这个问题,就得细细排查每个服务的状况,确保它们都乖乖地在运转着。 bash 检查Hadoop服务状态 sudo systemctl status hadoop-hdfs-namenode 部署完成后,监控Kylin的运行状态变得非常重要。Kylin提供了Web界面和日志文件两种方式来进行监控。你可以直接在网页上看到Kylin的各种数据指标,就像看仪表盘一样。至于Kylin的操作记录嘛,就都记在日志文件里头了。我经常使用日志文件来排查问题,因为它能提供更多的上下文信息。 bash 查看Kylin日志文件 tail -f /opt/kylin/logs/kylin.log 结语 通过这次分享,我希望能让大家对Kylin的配置与部署有一个更全面的理解。尽管在过程中会碰到各种难题,但只要咱们保持耐心,不断学习和探索,肯定能找到解决的办法。Kylin 的厉害之处就在于它超级灵活,还能随意扩展,这正是我们在大数据分析里头求之不得的呢。希望你们在使用Kylin的过程中也能感受到这份乐趣! --- 希望这篇技术文章对你有所帮助!如果你有任何疑问或需要进一步的帮助,请随时联系我。
2024-12-31 16:02:29
28
诗和远方
转载文章
本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_38262728/article/details/88686180。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 1 用户和用户标识号 1.1 用户 1.2 用户标识号 1.3 /etc/passwd文件 1.4 /etc/shadow文件 2 用户组和组标识号 2.1 用户组 2.2 用户组编号 2.3 /etc/group文件 3 用户管理 3.1 添加用户 3.1.1 useradd命令 3.1.2 adduser命令 3.2 修改用户信息:usermod 3.3 删除用户:userdel 3.4 修改用户密码:passwd 3.5 显示用户信息 3.6 用户间切换:su命令 3.7 受限的特权:sudo命令 4 用户组管理 4.1 添加用户组 4.1.1 addgroup命令 4.1.2 groupadd 4.2 修改用户组 4.3 删除用户组 5 权限管理 5.1 概述 5.1.1 权限组 5.1.2 基本权限类型 5.1.3 特殊权限 5.1.4 访问控制列表 5.2 改变文件所有者chown命令 5.3 改变文件所属组chgrp命令 5.4 设置权限掩码umask命令 5.5 修改文件访问权限 5.6 修改文件ACL:setfacl命令 5.7 查询文件的ACL 1 用户和用户标识号 1.1 用户 我们登录到Linux系统,使用的登录名和密码实际上就是用户的信息标识。 用户拥有账号、登录名、真实姓名、密码、主目录、默认shell等属性。 每个用户实际上代表了一组权限,而这些权限分别表示可以执行不同的操作,是能够获取系统资源的权限的集合。 1.2 用户标识号 Linux实际上并不直接认识用户的账号,而是查看用户标识号。 用户标识号(整数): 0: root,超级用户。 1-499:系统用户,保证系统服务正常运行,一般不使用。 500-60000:普通用户,可登录系统,拥有一定的权限。管理员添加的用户在此范围内。 用户名和标识号不一定一一对应,Linux允许几个登录名对应同一个用户标识号。 系统内部管理进程和文件访问权限时使用用户标识号。 账号和标识号的对应关系在/etc/passwd文件中。 1.3 /etc/passwd文件 该文件所有者和所属组为root,除了root用户外只有读取的权限。 格式: 登录名:口令:用户标识号:组标识号:注释:用户主目录:Shell程序 登录名:同意系统中唯一,大小敏感。 口令:密码,root和用户可使用passwd命令修改。 用户标识号:唯一。 组标识号:每个用户可以同时属于多个组。 注释:相关信息,真实姓名、联系电话等。mail和finger等会使用这些信息。 用户主目录:用户登录后的默认工作目录。root为/root,一般用户在/home下。 Shell程序:登录后默认启动的Shell程序。 1.4 /etc/shadow文件 包含用户的密码和过期时间,只有root组可读写。 格式: 登录名:加密口令:最后一次修改时间:最小时间间隔:最大时间间隔:警告时间:密码禁用期:账户失效时间:保留字段 登录名:略。 加密口令:表示账户被锁定,!表示密码被锁定。其他的前三位表示加密方式。 最后一次修改时间:最近修改密码的时间,天为单位,1970年1月1日算起。 最小时间间隔:最小修改密码的时间间隔。 最大时间间隔:最长密码有效期,到期要求修改密码。 警告时间:密码过期后多久发出警告。 密码禁用期:密码过期后仍然接受的最长期限。 账号失效时间:账户的有效期,1970年1月1日算起,空串表示永不过期。 保留字段:保留将来使用。 2 用户组和组标识号 2.1 用户组 用户组指,一组权限和功能相类似的用户的集合。 Linux本身预定义了许多用户组,包括root、daemon、bin、sys等,用户可根据需要自行添加用户组。 用户组拥有组名、组标识号、组成员等属性。 2.2 用户组编号 Linux内部通过组标识号来标识用户组。 用户组信息保存在 /etc/group 中。 2.3 /etc/group文件 格式:组名:口令:组标识符:成员列表 /etc/passwd文件指定的用户组在/etc/group中不存在则无法登录。 3 用户管理 3.1 添加用户 3.1.1 useradd命令 命令: useradd [option] 登录名 option参数自行查阅。 一般加-m创建目录。 3.1.2 adduser命令 adduser [option] user 如果没有指定–system和–group选项,则创建普通用户。 否则创建系统用户或用户组。 3.2 修改用户信息:usermod 命令: usermod [option] 用户名 具体选项信息自行查阅。 3.3 删除用户:userdel 命令: userdel [option] 用户名 -f:强制删除(谨慎使用) -r:主目录中的文件一并删除。 3.4 修改用户密码:passwd 命令: passwd [option] 登录名 3.5 显示用户信息 命令: id [option] [用户] 3.6 用户间切换:su命令 命令: su [option] [用户名] 用户名为 - ,则切换到root用户。 3.7 受限的特权:sudo命令 sudo使得用户可以在自己的环境下,执行需要root权限的命令。 该信息保存在/etc/sudoers中。 4 用户组管理 4.1 添加用户组 4.1.1 addgroup命令 类似adduser 4.1.2 groupadd 类似useradd 4.2 修改用户组 类似usermod,使用groupmod。 4.3 删除用户组 类似userdel,使用groupdel。 5 权限管理 5.1 概述 5.1.1 权限组 一般创建文件的人为所有者,其所属的主组为所属组,其他用户为其他组。 5.1.2 基本权限类型 三种:读、写、执行。 权限及其表示值: 读:r或4 写:w或2 执行:x或1 5.1.3 特殊权限 setuid、setgid和黏滞位。 setuid和setgid能以文件所有者或所属组的身份运行。 黏滞位使得只有文件的所有者才可以重命名和删除文件。 5.1.4 访问控制列表 访问控制表ACL可以针对某个用户或者用户组单独设置访问权限。 5.2 改变文件所有者chown命令 命令: chown [option]...[owner][:[group]] file... 5.3 改变文件所属组chgrp命令 用户不受文件的文件主或超级用户不能修改组。 5.4 设置权限掩码umask命令 文件的权限为666-掩码 目录的权限为777-掩码 5.5 修改文件访问权限 命令: chmod [option]...mode[,mode]...file... “+”:增加权限 “-”:减少权限 “=”:设置权限 5.6 修改文件ACL:setfacl命令 命令: setfacl [option] file... 5.7 查询文件的ACL 命令: getfacl [文件名] 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_38262728/article/details/88686180。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-10 22:43:08
547
转载
Tomcat
...见问题解决方案。这些内容不仅对使用AWS的用户大有裨益,也为其他云平台用户提供了参考思路。 另外,随着微服务架构的普及,传统的JMX监控方式面临诸多限制。为此,Netflix开源了其内部使用的Micrometer库,该库支持多种监控后端,包括Prometheus、Graphite等,大大简化了微服务环境下的监控配置工作。近期,Micrometer团队发布了一系列更新,增加了对更多监控后端的支持,并优化了性能。这一进展对于正在探索微服务监控方案的企业来说,具有重要的参考价值。 以上内容不仅展示了JMX监控领域的最新发展动态,也为读者提供了丰富的实战经验和理论指导。希望这些延伸阅读材料能够帮助大家更好地理解和应用JMX监控技术。
2025-02-15 16:21:00
102
月下独酌
Cassandra
...Cassandra表结构? 在处理海量时序数据的场景下,Apache Cassandra是一个非常出色的选择。它的分布式架构以及对大数据读写操作的高度优化,使其成为存储和查询时间序列数据的理想平台。不过,有效地利用Cassandra的前提是精心设计数据模型。本文将带你手把手地深入挖掘,如何为时间序列数据量身打造Cassandra的表结构设计。咱会借助实例代码和亲身实战经验,像揭开宝藏地图那样揭示其中的设计秘诀,让你明明白白、实实在在地掌握这门技艺。 1. 理解时间序列数据特点 时间序列数据是指按时间顺序记录的一系列数据点,每个数据点通常与一个特定的时间戳相关联。这类数据在咱们日常生活中可不少见,比如物联网(IoT)、监控系统、金融交易还有日志分析这些领域,都离不开它。它的特点就是会随着时间的推移,像滚雪球一样越积越多。而在查询的时候,人们最关心的通常就是最近产生的那些新鲜热辣的数据,或者根据特定时间段进行汇总统计的信息。 2. 设计原则 (1)分区键选择 在Cassandra中,分区键对于高效查询至关重要。当你在处理时间序列数据时,一个很接地气的做法就是拿时间来做分区的一部分。比如说,你可以把年、月、日、小时这些信息拼接起来,弄成一个复合型的分区键。这样一来,同一时间段的数据就会乖乖地呆在同一个分区里,这样咱们就能轻松高效地一次性读取到这一整段时期的数据了,明白吧? cql CREATE TABLE sensor_data ( sensor_id uuid, event_time timestamp, data text, PRIMARY KEY ((sensor_id, date_of(event_time)), event_time) ) WITH CLUSTERING ORDER BY (event_time DESC); 这里date_of(event_time)是对事件时间进行提取日期部分的操作,形成复合分区键,便于按天或更粗粒度进行分区。 (2)排序列簇与查询路径 使用CLUSTERING ORDER BY定义排序列簇,按照时间戳降序排列,确保最新数据能快速获取。 (3)限制行大小与集合使用 尽管Cassandra支持集合类型,但对于时间序列数据,应避免在一个集合内存放大量数据,以免读取性能受到影响。由于集合不会分页,如果需要存储连续的时序数据点,最好让每一行只包含单个数据点。 (4)宽行与稀疏索引 采用“宽行”策略,即每行代表一段时间窗口内的多个数据点属性,而不是每条数据一个行。这有助于减少跨分区查询,提高查询效率。同时呢,对于那些跟时间没关系的筛选条件,我们可以琢磨着用一下稀疏索引。不过得注意啦,这里有个“度”的把握,就是索引虽然能让查询速度嗖嗖提升,但同时也会让写入数据时的开销变大。所以嘞,咱们得在这两者之间找个最佳平衡点。 3. 示例设计 物联网传感器数据存储 假设我们有一个物联网项目,需要存储来自不同传感器的实时测量值: cql CREATE TABLE sensor_readings ( sensor_id uuid, reading_time timestamp, temperature float, humidity int, pressure double, PRIMARY KEY ((sensor_id, reading_time)) ) WITH CLUSTERING ORDER BY (reading_time DESC); 这个表结构中,sensor_id和reading_time共同组成复合分区键,每个传感器在某一时刻的温度、湿度和压力读数都存放在一行里。 4. 总结与思考 设计Cassandra时间序列数据表的关键在于理解数据访问模式并结合Cassandra的特性和局限性。选对分区键这招儿,就像给海量数据找个宽敞的储藏室,让它们能分散开来存放和快速找到;而把列簇整得井井有条,那就相当于帮我们轻松摸到最新鲜的数据,一抓一个准儿。再配上精心设计的宽行结构,加上恰到好处的索引策略,甭管查询需求怎么变花样,都能妥妥地满足你。 当然,具体实践时还需要根据业务的具体情况进行调整和优化,例如预测未来的数据增长规模、评估查询性能瓶颈以及是否需要进一步的数据压缩等措施。总的来说,用Cassandra搭建时间序列数据模型不是个一劳永逸的事儿,它更像是一个持久的观察、深度思考和反复调整优化的过程。只有这样,我们才能真正把Cassandra处理海量时序数据的洪荒之力给释放出来。
2023-12-04 23:59:13
769
百转千回
MemCache
...崩? 防止缓存雪崩的方法有很多,这里我给大家分享几个实用的技巧: - 设置不同的过期时间:不要让所有的缓存数据在同一时刻失效,可以通过随机化过期时间来避免这种情况。 - 部署多级缓存架构:比如可以将MemCache作为一级缓存,Redis作为二级缓存,这样即使MemCache出现问题,还有Redis可以缓冲一下。 - 使用缓存降级策略:当缓存不可用时,可以暂时返回默认值或者降级数据,减少对数据库的冲击。 4. 代码示例 MemCache的使用与缓存雪崩预防 现在,让我们通过一些代码示例来看看如何使用MemCache以及如何预防缓存雪崩。 python import memcache 初始化MemCache客户端 mc = memcache.Client(['127.0.0.1:11211'], debug=0) def get_data(key): 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间为随机时间,避免雪崩 mc.set(key, data, time=random.randint(60, 300)) return data def fetch_from_db(key): 模拟从数据库获取数据的过程 print("Fetching from database...") return "Data for key: " + key 示例调用 print(get_data('key1')) 在这个例子中,我们设置了缓存的过期时间为一个随机时间,而不是固定的某个时刻,这样就可以有效避免缓存雪崩的问题。 5. 什么是缓存击穿? 接下来,我们聊聊缓存击穿。想象一下,你手头有个超级火的信息,比如说某位明星的新鲜事儿,这事儿火爆到不行,大伙儿都眼巴巴地等着第一时间瞧见呢!不过嘛,要是这个数据点刚好没在缓存里,或者因为某些原因被清理掉了,那所有的请求就都得直接去后台数据库那儿排队了。这样一来,缓存就起不到作用了,这种情况就叫“缓存击穿”。 6. 如何解决缓存击穿? 解决缓存击穿的方法主要有两种: - 加锁机制:对于同一个热点数据,只允许一个请求去加载数据,其他请求等待该请求完成后再从缓存中获取数据。 - 预先加载:在数据被删除之前,提前将其加载到缓存中,确保数据始终存在于缓存中。 7. 代码示例 加锁机制防止缓存击穿 python import threading lock = threading.Lock() def get_hot_data(key): with lock: 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间 mc.set(key, data, time=300) return data 示例调用 print(get_hot_data('hot_key')) 在这个例子中,我们引入了一个线程锁lock,确保在同一时刻只有一个请求能够访问数据库,其他请求会等待锁释放后再从缓存中获取数据。 结语 好了,今天的讲解就到这里。希望读完这篇文章,你不仅能搞清楚啥是缓存雪崩和缓存击穿,还能学到一些在实际操作中怎么应对的小妙招。嘿,记得啊,碰到技术难题别慌,多琢磨琢磨,多动手试试,肯定能搞定的!如果你还有什么疑问或者想了解更多细节,欢迎随时留言讨论哦! 希望这篇文章能帮助到你,咱们下次见!
2024-11-22 15:40:26
59
岁月静好
Go Iris
...可以期待更多酷炫的新方法来简化这些流程,让认证和授权变得超级高效又方便。 希望这篇探索之旅对你有所帮助,也欢迎你加入讨论,分享你的见解和实践经验!
2024-11-07 15:57:06
56
夜色朦胧
Nacos
...注到安全性问题。这篇内容会手把手带你走通如何给Nacos配置安全访问,确保你的服务配置信息妥妥地锁住,不让那些恶意的小贼有机可乘,篡改你的宝贵数据。 1. 认识Nacos安全风险 首先,让我们明确为何要关注Nacos的安全访问配置。在默认安装的情况下,Nacos控制台是不设防的,也就是说,只要有人晓得Nacos服务器的具体位置,就能畅通无阻地访问和随意操作里边的数据,完全不需要经过身份验证这一关。在2021年,有个安全漏洞可把这个问题给捅出来了。这个情况就是,有些外部的家伙能假扮成Nacos-server,趁机捞取一些不该他们知道的重要信息。因此,加强Nacos的安全访问控制至关重要。 2. 基本安全配置 开启内置认证 步骤一:修改配置文件 找到Nacos的配置文件 conf/application.properties 或者 conf/nacos.properties,根据环境选择相应的文件进行编辑。添加或修改以下内容: properties nacos.core.auth.enabled=true nacos.core.auth.system.admin.password=your_strong_password_here 这里开启了Nacos的核心认证机制,并设置了管理员账户的密码。请确保使用一个足够复杂且安全的密码。 步骤二:重启Nacos服务 更改配置后,需要重启Nacos服务以使新配置生效。通过命令行执行: bash sh ./startup.sh -m standalone 或者如果是Windows环境: cmd cmd startup.cmd -m standalone 现在,当您访问Nacos控制台时,系统将会要求输入用户名和密码,也就是刚才配置的“nacos”账号及其对应密码。 3. 高级安全配置 集成第三方认证 为了进一步提升安全性,可以考虑集成如LDAP、AD或其他OAuth2.0等第三方认证服务。 示例代码:集成LDAP认证 在配置文件中增加如下内容: properties nacos.security.auth.system.type=ldap nacos.security.auth.ldap.url=ldap://your_ldap_server:port nacos.security.auth.ldap.base_dn=dc=example,dc=com nacos.security.auth.ldap.user.search.base=ou=people nacos.security.auth.ldap.group.search.base=ou=groups nacos.security.auth.ldap.username=cn=admin,dc=example,dc=com nacos.security.auth.ldap.password=your_ldap_admin_password 这里的示例展示了如何将Nacos与LDAP服务器进行集成,具体的URL、基础DN以及搜索路径需要根据实际的LDAP环境配置。 4. 探讨与思考 配置安全是个持续的过程,不只是启动初始的安全措施,还包括定期审计和更新策略。在企业级部署这块儿,我们真心实意地建议你们采取更为严苛的身份验证和授权规则。就像这样,比如限制IP访问权限,只让白名单上的IP能进来;再比如,全面启用HTTPS加密通信,确保传输过程的安全性;更进一步,对于那些至关重要的操作,完全可以考虑启动二次验证机制,多上一道保险,让安全性妥妥的。 此外,时刻保持Nacos版本的更新也相当重要,及时修复官方发布的安全漏洞,避免因旧版软件导致的风险。 总之,理解并实践Nacos的安全访问配置,不仅是保护我们自身服务配置信息安全的有力屏障,更是构建健壮、可靠云原生架构不可或缺的一环。希望这篇文能实实在在帮到大家,在实际操作中更加游刃有余地对付这些挑战,让Nacos变成你手中一把趁手的利器,而不是藏在暗处的安全隐患。
2023-10-20 16:46:34
334
夜色朦胧_
MemCache
...hed)及数据库三级结构,通过灵活配置和智能失效策略,既能满足高速访问需求,又能确保数据在不同层级间的有效同步与持久存储。 总之,随着技术进步和市场需求的变化,各类缓存解决方案正在不断完善其数据持久化机制,以适应复杂多变的应用场景,确保在提升系统性能的同时,最大程度地保障数据的安全性和一致性。对于开发者而言,紧跟这些发展动态,了解并掌握相关技术手段,才能更好地设计出既高效又稳健的应用系统。
2023-05-22 18:41:39
83
月影清风
Apache Lucene
...和“硬提交”相结合的方法,可以显著提升搜索响应速度。此外,Solr还支持分布式搜索,可以在多台服务器上分片存储索引,从而实现横向扩展,有效应对高并发访问的压力。在实际应用中,某知名电商平台通过引入Solr和优化索引并发控制策略,实现了搜索响应时间缩短30%以上,用户体验得到了明显提升。 除了技术层面的优化,该文章还强调了运维管理和系统监控的重要性。例如,通过Prometheus和Grafana构建监控体系,可以实时跟踪Solr集群的状态,及时发现潜在问题并进行调优。同时,定期进行性能测试和压力测试,也是确保系统稳定运行的关键步骤。 总之,随着企业对数据处理能力的要求不断提高,Apache Lucene及其相关技术的应用前景十分广阔。通过不断优化并发控制策略和运维管理,可以显著提升系统的搜索性能和用户体验,为企业创造更大的商业价值。
2024-11-03 16:12:51
115
笑傲江湖
SpringBoot
...eleteUser方法。这事儿看着挺简单,但就是这种看似不起眼的设定,经常被人忽略,结果权限管理就搞砸了。 2. 权限管理失败的原因分析 权限管理失败可能是由多种原因造成的。最常见的原因包括但不限于: - 配置错误:比如在Spring Security的配置文件中错误地设置了权限规则。 - 逻辑漏洞:例如,在进行权限验证之前,就已经执行了敏感操作。 - 测试不足:在上线前没有充分地测试各种边界条件下的权限情况。 案例分享: 有一次,我在一个项目中负责权限模块的开发。最开始我觉得一切风平浪静,直到有天一个同事告诉我,他居然能删掉其他人的账户,这下可把我吓了一跳。折腾了一番后,我才明白问题出在哪——原来是在执行删除操作之前,我忘了仔细检查用户的权限,就直接动手删东西了。这个错误让我深刻认识到,即使是最基本的安全措施,也必须做到位。 3. 如何避免权限管理失败 既然已经知道了可能导致权限管理失败的因素,那么如何避免呢?这里有几个建议: - 严格遵循最小权限原则:确保每个用户仅能访问他们被明确允许访问的资源。 - 全面的测试:不仅要测试正常情况下的权限验证,还要测试各种异常情况,如非法请求等。 - 持续学习与更新:安全是一个不断变化的领域,新的攻击手段和技术层出不穷,因此保持学习的态度非常重要。 代码示例: 为了进一步加强我们的权限管理,我们可以使用更复杂的权限模型,如RBAC(基于角色的访问控制)。下面是一个使用Spring Security结合RBAC的简单示例: java @Configuration @EnableWebSecurity public class SecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http.authorizeRequests() .antMatchers("/admin/").hasRole("ADMIN") .anyRequest().authenticated() .and() .formLogin().permitAll(); } @Autowired public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception { auth.inMemoryAuthentication() .withUser("user").password("{noop}password").roles("USER") .and() .withUser("admin").password("{noop}password").roles("ADMIN"); } } 在这个配置中,我们定义了两种角色:USER和ADMIN。嘿,你知道吗?只要网址里有/admin/这串字符的请求,都得得有个ADMIN的大角色才能打开。其他的请求嘛,就简单多了,只要登录了就行。 4. 结语 权限管理的艺术 权限管理不仅是技术上的挑战,更是对开发者细心和耐心的考验。希望看完这篇文章,你不仅能get到一些实用的技术小技巧,还能深刻理解到权限管理这事儿有多重要,毕竟安全无小事嘛!记住,安全永远是第一位的! 好了,这就是今天的分享。如果你有任何想法或疑问,欢迎随时留言交流。希望我的经验对你有所帮助,让我们一起努力,构建更加安全的应用吧!
2024-11-02 15:49:32
61
醉卧沙场
SeaTunnel
...问题时有更多的信心和方法。如果你有任何疑问或建议,欢迎随时与我交流。让我们一起加油,不断进步!
2025-02-04 16:25:24
111
半夏微凉
Hadoop
...我们可以采取以下几种方法进行尝试: 1. 增加集群资源 对于因为集群资源不足而导致的问题,最直接的解决办法就是增加集群资源。这可以通过添加新的服务器,或者升级现有的服务器硬件等方式实现。 2. 修复配置文件 对于因为配置文件错误而导致的问题,我们需要仔细检查所有的配置文件,找出错误的地方并进行修复。同时,咱也得留意一下,改动配置文件这事儿,就像动了机器的小神经,可能会带来些意想不到的“副作用”。所以呢,在动手修改前,最好先做个全面体检——也就是充分测试啦,再给原来的文件留个安全备份,这样心里才更有底嘛。 3. 设置正确的环境变量 对于因为环境变量设置不当而导致的问题,我们需要检查并设置正确的环境变量。如果你不清楚环境变量到底该怎么设置,别担心,这里有两个实用的解决办法。首先呢,你可以翻阅一下Hadoop官方网站的官方文档,那里面通常会有详尽的指导步骤;其次,你也可以尝试在互联网上搜一搜相关的教程或者攻略,网上有很多热心网友分享的经验,总有一款适合你。 4. 启动辅助服务 对于因为辅助服务未正确启动而导致的问题,我们需要检查并确保所有服务都已正确启动。要是服务启动碰到状况了,不妨翻翻相关的文档资料,或者找专业的高手来帮帮忙。 总结 总的来说,解决“YARN ResourceManager初始化失败”这个问题需要我们具备一定的专业知识和技能。但是,只要我们有足够多的耐心和敏锐的观察力,就可以按照上面提到的办法,一步一步地把各种可能性都排查个遍,最后稳稳地找到那个真正能解决问题的好法子。最后,我想说的是,虽然这是一个比较棘手的问题,但我们只要有足够的信心和毅力,就一定能迎刃而解!
2024-01-17 21:49:06
566
青山绿水-t
Datax
...、多快,都能确保它的内容既不会被偷窥,也不会被篡改,完完整整、安安全全地到达目的地。 json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "", "connection": [ { "jdbcUrl": ["jdbc:mysql://source-db:3306/mydb?useSSL=true&serverTimezone=UTC"], "table": ["table1"] } ], // 配置SSL以保证数据传输安全 "connectionProperties": "useSSL=true" } }, "writer": {...} } ], "setting": { // ... } } } 上述示例中,我们在配置MySQL读取器时启用了SSL连接,这是Datax保障数据传输安全的第一道防线。 2. 认证与授权 Datax服务端及各数据源间的认证与授权也是保障安全的重要一环。Datax本身并不内置用户权限管理功能,而是依赖于各个数据源自身的安全机制。例如,我们可以通过配置数据库的用户名和密码实现访问控制: json "reader": { "name": "mysqlreader", "parameter": { "username": "datax_user", // 数据库用户 "password": "", // 密码 // ... } } 在此基础上,企业内部可以结合Kerberos或LDAP等统一身份验证服务进一步提升Datax作业的安全性。 3. 敏感信息处理 Datax配置文件中通常会包含数据库连接信息、账号密码等敏感内容。为防止敏感信息泄露,Datax支持参数化配置,通过环境变量或者外部化配置文件的方式避免直接在任务配置中硬编码敏感信息: json "reader": { "name": "mysqlreader", "parameter": { "username": "${db_user}", "password": "${}", // ... } } 然后在执行Datax任务时,通过命令行传入环境变量: bash export db_user='datax_user' && export db_password='' && datax.py /path/to/job.json 这种方式既满足了安全性要求,也便于运维人员管理和分发任务配置。 4. 审计与日志记录 Datax提供详细的运行日志功能,包括任务启动时间、结束时间、状态以及可能发生的错误信息,这对于后期审计与排查问题具有重要意义。同时呢,我们可以通过企业内部那个专门用来收集和分析日志的平台,实时盯着Datax作业的执行动态,一旦发现有啥不对劲的地方,就能立马出手解决,保证整个流程顺顺利利的。 综上所述,Datax的安全性设计涵盖了数据传输安全、认证授权机制、敏感信息处理以及操作审计等多个层面。在用Datax干活的时候,咱们得把这些安全策略整得明明白白、运用自如。只有这样,才能一边麻溜儿地完成数据同步任务,一边稳稳当当地把咱的数据资产保护得严严实实,一点儿风险都不冒。这就像是现实生活里的锁匠师傅,不仅要手到擒来地掌握开锁这门绝活儿,更得深谙打造铜墙铁壁般安全体系的门道,确保我们的“数据宝藏”牢不可破,固若金汤。
2024-01-11 18:45:57
1143
蝶舞花间
Tornado
...ocket握手失败的方法 面对WebSocket握手失败的问题,我们可以采用以下几种方法来确保应用程序能够优雅地处理并恢复: 1. 错误检查与重试机制 - 在MyWebSocket类的open()方法中,我们可以通过检查HTTP响应的状态码和自定义的错误条件,捕获握手失败异常: python try: await super().open(args, kwargs) except tornado.websocket.WebSocketHandshakeError as e: if e.status_code == 400 or "Invalid upgrade header" in str(e): print("WebSocket handshake failed due to an invalid request.") self.close() - 如果出现握手失败,可设置一个重试逻辑,例如延迟一段时间后再次尝试连接: python import time MAX_RETRIES = 3 RETRY_DELAY_SECONDS = 5 retry_count = 0 while retry_count < MAX_RETRIES: try: await super().open(args, kwargs) break except WebSocketHandshakeError as e: print(f"WebSocket handshake failed ({e}), retrying in {RETRY_DELAY_SECONDS} seconds...") time.sleep(RETRY_DELAY_SECONDS) retry_count += 1 else: print("Maximum retries exceeded; connection failure.") break 2. 监控与日志记录 - 可以利用Tornado的日志功能,详细记录握手过程中发生的错误及其原因,便于后续排查与优化: python logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) async def open(self, args, kwargs): try: await super().open(args, kwargs) except WebSocketHandshakeError as e: logger.error("WebSocket handshake failed:", exc_info=True) self.close() 3. 通知客户端错误信息 - 当服务器检测到握手失败时,应告知客户端具体问题以便其采取相应措施: python try: await super().open(args, kwargs) except WebSocketHandshakeError as e: message = f"WebSocket handshake failed: {str(e)}" self.write_message(message) self.close() 四、总结 WebSocket握手失败对于实时应用而言是一个重大挑战,但通过以上针对错误检查、重试机制、日志监控及客户端反馈等方面的处理策略,我们可以确保Tornado WebSocket服务具备高度健壮性和容错能力。当碰上WebSocket握手不成功这类状况时,别忘了结合实际的业务环境,活学活用这些小技巧。这样一来,咱的WebSocket服务肯定能变得更扎实、更靠谱,妥妥地提升稳定性。
2024-02-03 10:48:42
132
清风徐来-t
Logstash
... 了解每个插件的使用方法和限制,避免常见的配置陷阱。 2. 单元测试 在部署前,对Logstash配置进行单元测试,确保所有组件都能按预期工作。 3. 代码审查 让团队成员进行代码审查,可以发现潜在的错误和优化点。 4. 使用模板和最佳实践 借鉴社区中成熟的配置模板和最佳实践,减少自定义配置时的试错成本。 5. 持续监控 部署后,持续监控Logstash的日志和系统性能,及时发现并修复可能出现的问题。 五、总结与展望 通过深入理解Logstash的工作原理和常见错误,我们可以更加有效地利用这一工具,确保数据审计流程的顺利进行。嘿,兄弟!听好了,你得记着,犯错不是啥坏事,那可是咱成长的阶梯。每次摔一跤,都是咱向成功迈进一步的机会。咱们就踏踏实实多练练手,不断调整,优化策略。这样,咱就能打造出让人心头一亮的实时数据处理系统,既高效又稳当,让别人羡慕去吧!哎呀,随着科技这艘大船的航行,未来的Logstash就像个超级多功能的瑞士军刀,越来越厉害了!它能干的事儿越来越多,改进也是一波接一波的,简直就是我们的得力助手,帮咱们轻松搞定大数据这滩浑水,让数据处理变得更简单,更高效!想象一下,未来,它能像魔术师一样,把复杂的数据问题变个无影无踪,咱们只需要坐享其成,享受数据分析的乐趣就好了!是不是超期待的?让我们一起期待Logstash在未来发挥更大的作用,推动数据驱动决策的进程。
2024-09-15 16:15:13
151
笑傲江湖
Apache Atlas
...后却藏着咱们对企业和组织数据安全、合规性的一份深深的关注和浓浓的人文关怀。在这个处处都靠数据说话的时代,咱们就手拉手,带上Apache Atlas这位好伙伴,一起为数据的价值和尊严保驾护航,朝着更合规、更安全的数据新天地大步迈进吧!
2023-11-04 16:16:43
453
诗和远方
Tornado
...do提供了一个方便的方法来实现这个功能。 python import tornado.tcpclient class MyClient(tornado.tcpclient.TCPClient): def __init__(self, host='localhost', port=80, kwargs): super().__init__(host, port, kwargs) self.retries = 3 def connect(self): for _ in range(self.retries): try: return super().connect() except Exception as e: print(f'Connect failed: {e}') tornado.ioloop.IOLoop.current().add_timeout( tornado.ioloop.IOLoop.current().time() + 5, lambda: self.connect(), ) raise tornado.ioloop.TimeoutError('Connect failed after retrying') client = MyClient() 以上就是Tornado的一些基本使用方法,它们都可以帮助我们有效地处理网络连接不稳定或中断的问题。当然,Tornado的功能远不止这些,你还可以利用它的WebSocket、HTTP客户端等功能来满足更多的需求。 五、总结 总的来说,Tornado是一个非常强大的工具,它不仅可以帮助我们提高网络应用程序的性能和稳定性,还可以帮助我们更好地处理网络连接不稳定或中断的问题。如果你是一名网络开发工程师,我强烈推荐你学习和使用Tornado。相信你会发现,它会给你带来很多惊喜和收获。 六、结语 希望通过这篇文章,你能了解到Tornado的基本概念和使用方法,并且能将这些知识运用到实际的工作和项目中。记住了啊,学习这件事儿可是没有终点线的马拉松,只有不断地吸收新知识、动手实践操作,才能让自己的技能树茁壮成长,最终修炼成一名货真价实的网络开发大神。
2023-05-20 17:30:58
168
半夏微凉-t
RocketMQ
...比如堆内存、栈内存和方法区等。想象一下,堆内存就像是一个大仓库,专门用来存放我们创建的各种对象。而那个叫GC的清洁工呢,它的主要任务就是盯着这块堆内存,找出那些不再使用的对象垃圾,然后把它们清理掉,释放出更多的存储空间。当应用中的对象数量剧增导致堆内存不足时,就会引发内存溢出异常。同时,如果GC过于频繁地执行,会消耗大量CPU资源,从而影响系统的整体性能。 java // 示例:创建大量无用的对象可能导致内存溢出 public class MemoryOverflowExample { public static void main(String[] args) { List list = new ArrayList<>(); while (true) { list.add(new String("Memory is precious!")); } } } 3. RocketMQ与JVM内存管理 在使用RocketMQ的过程中,例如生产者发送消息或消费者消费消息时,如果不合理地管理内存,也可能触发上述问题。比如,你要是突然一股脑儿地发好多好多消息,或者把一大堆消息都堆在那儿不去处理,这就像是给内存施加了巨大的压力。你想啊,内存它也会“吃不消”,于是乎就可能频繁地进行垃圾回收(GC),甚至严重的时候还会“撑爆”,也就是内存溢出啦。 java import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message; public class RocketMQProducerExample { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); producer.start(); for (int i = 0; i < Integer.MAX_VALUE; i++) { // 这里假设发送海量消息,极端情况下易引发内存溢出 Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); producer.send(msg); } producer.shutdown(); } } 4. 针对RocketMQ的内存优化策略 面对这样的挑战,我们可以从以下几个方面着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
91
半夏微凉
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
date +%Y-%m-%d - 获取当前日期(YYYY-MM
-DD格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"