前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[FullBox在MP4文件中的作用及结构...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Material UI
...ipGroup的基本结构和属性 好啦,接下来咱们得搞清楚这个组件长啥样,以及它有哪些参数可以配置。说实话,刚开始接触的时候,我也是懵圈的,不过慢慢琢磨就明白了。 首先,ChipGroup是一个容器,里面可以放一堆Chip(也就是那些小标签)。它的核心属性主要有以下几个: - children: 这个就是你要显示的Chip列表啦,每个Chip都是一个单独的小标签。 - value: 如果你设置了这个属性,表示当前选中的Chip是哪些。要是单选的话,就只能选一个值,不能多选;但如果是多选模式呢,那就可以传一串数组,想选几个选几个,自由得很! - onValueChange: 这个属性很重要,它是一个回调函数,每当用户选择了一个新的Chip时,都会触发这个函数,你可以在这里处理业务逻辑。 - variant: 可以设置Chip的样式,比如“filled”(填充型)或者“outlined”(边框型),具体看你喜欢哪种风格。 - color: 设置Chip的颜色,比如“primary”、“secondary”之类的,挺简单的。 让我举个例子吧,比如你想做一个音乐类型的筛选器,代码可以这样写: jsx import React from 'react'; import { Chip, ChipGroup } from '@mui/material'; export default function MusicTypeFilter() { const [selectedTypes, setSelectedTypes] = React.useState([]); const handleTypeChange = (event, newValues) => { setSelectedTypes(newValues); console.log('Selected types:', newValues); }; return ( value={selectedTypes} onChange={handleTypeChange} variant="outlined" color="primary" aria-label="music type filter" > ); } 这段代码创建了一个音乐类型筛选器,用户可以选择多个类型。每次选择后,handleTypeChange函数会被调用,并且打印出当前选中的类型。是不是超简单? --- 3. 单选模式 vs 多选模式 说到ChipGroup,肯定要提到它的两种模式——单选模式和多选模式。这就跟点菜一样啊!单选模式就像你只能从菜单上挑一道菜,不能多点;多选模式呢,就好比你想吃啥就点啥,爱点几个点几个,随便你开心!这听起来很基础对吧?但其实这里面有很多细节需要注意。 比如说,如果你用的是单选模式,那么每次点击一个新的Chip时,其他所有Chip的状态都会自动取消掉。这是Material UI默认的行为,但有时候你可能不想要这种效果。比如你做的是一个问卷调查,用户可以选择“非常同意”、“同意”、“中立”等选项,但你希望他们能同时勾选多个答案怎么办呢? 解决办法也很简单,只需要给ChipGroup设置multiple属性为true就行啦!比如下面这段代码: jsx multiple value={['同意', '中立']} onChange={(event, newValues) => { console.log('Selected values:', newValues); } } > 在这个例子中,用户可以同时选择“同意”和“中立”,而不是只能选一个。是不是感觉特别灵活? --- 4. ChipGroup的高级玩法 最后,咱们来说点更酷的东西!你知道吗,ChipGroup其实还有很多隐藏技能,只要你稍微动点脑筋,就能让它变得更强大。 比如说,你想让某些Chip一开始就被选中,该怎么办?很简单,只要在初始化的时候把它们的值放到value属性里就行啦!比如: jsx const [selectedTypes, setSelectedTypes] = React.useState(['摇滚', '流行']); 再比如,你想给某个Chip加上特殊的图标或者颜色,也可以通过自定义Chip来实现。比如: jsx label="摇滚" icon={} color="error" /> 还有哦,有时候你可能会遇到一些动态数据,比如从后台获取的一组选项。这种情况下,你可以用循环来生成ChipGroup的内容,代码如下: jsx const musicTypes = ['摇滚', '爵士', '流行', '古典']; return ( value={selectedTypes} onChange={handleTypeChange} > {musicTypes.map((type) => ( ))} ); 看到没?是不是特别方便?这种灵活性真的让人爱不释手! --- 5. 总结与反思 好了,到这里咱们就差不多聊完了ChipGroup的所有知识点啦!其实吧,我觉得这个组件真的挺实用的,无论是做前端还是后端,都能帮我们省去很多麻烦事。对啊,刚开始接触的时候确实会有点迷糊,感觉云里雾里的。不过别担心,多试着上手操作个几次,慢慢你就明白了,其实一点都不难! 话说回来,我觉得学习任何技术都得抱着一种探索的心态,不能死记硬背。嘿嘿,说到ChipGroup,我当初也是被它折腾了好一阵子呢!各种属性啊、方法啊,全都得自己动手试一遍,慢慢摸索才知道咋用。就像吃 unfamiliar 的菜一样,一开始啥都不懂,只能一个劲儿地尝,最后才找到门道!所以说啊,大家要是用的时候碰到啥难题,别急着抓头发,先去瞅瞅官方文档呗,说不定就有答案了。实在不行,就自己动手试试,有时候动手一做,豁然开朗的感觉就来了! 总之呢,希望大家都能用好这个组件,把它变成自己的得力助手!如果有啥疑问或者更好的玩法,欢迎随时交流哦~ 😊
2025-05-09 16:08:24
90
月下独酌
Spark
... 1.2 本文结构 接下来,我会从基础概念讲起,然后一步步带你了解如何将Spark与Kafka集成起来。最后,我们还会一起动手实践几个具体的例子。别担心,我不会只是给你一堆枯燥的文字,而是会尽量用口语化的方式讲解,并穿插一些我个人的理解和思考过程。让我们开始吧! 2. 基础概念 2.1 Spark简介 Spark,全名Apache Spark,是一款开源的大数据处理框架。它的亮点在于能飞快地处理数据,还能在内存里直接运算,让处理大数据变得超级顺畅,简直爽翻天!Spark提供了多种API,包括Java、Scala、Python等,非常灵活易用。 2.2 Kafka简介 Kafka,全名Apache Kafka,是一个分布式的消息系统,主要用来处理实时数据流。这个东西特别能扛,能存好多数据,还不容易丢,用来搭建实时的数据流和应用再合适不过了。 2.3 Spark与Kafka集成的优势 - 实时处理:Spark可以实时处理Kafka中的数据。 - 灵活性:Spark支持多种编程语言,Kafka则提供丰富的API接口,两者结合让开发更加灵活。 - 高吞吐量:Spark的并行处理能力和Kafka的高吞吐量相结合,能够高效处理大规模数据流。 3. 实战准备 在开始之前,你需要先准备好环境。确保你的机器上已经安装了Java、Scala以及Spark。说到Kafka,你可以直接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
Apache Solr
... java import org.apache.solr.client.solrj.SolrClient; import org.apache.solr.client.solrj.impl.HttpSolrClient; import org.apache.solr.client.solrj.response.UpdateResponse; import org.apache.solr.common.SolrInputDocument; public class SolrIndexer { private static final String SOLR_URL = "http://localhost:8983/solr/mycore"; private static final SolrClient solrClient = new HttpSolrClient(SOLR_URL); public static void main(String[] args) throws Exception { // 创建索引文档 SolrInputDocument document = new SolrInputDocument(); document.addField("id", 1); document.addField("title", "Java Programming Guide"); document.addField("content", "This is a guide for Java programming."); // 提交文档到索引 UpdateResponse response = solrClient.add(document); System.out.println("Documents added: " + response.getAddedDocCount()); // 关闭连接 solrClient.close(); } } 这段代码展示了如何创建一个简单的 Solr 索引文档,并将其添加到索引中。每一步都涉及到倒排索引的构建过程,即对文档中的文本进行分析和索引化。 3. 倒排索引的优化与应用 倒排索引的优化主要集中在索引构建的效率和查询的性能上。为了让你的索引构建工作跑得更快,咱们可以给索引器来点小调整,就像给你的自行车加点油,让它跑得飞快!首先,咱们可以试试增加并行度,就像开多台打印机同时工作,效率自然翻倍。还有,优化分词器,就像是给你的厨房添置一台高效的榨汁机,让食材(数据)处理得又快又好。这样一来,你的索引构建工作不仅高效,还能像欢快的小鸟一样轻松自在地翱翔在数据世界里。同时,通过合理的查询优化策略,如利用缓存、预加载、分片查询等技术,可以进一步提高查询性能。 在实际应用中,倒排索引不仅用于全文搜索,还可以应用于诸如推荐系统、语义理解等领域。例如,在一个电商网站中,倒排索引可以帮助用户快速找到相关的产品,或者根据用户的搜索历史和浏览行为提供个性化推荐。 4. 结语 倒排索引是 Solr 的核心组件,它不仅极大地提高了搜索性能,也为构建复杂的信息检索系统提供了强大的基础。哎呀,兄弟!咱们得给倒排索引这玩意儿好好整一整,让它变得更聪明,搜索起来也更快更高效!这样咱就能找到用户想要的内容,就像魔法一样,瞬间搞定!这不就是咱们追求的智能全文搜索嘛!希望本文能帮助你深入了解 Solr 的倒排索引机制,并激发你在实际项目中的创新应用。让我们一起探索更多可能,构建更加出色的信息检索系统吧!
2024-07-25 16:05:59
425
秋水共长天一色
Dubbo
...提升服务质量发挥关键作用。因此,对于相关领域的开发者和运维人员来说,紧跟Dubbo的最新进展,深入理解并合理运用其容错机制,无疑将成为构建健壮、可靠的微服务架构体系的重要一环。
2024-03-25 10:39:14
484
山涧溪流
Shell
...内存、CPU时间片、文件句柄等。可有时候呢,系统也会闹脾气,可能是手头资源不够,也可能是因为犯了什么小糊涂,总之就没办法给某个程序分到它该得的东西,这可咋整啊!这时候,系统就会把这小插曲记下来,弄出一条像“分配资源失败记录”这样的日志信息,就跟记笔记似的。 举个例子,假设你在一个服务器上运行了多个程序,其中一个程序需要大量的内存,但是服务器的内存已经被其他程序占满了。这时候,系统可能就会甩脸子了,不给这个程序多分一点内存,还随手记一笔小日记,说这个程序又来闹事儿啦。这就是典型的进程资源分配失败场景。 --- 2. 深入 为什么会出现这种错误? 说实话,每次看到这样的日志,我都会忍不住皱眉头。为什么会出现这种错误呢?其实原因有很多,以下是我总结的一些常见原因: - 资源耗尽:最常见的原因是系统资源已经耗尽。比如内存不足、磁盘空间不够或者网络带宽被占满。 - 权限问题:有时候,进程可能没有足够的权限去申请资源。比如普通用户尝试申请超级用户才能使用的资源。 - 配置错误:系统管理员可能配置了一些错误的参数,导致资源分配失败。例如,限制了某个用户的最大文件句柄数。 - 软件bug:某些应用程序可能存在bug,导致它们请求了不合理的资源数量。 让我给大家分享一个小故事。嘿,有次我正鼓捣一个脚本呢,结果它就不停地跟我唱反调,各种报错,说什么“分配日志资源失败”啥的,气得我都想把它扔进垃圾桶了!折腾了半天才发现,原来是脚本里有段代码疯了一样想同时打开几千个文件,但系统设定的文件句柄上限才1024个,这不直接给整崩溃了嘛!修改了这个限制后,问题就解决了。真是哭笑不得啊! --- 3. 实践 如何查看和分析日志? 既然知道了问题的来源,接下来就要学会如何查看和分析这些日志了。在Linux系统里头,咱们经常会用到一些小工具,帮咱找出那些捣蛋的问题到底藏哪儿了。 3.1 查看日志文件 首先,我们需要找到存放日志的地方。一般来说,系统日志会存放在 /var/log/ 目录下。你可以通过命令 ls /var/log/ 来列出所有的日志文件。 bash $ ls /var/log/ 然后,我们可以使用 tail 命令实时监控日志文件的变化: bash $ tail -f /var/log/syslog 这段代码的意思是实时显示 /var/log/syslog 文件的内容。如果你看到类似 Failed process resource allocation logging 的字样,就可以进一步分析了。 3.2 使用 dmesg 查看内核日志 除了系统日志,内核日志也是查找问题的好地方。我们可以使用 dmesg 命令来查看内核日志: bash $ dmesg | grep "Failed process resource allocation" 这条命令会过滤出所有包含关键词 Failed process resource allocation 的日志条目。这样可以快速定位问题发生的上下文。 --- 4. 解决 动手实践解决问题 找到了问题的根源后,接下来就是解决它啦!这里我给大家提供几个实用的小技巧。 4.1 调整资源限制 如果问题是由于资源限制引起的,比如文件句柄数或内存配额不足,那么我们可以调整这些限制。例如,要增加文件句柄数,可以编辑 /etc/security/limits.conf 文件: bash soft nofile 65535 hard nofile 65535 保存后,重启系统或重新登录即可生效。 4.2 优化脚本逻辑 如果是脚本本身的问题,比如请求了过多的资源,那么就需要优化脚本逻辑了。比如,将大文件分块处理,而不是一次性加载整个文件到内存中。 bash !/bin/bash split -l 1000 large_file.txt part_ for file in part_ do 对每个小文件进行处理 echo "Processing $file" done 这段脚本将大文件分割成多个小文件,然后逐个处理,避免了内存溢出的风险。 4.3 检查硬件状态 最后,别忘了检查一下硬件的状态。有时候,内存不足可能是由于物理内存条损坏或容量不足造成的。可以用 free 命令查看当前的内存使用情况: bash $ free -h 如果发现内存确实不足,考虑升级硬件或者清理不必要的进程。 --- 5. 总结 与错误共舞 通过今天的讨论,希望大家对进程资源分配日志 Failed process resource allocation logging 有了更深入的理解。说实话,遇到这种问题确实挺让人抓狂的,但别慌!只要你搞清楚该怎么一步步排查、怎么解决,慢慢就成高手了,啥问题都难不倒你。 记住,技术的世界就像一场冒险,遇到问题并不可怕,可怕的是放弃探索。所以,下次再遇到类似的日志时,不妨静下心来,一步步分析,相信你也能找到解决问题的办法! 好了,今天的分享就到这里啦。如果你还有其他疑问,欢迎随时来找我交流哦!😄 --- 希望这篇文章对你有所帮助!如果有任何补充或建议,也欢迎留言告诉我。
2025-05-10 15:50:56
95
翡翠梦境
Golang
... ErrNotImplemented:在 Golang 中面对“未实现”的挑战 引言 在软件开发的世界里,每一个程序员都曾与“未实现”(ErrNotImplemented)这个错误信息有过交集。它不仅是编程过程中的一个常见现象,也是技术进步和需求迭代的一部分。本文将深入探讨 Golang 语言中“未实现”的含义、影响及其解决之道,通过实际代码示例来帮助开发者更好地理解和应对这一问题。 理解“未实现” 在 Golang 中,“未实现”(ErrNotImplemented)通常出现在尝试调用一个尚未定义或不被支持的方法、函数或操作时。哎呀,这事儿可有点复杂了。可能是当初做设计的时候,有个什么关键的决定没做好,或者是功能排了个先后顺序,也可能是后来出了新版本,结果就变成了这样。总之,这里面的原因挺多的,得细细琢磨琢磨才行。例如,尝试在一个接口中未实现的方法: go type MyInterface interface { DoSomething() } func main() { var myObject MyInterface myObject.DoSomething() // 这里会触发 ErrNotImplemented 错误,因为 DoSomething 方法没有被实现 } 实际场景中的应用 在实际开发中,遇到“未实现”的情况并不罕见。想象一下,你正在搭建一个超级酷的系统,这个系统能通过API(一种让不同程序沟通的语言)来和其他各种第三方服务对话。就像是在和一群性格迥异的朋友聊天,有的朋友喜欢分享照片,有的则热衷于音乐推荐。在这个过程中,你需要了解每个朋友的喜好,知道什么时候该问他们问题,什么时候该听他们说话,这样才能让整个交流流畅自然。所以,当开发者在构建这种系统的时候,他们就得学会如何与这些“朋友”打交道,确保信息的顺利传递。想象一下,你有个工具箱里放着一把超级多功能的瑞士军刀,但你只需要个简单的螺丝刀。如果你硬是用那把大刀去拧螺丝,肯定搞不定,还可能把螺丝刀弄坏。同理,如果一个API提供了复杂查询的功能,但你的项目只需要简单地拿数据,直接去用那些复杂查询方法,就可能会遇到“未实现”的问题,就像你拿着个高级的多功能工具去做一件只需要基本工具就能搞定的事一样。所以,选择合适的工具很重要! 如何解决“未实现” 1. 明确需求与功能优先级 在开始编码之前,确保对项目的整体需求有清晰的理解,并优先实现那些对业务至关重要的功能。对于非核心需求,可以考虑在未来版本中添加或作为可选特性。 2. 使用空实现或占位符 在设计接口或类时,为未实现的方法提供一个空实现或占位符,这样可以避免运行时的“未实现”错误,同时为未来的实现提供清晰的接口定义。 3. 错误处理与日志记录 在调用可能引发“未实现”错误的代码块前,添加适当的错误检查和日志记录。这不仅有助于调试,也能在问题发生时为用户提供有意义的反馈。 4. 模块化与解耦 通过将功能拆分为独立的模块或服务,可以降低不同部分之间的依赖关系,从而更容易地处理“未实现”的情况。当某个模块的实现发生变化时,其他模块受到的影响也会减少。 5. 持续集成与自动化测试 通过自动化测试,可以在早期阶段捕获“未实现”的错误,确保代码的稳定性和一致性。同时,持续集成流程可以帮助团队及时发现并修复这类问题。 结语 面对“未实现”的挑战,重要的是保持灵活性和前瞻性。哎呀,搞定这个问题得靠点心思呢!首先,你得搞清楚问题的根本原因,这就像解谜一样,得一步步来。然后,安排功能实现的顺序就挺像编排一场精彩的节目,得有头有尾,不能乱套。最后,别忘了设置有效的错误处理策略,就像是给你的项目上了一份保险,万一出啥状况也能从容应对。这样一来,整个过程就能流畅多了,避免了很多不必要的麻烦。在不断学习和实践中,开发者能够更好地适应变化,提升软件质量和用户体验。嘿,听好了!每次碰到那些没搞定的事情,那可是个大好机会,能让你学东西,还能把事情做得更好呢!就像是在玩游戏,遇到难关了,你就得想办法突破,对吧?这不就是升级打怪嘛!所以,别灰心,每一步小小的失败都是通往更牛逼、更灵活的软件系统的必经之路!
2024-07-26 15:58:24
421
素颜如水
转载文章
...它,你才可以布局页面结构。CSS是页面美化和精细化的核心技术。想要更好的完成页面的开发,更好的与UI部门合作,这些页面制作工具是必须掌握的。 第二阶段:页面布局实战 有了第一步的基础知识,你就可以实战各种页面布局了。学会后,更加夯实初级Web前端工程师水平,能够完成各种PC端与移动端网页布局与样式设计实现了。 应届生找工作会更加有底气,入职后待遇能达到6K-7K。 这一步骤共分为两部分内容:布局技术,布局规范与方案。 想要轻松的完成各种PC端和手机端的布局,这些重要的布局技术必须掌握。另外一些布局规范与布局方案,是完成浏览器兼容和各种设备适配的法宝。 第三阶段:前端开发内功 第四阶段:PC端全栈项目开发 有了JavaScript、HTML、CSS知识,再加上这个步骤的技能点学习,你就能够完成一个PC端的前后端整体项目开发了。 可以从事网站开发工程师,以及Web前端开发工程师的工作了。薪资能达到11K-13K。 这一步骤共分为四部分内容:首先学会常用的前端工具库,掌握前端工程化和模块化,然后系统学习后端,或者叫服务端开发工具 Node.js,最后你就能独立完成一个网站或者管理系统的开发了。 第五阶段,前端高级框架技术。 这个步骤是从事前端工作必须掌握的重要内容,尤其是Vue、React,已经是公司开发企业项目的首选框架。 学会这个部分,你就是一名高级Web前端工程师了,可以胜任公司的C端和B端的所有项目,薪资待遇能达到14K-18K。那这些框架都需要学习掌握什么呢? Vue框架,需要掌握Vue3和它的生态技术。掌握了Vue3的选项式API,Vue2的项目也信手拈来。Vue3生态的每个技术都包含了很多内容,都需要你掌握它并熟练应用。像Vue3的组合式API、Vite2+SFC、VueRouter4、Vuex4、Pinia2、TypeScript基础、TS+Vue3,其他的技术栈。学会这些,你就可以基于这些技术开发Vue3的C端和B端项目了。 React框架,同样需要掌握React18和它的生态技术。每个生态也都包含很多内容,像Umi技术栈、其他技术栈。React技术备受大厂青睐,一般情况下,React岗位薪资也会比Vue高些。那除了这两个主要框架还需要什么呢? Angular框架,企业用的比较少些了,基本上都是老项目的维护了。 数据可视化,可以选学,如果项目里有这块需求,可以仔细研究一下。 第六阶段,混合应用开发技术。 所谓混合开发,就是将HTML5基于浏览器的应用,嵌入到基于Android和iOS手机APP里,或者嵌入到基于Node和Chromium的桌面APP里。因为兼具了WebApp和NativeApp的双重优点,混合应用开发技术得到了广泛的应用。 学会这个部分,就拥有了多端开发能力,能够胜任跨平台跨设备的架构工作。通过Vue和React基础加持,薪资待遇能达到19K-22K。 常见的混合开发如手机端的微信公众号、微信小程序、桌面端的Electron技术和PWA技术等。 第七步,原生应用开发技术。 所谓原生应用开发,就是应用前端的技术,脱离浏览器,进行原生的手机APP的开发。 掌握这部分内容,可以达到大前端高级开发工程师水平,可以主导移动端多元产品项目实现,能够跨平台开发提出可建设性解决方案。薪资待遇能达到 23K-30K。 比如,Facebook的基于React技术的ReactNative原生APP的开发,谷歌的基于Dart技术的Flutter原生APP的开发,以及华为的基于JS技术的HarmonyOS鸿蒙原生APP的开发。 第八步,大前端架构。 这是本学习路线图最后一个步骤了,同时也到达了一个至高点。 掌握这个部分,即可拥有大前端架构师水平,主要进行前端项目架构和项目把控。能够解决网站出现的突发状况,能够改进网站性能到极致。拥有大型网站、大量高并发访问量等开发经验。这个岗位的薪资能达到30K以上的水平。 前端架构师,包含很多内容,要求有广度也要有深度,这里给出了重要的五部分内容,包括开发工具及服务器技术、前端性能、微前端架构、低代码与组件库开发以及前端安全技术。 小白起点的前端路线图,我们都走了一遍,你可能会问,这些知识我们我该如何学习呢?你可以靠查文档、看视频,也可以找个师父带你。上面给大家推荐的视频都是核心的技术点视频以及项目练手视频,更多更细节的技术点请大家关注IT千锋教育搜索你需要的课程。 本篇文章为转载内容。原文链接:https://blog.csdn.net/longz_org_cn/article/details/127673811。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-07 21:33:13
269
转载
Go Gin
...包: go import ( "github.com/gin-contrib/ratelimit" "github.com/gin-gonic/gin" ) func main() { r := gin.Default() // 配置限流器 limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, // 允许每分钟最多5次请求 Duration: time.Minute, }) // 将限流器应用于路由 r.Use(limiter) // 定义路由 r.GET("/api", func(c gin.Context) { c.JSON(200, gin.H{"message": "Hello, World!"}) }) r.Run(":8080") } 四、高级功能与自定义 除了基本的速率限制配置外,gin-contrib/ratelimit 还提供了丰富的高级功能,允许开发者根据具体需求进行定制化设置。 - 基于 IP 地址的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByIP, }) - 基于 HTTP 请求头的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByHeader("X-User-ID"), }) - 基于用户会话的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitBySessionID, }) 这些高级功能允许你更精细地控制哪些请求会被限制,从而提供更精确的访问控制策略。 五、实践案例 基于 IP 地址的限流 假设我们需要限制某个特定 IP 地址的访问频率: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 10, // 每小时最多10次请求 Duration: time.Hour, PermitsBy: ratelimit.PermitByIP, }) // 在路由上应用限流器 r.Use(limiter) 六、性能考量与优化 在实际部署时,考虑到速率限制的性能影响,合理配置限流参数至关重要。哎呀,你得注意了,设定安全防护的时候,这事儿得拿捏好度才行。要是设得太严,就像在门口挂了个大锁,那些坏人进不来,可合法的访客也被挡在外头了,这就有点儿不地道了。反过来,如果设置的门槛太松,那可就相当于给小偷开了个后门,让各种风险有机可乘。所以啊,找那个平衡点,既不让真正的朋友感到不便,又能守住自家的安全,才是王道!因此,建议结合业务场景和流量预测进行参数调整。 同时,选择合适的存储后端也是性能优化的关键。哎呀,你知道的,在处理那些超级多人同时在线的情况时,咱们用 Redis 来当存储小能手,那效果简直不要太好!它就像个神奇的魔法箱,能飞快地帮我们处理各种数据,让系统运行得又顺溜又高效,简直是高并发环境里的大救星呢! 七、结论 通过集成 gin-contrib/ratelimit,我们不仅能够有效地管理 API 访问频率,还能够在保障系统稳定运行的同时,为用户提供更好的服务体验。嘿,兄弟!业务这玩意儿,那可是风云变幻,快如闪电。就像你开车,路况不一,得随时调整方向,对吧?API安全性和可用性这事儿,就跟你的车一样重要。所以,咱们得像老司机一样,灵活应对各种情况,时不时地调整和优化限流策略。这样,不管是高峰还是低谷,都能稳稳地掌控全局,让你的业务顺畅无阻,安全又高效。别忘了,这可是保护咱们业务不受攻击,保证用户体验的关键!希望本文能够帮助你更好地理解和应用 gin-contrib/ratelimit,在构建强大、安全的 API 时提供有力的支持。
2024-08-24 16:02:03
109
山涧溪流
Go Gin
...age main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 创建一个用户组 userGroup := r.Group("/users") { // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) } // 启动服务 r.Run(":8080") } 在这段代码里,我们先用 r.Group("/users") 创建了一个名为 /users 的路由组。然后在这个组里定义了两个接口:/register 和 /login。这样一来,所有与用户相关的接口都集中在一个地方,是不是感觉清爽多了? --- 3. 深入探讨 嵌套分组 当然啦,Group 不仅仅能用来分一级路由,还可以嵌套分组,这就像是在衣柜里再加几个小抽屉一样,分类更细致了。 示例2:嵌套分组 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 创建一个主路由组 mainGroup := r.Group("/api") { // 子路由组:用户相关 userGroup := mainGroup.Group("/users") { userGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all users"}) }) // 获取单个用户信息 userGroup.GET("/:id", func(c gin.Context) { id := c.Param("id") c.JSON(http.StatusOK, gin.H{"message": "User info", "id": id}) }) } // 子路由组:订单相关 orderGroup := mainGroup.Group("/orders") { orderGroup.POST("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Order created successfully"}) }) orderGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all orders"}) }) } } r.Run(":8080") } 在这个例子中,我们首先创建了一个 /api 的主路由组,然后在这个主组下面分别创建了 /users 和 /orders 两个子路由组。这样的结构是不是更有条理了?尤其是当你项目变得复杂时,这种分层结构会让你少走很多弯路。 --- 4. 实战技巧 动态前缀与中间件 除了分组之外,Group 还支持动态前缀和中间件绑定。哈哈,这个功能超实用啊!就像是给一帮小伙伴设了个统一的“群规”,所有成员都自动遵守。不过呢,要是哪天你想让某个小组玩点不一样的,比如换个新名字前缀啥的,也能随时调整,特别方便! 示例3:动态前缀与中间件 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 设置全局中间件 r.Use(func(c gin.Context) { c.Set("auth", "token") c.Next() }) // 创建一个用户组,并绑定中间件 userGroup := r.Group("/v1/users", func(c gin.Context) { token := c.MustGet("auth").(string) if token != "admin" { c.AbortWithStatus(http.StatusUnauthorized) return } }) // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) r.Run(":8080") } 在这个例子中,我们为 /v1/users 组绑定了一个中间件,只有携带正确令牌的请求才能访问该组下的接口。这种方式特别适合处理权限控制问题,避免了重复编写相同逻辑的麻烦。 --- 5. 总结 拥抱清晰的代码 兄弟们,路由分组真的是一项非常实用的技术。它不仅能让我们的代码更加整洁,还能大大提升开发效率。试想一下,如果你接手一个没有任何分组的项目,面对成千上万行杂乱无章的代码,你会不会崩溃? 所以啊,从今天开始,不管你的项目多大,都要养成使用 Group 的好习惯。不管你是弄个小玩意儿,还是搞那种复杂得让人头大的微服务架构,只要分组分得好,就能省不少劲儿,效率蹭蹭往上涨!记住,代码不仅仅是给机器看的,更是给人看的。清晰的代码,就是对同行最大的尊重! 最后,希望这篇文章能帮到你们。如果你们还有什么疑问或者更好的实践方法,欢迎留言交流哦!一起进步,一起成长!
2025-04-10 16:19:55
42
青春印记
转载文章
...次改动nginx配置文件,都需要进入容器内部,十分麻烦: 要是可以在容器外部提供一个映射路径,达到在容器修改文件名,容器内部就可以自动修改?-v 数据卷技术! 二、部署tomcat docker run 可以不用pull,能自动下载 ctrl+c退出 docker pull tomcat:9.0 启动运行,应该加上版本号: docker run -d -p 3355:8080 --name tomcat01 tomcat:9.0 进入容器 docker exec -it tomcat01 /bin/bash ● 部署tomcat,发现问题: 1、linux命令少了 2、没有webapps 这是阿里云镜像的原因:默认使用最小镜像,所有不必要的都剔除了,保证最小可运行环境 可以通过拷贝的方式,解决没有webapps的问题: 在浏览器中输入:http://服务器ip地址:3355/ 进行访问 ● 思考问题:我们以后部署项目,如果每次都要进入容器很麻烦? 要是可以在容器外部提供一个映射路径,webapps,我们在外部放置项目,容器内部就可以自动修改?-v 数据卷技术! 三、部署es+kibana ● Elasticsearch 的问题: es 暴露的端口很多 es 十分耗内存 es 的数据一般需要放置到安全目录!挂载 1、问题1:es 十分耗内存 下载启动运行elastissearch 之后,Linux系统就变得特别卡 # 启动了 linux就卡住了docker stats# 查看 cpu的状态 #es 是十分耗内存的,1.xG# 1核2G(学生机)! # 查看 docker stats 2、问题2:es 需要暴露的端口很多 -p (下载)启动 elasticsearch$ docker run -d --name elasticsearch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2 查看内存占用情况docker stats 先感觉stop一下docker stop ba18713ca536 3、es 十分耗内存的解决:增加内存的限制,修改配置文件 -e 环境配置修改 通过 -e 限制内存docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2 [root@iZwz9535z41cmgcpkm7i81Z /] curl localhost:9200/{"name" : "14329968b00f","cluster_name" : "docker-cluster","cluster_uuid" : "0iDu-G_KTo-4X8KORDj1XQ","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "docker","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"} 4、思考:用kibana连接elasticsearch? 思考(kibana连接elasticsearch)网络如何连接过去 ☺ 参考来源: 狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4 如果本文对你有帮助的话记得给一乐点个赞哦,感谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45630258/article/details/124785912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-12 10:54:44
65
转载
转载文章
...ename = u"文件另存为" hwnd = win32gui.FindWindow(calssname,titlename) 2.输入文件名 输入框定位在多层窗口的下面,所以我是一层一层往下找的,没找到便捷的方法 获取文件名输入框 a1 = win32gui.FindWindowEx(hwnd,None,"DUIViewWndClassName",None) a2 = win32gui.FindWindowEx(a1,None,"DirectUIHWND",None) a3 = win32gui.FindWindowEx(a2,None,"FloatNotifySink",None) a4 = win32gui.FindWindowEx(a3,None,"ComboBox",None) hwnd_filename = win32gui.FindWindowEx(a4,None,"Edit",None) 在文件名输入框中输入文件名(fileName输入一个字符串,我根据系统需要生成的随机数,汉字的话需要转码,如u'你好'.encode('gbk')) win32gui.SendMessage(hwnd_filename, win32con.WM_SETTEXT, None, fileName) 3.点击保存 点击保存按钮 hwnd_save = win32gui.FindWindowEx(hwnd,None,"Button",None) win32gui.PostMessage(hwnd_save, win32con.WM_KEYDOWN, win32con.VK_RETURN, 0) win32gui.PostMessage(hwnd_save, win32con.WM_KEYUP, win32con.VK_RETURN, 0) 以上在不需要修改保存路径的情况下可以直接保存文件 --------------------------------------------------------------------------------------------------------------------------- 以下是未解决的问题 1.修改路径的问题(已解决),我猜想是通过两种方式,一是通过左边的树视图(SysTreeView32)来操作选择路径,二是通过在地址栏直接输入路径地址。其中第一种方法在网上没有查找到操作的方法,然后尝试第二种方法,找到路径地址输入框然后输入路径: 未点击地址栏时路径的窗口句柄是上图这样的 点击地址栏之后路径窗口句柄变成下图这样 a1 = win32gui.FindWindowEx(hwnd,None,"WorkerW",None) a2 = win32gui.FindWindowEx(a1,None,"ReBarWindow32",None) a3 = win32gui.FindWindowEx(a2,None,"Address Band Root",None) a4 = win32gui.FindWindowEx(a3,None,"msctls_progress32",None) a5 = win32gui.FindWindowEx(a4,None,"Breadcrumb Parent",None) hwnd_filepath1 = win32gui.FindWindowEx(a5,None,"ToolbarWindow32",None) print "-----hwnd_filepath1------",hwnd_filepath1 先找到到上图路径栏句柄(查找成功),然后按回车,使地址栏变成可输入状态 win32gui.PostMessage(hwnd_filepath1, win32con.WM_LBUTTONDOWN, win32con.MK_LBUTTON, 0) win32gui.PostMessage(hwnd_filepath1, win32con.WM_LBUTTONUP, win32con.MK_LBUTTON, 0) 在通过路径查找 a11 = win32gui.FindWindowEx(hwnd,None,"WorkerW",None) a21 = win32gui.FindWindowEx(a11,None,"ReBarWindow32",None) a31 = win32gui.FindWindowEx(a21,None,"Address Band Root",None) a41 = win32gui.FindWindowEx(a31,None,"msctls_progress32",None) a6 = win32gui.FindWindowEx(a41,None,"ComboBoxEx32",None) a7 = win32gui.FindWindowEx(a6,None,"ComboBox",None) hwnd_filepath = win32gui.FindWindowEx(a7,None,"Edit",None) print "-----hwnd_filepath------",hwnd_filepath 到这一步查找句柄返回值变成0,就是没查找到路径编辑框,没有找到原因,代码运行下来路径那里只是能看到的效果点击了一下,但是不会变成输入框状态,但是把鼠标移上去会变成输入的状态 这样是可输入的状态 然后win32gui.SendMessage(hwnd_filepath, win32con.WM_SETTEXT, None, 'C:\Users\Administrator\Desktop')这样地址就输入不进去,原因不明 视图数操作的方法没有找到 2.取消按钮的点击无效(已解决) 保存按钮 取消按钮 保存和取消的类名都是“Button”,所以通过保存按钮查找到下一个Button就是取消 hwnd_cancle = win32gui.FindWindowEx(hwnd,hwnd_save,"Button",None) print "------hwnd_cancle---",hwnd_cancle 取消句柄获取到了,通过下面的方法打印出来的父句柄和保存按钮是一样的都是另存为这个弹出框 print win32gui.GetParent(hwnd_cancle) 下面两行代码也获取到了取消的类名和标题打印出来的是‘Button’和‘取消’ print win32gui.GetClassName(hwnd_cancle) print win32gui.GetWindowText(hwnd_cancle).decode('gbk').encode('utf-8') 以下两行代码点击取消按钮的时候,弹出框不关闭,然后发现点击的是保存按钮,原因不明 win32gui.PostMessage(hwnd_cancle, win32con.WM_KEYDOWN, win32con.VK_RETURN, 0) win32gui.PostMessage(hwnd_cancle, win32con.WM_KEYUP, win32con.VK_RETURN, 0) 以上是完成的两点和处理失败的两点,做出来是个半成品,win32gui这方面的知识对我来说有点难,在python中安装的pywin32自带了一个API,里面的描述方法很简单,不够详细,很多看不太懂,以后还需要再花时间慢慢研究 -------------------------------------------------------------------------------------------- 问题1的解决方法: 修改成指定路径 win_1 = win32gui.FindWindowEx(hwnd, None,"WorkerW",None) win_2 = win32gui.FindWindowEx(win_1, None,"ReBarWindow32",None) win_3 = win32gui.FindWindowEx(win_2, None,"Address Band Root",None) win_4 = win32gui.FindWindowEx(win_3, None,"msctls_progress32",None) left, top, right, bottom = win32gui.GetWindowRect(win_4) win32api.SetCursorPos([left,top]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) 将路径复制到剪切板 win32clipboard.OpenClipboard() win32clipboard.EmptyClipboard() win32clipboard.SetClipboardText(filePath) win32clipboard.CloseClipboard() 按下ctrl+v win32api.keybd_event(0x11, 0, 0, 0) win32api.keybd_event(0x56, 0, 0, 0) win32api.keybd_event(0x56, 0, win32con.KEYEVENTF_KEYUP, 0) win32api.keybd_event(0x11, 0, win32con.KEYEVENTF_KEYUP, 0) 按回车进入该路径 win32api.keybd_event(0x0D,0,0,0) 问题2取消按钮点击的问题已经解决: 点击取消按钮,用鼠标点击点击取消按钮,上面使用键盘按键不行,原因不明 hwnd_cancel = win32gui.FindWindowEx(hwnd,hwnd_save,"Button",None) left, top, right, bottom = win32gui.GetWindowRect(hwnd_cancel)该方法接收值必须为4个 win32api.SetCursorPos([left+35,top+13]) win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP | win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0) win32gui.GetWindowRect方法描述:Returns the rectangle for a window in screen coordinates。应该返回该句柄控件的四个顶点坐标吧 win32api.SetCursorPos方法描述:The SetCursorPos function moves the cursor to the specified screen coordinates.将光标移动到指定的屏幕坐标。 ----------------------------------------------------------------------------------------------- 查找另存为弹出框下的所有子句柄: hwndChildList = [] win32gui.EnumChildWindows(hwnd, lambda hwnd1, param: param.append(hwnd1), hwndChildList) for a in hwndChildList: print win32gui.GetParent(a) print win32gui.GetClassName(a) print win32gui.GetWindowText(a).decode('gbk').encode('utf-8') print "-----hwnd_save------",a 另外,经同事推荐ViewWizard工具比spy++更轻便快捷,查看父句柄也比之更方便 按键控制查询:http://www.mamicode.com/info-detail-1319197.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39814378/article/details/110329291。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 22:46:11
253
转载
Gradle
...整出一个安卓的APK文件或者iOS的IPA文件,方便你直接装到手机上用。如果你的Gradle配置有问题,那么App就无法成功安装到模拟器上。 2.2 问题可能在哪里? 现在,让我们回到那个让你抓狂的问题——为什么App装不上?以下是一些常见的原因: 2.2.1 Gradle版本不匹配 有时候,你的React Native版本和Gradle版本可能不兼容。比如说啊,React Native从0.60版本开始搞了个自动链接的功能,挺方便的。但你要注意啦,如果你用的Gradle版本太老了,那可能就会出问题,一些依赖项就装不全或者装不好,最后各种报错啥的,真是让人头大。嘿,之前我也碰上过这么个事儿!那时候我的 React Native 版本已经升到 0.63 了,结果 Gradle 还是老版本,就跟手机升级了系统,但壳子还是原来的那个一样,看着就别扭啊!解决方法很简单,只需要升级Gradle到最新版本即可。 代码示例: gradle // build.gradle 文件中的配置 buildscript { repositories { google() jcenter() } dependencies { classpath 'com.android.tools.build:gradle:4.2.0' // 升级到最新版本 } } 2.2.2 环境变量未配置 另一个常见的问题是环境变量没有正确配置。Gradle需要知道一些关键路径,比如Android SDK的位置。要是你忘了配这些路径,Gradle 就像没找到钥匙一样,干着急也使不上劲,最后只能眼睁睁看着构建任务挂掉。 代码示例: bash 设置环境变量 export ANDROID_HOME=/path/to/your/android/sdk export PATH=$PATH:$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools 2.2.3 缓存问题 Gradle有一个缓存机制,有时候这个缓存可能会出问题。比如说啊,有个依赖包老是下不下来,Gradle就一直在那儿较真儿,不停地重试,就跟个倔强的小孩似的,怎么劝都不停,最后还是没搞掂。这时,你可以尝试清理缓存并重新构建项目。 代码示例: bash 清理Gradle缓存 cd android ./gradlew clean --- 3. 解决方案 动手实践的快乐 3.1 第一步:检查Gradle版本 既然Gradle版本可能是罪魁祸首,我们首先要检查一下它的版本是否符合要求。打开android/build.gradle文件,找到classpath部分,确保它指向的是最新的Gradle版本。 代码示例: gradle dependencies { classpath 'com.android.tools.build:gradle:7.0.2' // 使用最新版本 } 如果版本过低,可以直接升级到最新版本。升级后,记得同步项目并重新构建。 3.2 第二步:配置环境变量 接下来,检查你的环境变量是否配置正确。尤其是Android SDK的路径,必须指向真实的SDK目录。如果你不确定路径,可以去Android Studio中查看。 代码示例: bash 配置环境变量 export ANDROID_HOME=/Users/username/Library/Android/sdk export PATH=$PATH:$ANDROID_HOME/tools:$ANDROID_HOME/platform-tools 配置完成后,重启终端并运行项目,看看问题是否解决了。 3.3 第三步:清理缓存 如果前面两步都没有解决问题,可能是Gradle缓存出了问题。这时候,我们需要手动清理缓存。 代码示例: bash 进入Android目录并清理缓存 cd android ./gradlew clean 清理完成后,重新运行项目,看看是否能正常安装App。 --- 4. 总结与反思 成长的足迹 通过这次经历,我深刻体会到,React Native开发不仅仅是写代码那么简单,还需要对Gradle有深入的理解。Gradle虽然强大,但也非常复杂,稍有不慎就会出问题。不过,只要我们保持耐心,一步步排查问题,总能找到解决方案。 最后,我想说的是,开发过程中遇到问题并不可怕,可怕的是失去信心。每一次解决问题的过程,都是我们成长的机会。希望能帮到你,让你在碰到这些问题的时候,别再绕那么多弯子了,赶紧找到症结,把事情搞定! 如果你还有其他疑问,欢迎随时交流!让我们一起在React Native的世界里探索更多可能性吧!
2025-04-15 16:14:29
35
青山绿水_
Golang
...age main import "fmt" func main() { var largeArray [1000000]int // 创建一个大数组 for i := 0; i < 1000000; i++ { largeArray[i] = i i // 每个元素都是i的平方 } fmt.Println("Memory usage:", memoryUsage()) // 打印内存使用情况 } // 计算当前进程的内存使用量 func memoryUsage() int64 { // 实际的内存计算函数,这里简化为返回固定值 return 1024 1024 10 // 单位为字节 } 这段代码看似简单,却隐藏着内存泄漏的陷阱。哎呀,你瞧这大数组largeArray在循环里头转悠,占了满满一屋子的空间呢!可别小看了这事儿,要是循环一结束,咱们不赶紧把用过的资源还回去,那这些宝贵的空间就白白浪费了,慢慢地,咱们手里的内存就像水龙头的水一样,越用越少,到最后可能连最基本的运行都成问题啦!所以啊,记得干完活儿就收工,别让资源闲置! 四、应对策略 识别并解决内存问题 策略1:合理使用内存池(Memory Pool) 内存池是一种预先分配并管理内存块的方法,可以减少频繁的内存分配和释放带来的性能损耗。在Golang中,可以通过sync.Pool来实现内存池的功能。 go package main import ( "sync" ) var pool = sync.Pool{ New: func() interface{} { return make([]int, 1000) }, } func main() { for i := 0; i < 1000; i++ { data := pool.Get().([]int) // 从内存池获取数据 defer pool.Put(data) // 使用完毕后归还到内存池 // 对数据进行操作... } } 策略2:优化数据结构和算法 在处理大量数据时,选择合适的数据结构和算法对于降低内存消耗至关重要。例如,使用链表而非数组,可以避免一次性分配大量内存。 策略3:使用Go的内置工具检查内存使用情况 利用pprof工具可以深入了解程序的内存使用情况,帮助定位内存泄漏点。 sh go tool pprof ./your_binary 五、实战演练 构建一个安全的并发处理程序 在并发场景下,内存管理变得更加复杂。错误的并发控制策略可能导致死锁或内存泄露。 示例代码2: go package main import ( "sync" "time" ) var wg sync.WaitGroup var mutex sync.Mutex func worker(id int) { defer wg.Done() time.Sleep(5 time.Second) mutex.Lock() defer mutex.Unlock() fmt.Printf("Worker %d finished\n", id) } func main() { for i := 0; i < 10; i++ { wg.Add(1) go worker(i) } wg.Wait() } 通过合理使用sync.WaitGroup和sync.Mutex,我们可以确保所有工作线程安全地执行,并最终正确地关闭所有资源。 六、结语 从错误中学习,不断进步 面对“内存不足错误”,关键在于理解其背后的原因,而不是简单的错误提示。通过实践、分析和优化,我们不仅能解决眼前的问题,还能提升代码质量和效率。记住,每一次挑战都是成长的机会,让我们带着对技术的好奇心和探索精神,不断前进吧! --- 本文旨在提供一个全面的视角,帮助开发者理解和解决Golang中的内存管理问题。嘿,无论你是编程界的菜鸟还是老司机,记得,内存管理这事儿,可得放在心上!就像开车得注意油表一样,编程时管理好内存,能让你的程序跑得又快又好,不卡顿,不崩盘。别怕,多练练手,多看看教程,慢慢你就成了那个内存管理的小能手。记住,学无止境,技术提升也是这样,一点一滴积累,你的编程技能肯定能上一个大台阶!
2024-08-14 16:30:03
115
青春印记
SeaTunnel
...另一个数据库,还是把文件搬进数据库,甚至是在那些复杂的大数据平台之间倒腾数据,SeaTunnel都能搞定。而且,它的设计思路就是简洁易用,让数据工程师们可以更专注于数据本身,而不是被复杂的设置搞得头大。 但是,仅仅是搬运数据还不够,我们还需要知道这些数据在航行过程中是否一切正常,有没有遇到任何阻碍。这就引出了我们的主题:如何在SeaTunnel中实现数据的自动化监控? 2. 监控的重要性 为何要监控数据? 数据就像海洋中的鱼群,它们不断移动,不断变化。如果我们不加以监控,就可能错过重要的信息或者遇到意外的情况。比如说,数据传不过来咋办?数据质量变差了咋整?这些问题得赶紧察觉并处理掉,不然可能会影响到咱们的决策,严重的话还可能捅娄子呢。 所以,建立一个可靠的监控系统是至关重要的。通过监控,我们可以随时掌握数据传输的情况,确保数据既安全又完整,一旦出现任何异常,也能迅速反应过来,保证业务平稳运行。 3. SeaTunnel监控的基本原理 SeaTunnel的监控机制主要依赖于其内置的任务管理和状态报告功能。每回有个新任务开跑,SeaTunnel就会记下它的状态,然后立马通知监控系统。监控系统就像是个细心的小管家,它会接收这些状态报告,然后仔细分析一下,看看数据传输是不是一切正常。 具体来说,SeaTunnel的任务状态主要包括以下几种: - 待启动(PENDING):任务已经创建,但尚未开始执行。 - 正在运行(RUNNING):任务正在进行数据传输。 - 已完成(FINISHED):任务执行完成,数据传输成功。 - 失败(FAILED):任务执行过程中遇到了问题,导致传输失败。 这些状态信息会被实时记录下来,并可以通过API或者日志的方式进行查询和分析。 4. 实现自动化监控的具体步骤 现在,让我们来看看如何在SeaTunnel中实现自动化监控。我们将分步介绍,从配置到实际操作,一步步来。 4.1 配置监控插件 首先,我们需要安装和配置一个监控插件。目前,SeaTunnel支持多种监控插件,如Prometheus、Grafana等。这里我们以Prometheus为例,因为它提供了强大的数据收集和可视化功能。 yaml sea_tunnel_conf.yaml plugins: - name: prometheus config: endpoint: "http://localhost:9090" 在这个配置文件中,我们指定了监控插件为Prometheus,并设置了Prometheus服务器的地址。当然,你需要根据实际情况调整这些配置。 4.2 编写监控脚本 接下来,我们需要编写一个简单的脚本来定期检查SeaTunnel任务的状态,并将异常情况上报给Prometheus。 python import requests import time def check_status(): response = requests.get("http://localhost:9090/api/v1/query?query=seatail_monitor_task_status") data = response.json() for task in data['data']['result']: if task['value'][1] == 'FAILED': print(f"Task {task['metric']['job']} has failed!") while True: check_status() time.sleep(60) 每隔一分钟检查一次 这个Python脚本每隔一分钟就会检查一次所有SeaTunnel任务的状态。如果某个任务的状态为“FAILED”,则会打印出错误信息。你可以根据需要修改这个脚本,例如添加邮件通知功能。 4.3 集成监控插件 为了让监控插件与SeaTunnel无缝集成,我们需要在SeaTunnel的任务配置文件中添加相应的监控配置。例如: yaml tasks: - name: data_migration type: jdbc config: source: url: "jdbc:mysql://source_host/source_db" username: "username" password: "password" table: "source_table" sink: url: "jdbc:mysql://sink_host/sink_db" username: "username" password: "password" table: "sink_table" monitoring: plugin: prometheus config: endpoint: "http://localhost:9090" 在这里,我们为data_migration任务启用了Prometheus监控插件,并指定了Prometheus服务器的地址。 4.4 验证和测试 最后一步,就是验证整个监控系统的有效性。你可以试试手动搞点状况,比如说断开数据库连接,然后看看监控脚本能不能抓到这些异常,并且顺利汇报给Prometheus。 此外,你还可以利用Prometheus提供的图形界面,查看各个任务的状态变化趋势,以及历史数据。这对于后续的数据分析和优化非常有帮助。 5. 总结与展望 通过上述步骤,我们成功地在SeaTunnel中实现了数据的自动化监控。这样做不仅让数据传输变得更稳当,还让我们能更轻松地搞定海量数据。 当然,自动化监控只是一个起点。随着业务越来越忙,技术也在不断进步,咱们得不停地琢磨新招儿。比如说,可以用机器学习提前预判可能出现的问题,或者搞些更牛的警报系统,让咱们反应更快点儿。但无论如何,有了SeaTunnel作为坚实的基础,相信我们可以走得更远。 这就是今天的内容,希望大家能够从中获得灵感,创造出更多有趣且实用的应用场景。如果你有任何想法或建议,欢迎随时分享交流!
2024-12-11 16:12:53
117
月影清风
Etcd
...时候,它们产生的日志文件就像垃圾一样,越堆越多。时间一长,这些日志文件堆积如山,占用了咱们宝贵的硬盘空间,得赶紧想办法清理或者优化一下,不然电脑大哥就要抗议了!因此,合理的日志清理策略不仅能优化存储空间,还能提升系统性能。哎呀,制定并执行这些策略的时候,可得小心点,别一不小心就碰到了雷区,搞出个策略冲突,结果数据丢了,或者整出些乱七八糟的不可预知状况来。咱们得稳扎稳打,确保每一步都走对了,这样才能避免踩坑。 三、策略冲突的常见类型 策略冲突主要表现在以下几个方面: 1. 数据冗余 在清理日志时,如果策略过于激进,可能会删除关键历史数据,导致后续查询或恢复操作失败。 2. 一致性问题 不同节点之间的日志清理可能不一致,造成集群内数据的一致性被破坏。 3. 性能影响 频繁的日志清理操作可能对系统性能产生负面影响,尤其是在高并发场景下。 4. 数据完整性 错误的清理策略可能导致重要数据的永久丢失。 四、案例分析 Etcd中的日志清理策略冲突 假设我们正在管理一个Etcd集群,用于存储服务配置信息。为了优化存储空间并提高响应速度,我们计划实施定期的日志清理策略。具体策略如下: - 策略一:每日凌晨0点,清理所有超过7天历史的过期日志条目。 - 策略二:每月末,清理所有超过30天历史的过期日志条目。 问题:当策略一和策略二同时执行时,可能会出现冲突。想象一下,就像你家的书架,有一天你整理了书架(策略一),把一些不再需要的书拿走了,但过了22天,你的朋友又来帮忙整理(策略二),又把一些书从书架上取了下来。这样一来,原本在书架上的书,因为两次整理,可能就不见了,这就是数据丢失的意思。 五、解决策略 优化日志清理逻辑 为了解决上述策略冲突,我们可以采取以下措施: 1. 引入版本控制 在Etcd中,每条日志都关联着一个版本号。通过维护版本号,可以准确追踪每个操作的历史状态,避免不必要的数据删除。 代码示例: go // 假设etcdClient为Etcd客户端实例 resp, err := etcdClient.Put(context.Background(), "/config/key", "value", clientv3.WithVersion(1)) if err != nil { log.Fatalf("Failed to put value: %s", err) } 2. 实施并行清理机制 设计一个系统级别的时间线清理逻辑,确保同一时间点的数据不会被重复清理。 代码示例: go // 清理逻辑函数 func cleanupLogs() error { // 根据时间戳进行清理,避免冲突 // 实现细节略去 return nil } 3. 引入审计跟踪 对于关键操作,如日志清理,记录详细的审计日志,便于事后审查和问题定位。 代码示例: go // 审计日志记录函数 func auditLog(operation string, timestamp time.Time) { // 记录审计日志 // 实现细节略去 } 六、总结与反思 通过上述策略和代码示例的讨论,我们可以看到在Etcd集群中管理日志清理策略时,需要细致考虑各种潜在的冲突和影响。哎呀,你得知道,咱们要想在项目里防住那些让人头疼的策略冲突,有几个招儿可使。首先,咱们得搞个版本控制系统,就像有个大本营,随时记录着每个人对代码的修改,这样就算有冲突,也能轻松回溯,找到问题源头。然后,咱还得上个并行清理机制,就像是给团队的工作分配任务时,能确保每个人都清楚自己的责任,不会乱了套,这样就能大大减少因为分工不明产生的冲突。最后,建立一个审计跟踪系统,就相当于给项目装了个监控,每次有人改动了什么,都得有迹可循,这样一来,一旦出现矛盾,就能快速查清谁是谁非,解决起来也快多了。这三招合在一起,简直就是防冲突的无敌组合拳啊!嘿,兄弟!你得知道,监控和评估清理策略的执行效果,然后根据实际情况灵活调整,这可是保证咱们系统健健康康、高效运作的不二法门!就像咱们打游戏时,随时观察自己的状态和环境变化,及时调整战术一样,这样才能稳坐钓鱼台,轻松应对各种挑战嘛! --- 通过本文的探讨,我们不仅深入理解了Etcd集群日志清理策略的重要性和可能遇到的挑战,还学习了如何通过实际的代码示例来解决策略冲突,从而为构建更稳定、高效的分布式系统提供了实践指导。
2024-07-30 16:28:05
455
飞鸟与鱼
Netty
...处理能力,还使得代码结构更加清晰。 3.2 ChannelPipeline:灵活的请求处理管道 除了EventLoopGroup之外,Netty还提供了一个非常强大的功能——ChannelPipeline。这简直就是个超级灵活的请求处理流水线,我们可以把一堆处理器像串糖葫芦一样串起来,然后一个个按顺序来处理网络上的请求,简直不要太爽!这种方式非常适合那些需要执行复杂业务逻辑的应用场景。 示例代码: java public class TimeServerHandler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { ByteBuf buf = (ByteBuf) msg; try { byte[] req = new byte[buf.readableBytes()]; buf.readBytes(req); String body = new String(req, "UTF-8"); System.out.println("The time server receive order : " + body); String currentTime = "QUERY TIME ORDER".equalsIgnoreCase(body) ? new Date( System.currentTimeMillis()).toString() : "BAD ORDER"; currentTime = currentTime + System.getProperty("line.separator"); ByteBuf resp = Unpooled.copiedBuffer(currentTime.getBytes()); ctx.write(resp); } finally { buf.release(); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { // 当出现异常时,关闭Channel cause.printStackTrace(); ctx.close(); } } 在这个例子中,我们定义了一个TimeServerHandler类,继承自ChannelInboundHandlerAdapter。这个处理器的主要职责是从客户端接收请求,并返回当前时间作为响应。加个这样的处理器到ChannelPipeline里,我们就能轻轻松松地扩展或者修改请求处理的逻辑,完全不用去动那些复杂的底层网络通信代码。这样一来,调整起来就方便多了! 4. 结论 拥抱变化,不断进化 通过上述讨论,我们已经看到了正确选择并发资源分配算法的重要性,以及Netty在这方面的强大支持。当然啦,这只是个开始嘛,真正的考验在于你得根据自己实际用到的地方,不断地调整和优化这些方法。记住,优秀的软件工程师总是愿意拥抱变化,勇于尝试新的技术和方法,以求达到最佳的性能表现和用户体验。希望这篇文章能给大家带来一些启示,让我们一起在技术的海洋里继续探索吧! --- 这篇技术文章希望能够以一种更贴近实际开发的方式,让大家了解并发资源分配的重要性,并通过Netty提供的强大工具,找到适合自己的解决方案。如果有任何疑问或建议,欢迎随时留言交流!
2024-12-05 15:57:43
102
晚秋落叶
Consul
...子,假设你的应用配置文件包含数据库连接信息。要是哪个程序员不小心改了这部分设置,又没好好测一测就直接扔到生产环境里,那可就麻烦了。数据库连接可能就挂了,整个应用都得跟着遭殃。不过嘛,要是咱们的配置系统能像git那样支持版本控制,那我们就轻松多了。遇到问题时,可以直接回到上一个稳当的配置版本,这样就能躲过那些可能捅娄子的大麻烦。 3. 如何在Consul中实现版本控制? 现在,让我们来看看如何在Consul中实际地实现配置的版本控制。Consul自己其实没有自带版本控制的功能,但我们可以耍点小聪明,用一些策略和工具来搞定这个需求。在这里,我们要说两种方法。第一种是用Consul的API和外部版本控制系统(比如Git)一起玩;第二种则是在Consul里面自己搞一套版本控制逻辑。 方法一:结合外部版本控制系统 首先,我们来看一看如何将Consul与Git这样的版本控制系统结合起来使用。这种做法主要是定期把Consul里的配置备份到Git仓库里,每次改动配置后,都会自动加个新版本。就像是给配置文件做了一个定时存档,而且每次修改都留个记录,方便追踪和管理。这样,我们就能拥有完整的配置历史记录,并且可以随时回滚到任何历史版本。 步骤如下: 1. 创建Git仓库 首先,在你的服务器上创建一个新的Git仓库,专门用于存放Consul的配置文件。 bash git init --bare /path/to/config-repo.git 2. 编写导出脚本 接下来,编写一个脚本,用于定期从Consul中导出配置文件并推送到Git仓库。这个脚本可以使用Consul的API来获取配置数据。 python import consul import os import subprocess 连接到Consul c = consul.Consul(host='127.0.0.1', port=8500) 获取所有KV对 index, data = c.kv.get('', recurse=True) 创建临时目录 temp_dir = '/tmp/consul-config' if not os.path.exists(temp_dir): os.makedirs(temp_dir) 将数据写入文件 for item in data: key = item['Key'] value = item['Value'].decode('utf-8') file_path = os.path.join(temp_dir, key) os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'w') as f: f.write(value) 提交到Git subprocess.run(['git', '-C', '/path/to/config-repo.git', 'add', '.']) subprocess.run(['git', '-C', '/path/to/config-repo.git', 'commit', '-m', 'Update config from Consul']) subprocess.run(['git', '-C', '/path/to/config-repo.git', 'push']) 3. 设置定时任务 最后,设置一个定时任务(例如使用cron),让它每隔一段时间执行上述脚本。 这种方法的优点在于它可以很好地集成现有的Git工作流程,并且提供了强大的版本控制功能。不过,需要注意的是,它可能需要额外的维护工作,尤其是在处理并发更新时。 方法二:在Consul内部实现版本控制 除了上述方法之外,我们还可以尝试在Consul内部通过自定义逻辑来实现版本控制。这个方法有点儿复杂,但好处是能让你更精准地掌控一切,而且还不用靠外界的那些系统帮忙。 基本思路是: - 使用Consul的KV存储作为主存储区,同时为每个配置项创建一个单独的版本记录。 - 每次更新配置时,不仅更新当前版本,还会保存一份新版本的历史记录。 - 可以通过Consul的查询功能来检索特定版本的配置。 下面是一个简化的Python示例,演示如何使用Consul的API来实现这种逻辑: python import consul import json c = consul.Consul() def update_config(key, new_value, version=None): 如果没有指定版本,则自动生成一个新版本号 if version is None: index, current_version = c.kv.get(key + '/version') version = int(current_version['Value']) + 1 更新当前版本 c.kv.put(key, json.dumps(new_value)) 保存版本记录 c.kv.put(f'{key}/version', str(version)) c.kv.put(f'{key}/history/{version}', json.dumps(new_value)) def get_config_version(key, version=None): if version is None: index, data = c.kv.get(key + '/version') version = int(data['Value']) return c.kv.get(f'{key}/history/{version}')[1]['Value'] 示例:更新配置 update_config('myapp/database', {'host': 'localhost', 'port': 5432}, version=1) 示例:获取特定版本的配置 print(get_config_version('myapp/database', version=1)) 这段代码展示了如何使用Consul的KV API来实现一个简单的版本控制系统。虽然这只是一个非常基础的实现,但它已经足以满足许多场景下的需求。 4. 总结与反思 通过上述两种方法,我们已经看到了如何在Consul中实现配置的版本控制。不管你是想用外部的版本控制系统来管配置,还是打算在Consul里面自己捣鼓一套方案,最重要的是搞清楚你们团队到底需要啥,然后挑个最适合你们的法子干就是了。 在这个过程中,我深刻体会到,技术的选择往往不是孤立的,它总是受到业务需求、团队技能等多种因素的影响。所以啊,在碰到这类问题的时候,咱们得保持个开放的心态,多尝试几种方法,这样才能找到那个最适合的解决之道。 希望这篇文章对你有所帮助,如果你有任何疑问或建议,请随时留言交流。我们一起学习,共同进步!
2024-11-17 16:10:02
27
星辰大海
Lua
...nction exampleFunction(x, y) if not x then x = 1 end if not y then y = 2 end print(x + y) end exampleFunction() -- 输出 3 exampleFunction(5) -- 输出 6 exampleFunction(y=3) -- 输出 4 在这个例子中,如果直接调用 exampleFunction(),它将使用默认值 x = 1 和 y = 2,输出结果为 3。而 exampleFunction(5) 则使用了第一个参数 5,并保留了默认值 y = 2,因此输出为 7。最后,exampleFunction(y=3) 使用了默认值 x = 1 并覆盖了 y 的默认值,输出为 4。哎呀,这个例子啊,简直就是参数默认值用得好不好,对程序逻辑影响的大实锤!你看,它既展示了一波顺滑操作的魅力,也顺便揭露了个小坑——那就是如果参数的排列顺序不对头,那程序里可就容易出乱子,逻辑混乱那是分分钟的事儿。就像是你去超市买东西,明明想买牛奶结果却拿了个面包,那感觉,是不是跟程序里的逻辑混乱有那么点像?所以啊,咱们在写代码的时候,得格外注意参数的顺序,别让程序在执行过程中迷路了。 三、深挖问题 参数顺序与默认值的交织 当函数参数数量较多时,错误的默认值设置可能导致难以追踪的错误。例如,考虑以下函数: lua function complexFunction(a, b, c, d, e) print(a + b + c + d + e) end complexFunction(1, 2, 3) -- 正确使用默认值 complexFunction(1, 2, e=5) -- 错误使用默认值 在这个例子中,如果我们尝试通过 complexFunction(1, 2, e=5) 调用函数,Lua会使用 e 的默认值(在这种情况下是 5),而不是期望的参数 d 的值。这会导致输出结果不符合预期,因为实际调用的函数行为与意图不符。 四、解决方案 精心规划与测试 为了避免上述问题,开发者应该遵循一些最佳实践: 1. 明确参数顺序 在函数定义时,明确所有参数的顺序。这有助于减少因参数顺序误解而导致的错误。 2. 详细注释 为每个函数提供详细的文档,包括参数的用途、默认值的含义以及它们之间的关系。这有助于其他开发者理解和使用函数时避免意外。 3. 单元测试 编写针对函数的单元测试,特别关注默认参数的使用情况。这可以帮助及早发现潜在的逻辑错误,并确保函数行为符合预期。 4. 代码审查 定期进行代码审查,特别是在团队协作环境中。兄弟们,咱们互相提点提点,能找出不少平时自己都忽视的坑儿。比如那个默认值啊,有时候用得不恰当,就容易出问题。咱们得留心着点儿,别让这些小细节绊了脚。 五、结语 拥抱Lua的强大,同时警惕其陷阱 Lua作为一门强大的脚本语言,提供了丰富的功能和简洁的语法,使得快速开发和原型设计成为可能。然而,正如任何工具一样,正确使用Lua需要细心和谨慎。哎呀,兄弟!掌握函数参数默认值的那些事儿,这可是让你的代码变得既好懂又耐玩的魔法!想象一下,你写了一段代码,别人一看就明白你的意思,还能轻松修改和维护,多爽啊!而且,避免了因为配置不当出错,那简直就是程序员们的救星嘛!所以啊,咱们得好好学学这个技巧,让代码不仅高效,还充满人情味儿!嘿!兄弟,你听过Lua这玩意儿没?这可是个超级棒的脚本语言,用起来既灵活又高效。就像个魔法师,能让你的代码玩出花来。要是你勤学苦练,多动手实践,那简直就是如虎添翼啊!Lua能帮咱们构建出既靠谱又高效的软件系统,简直不要太爽!不信你试试,保证让你爱不释手! --- 本文旨在探讨Lua脚本中函数参数默认值的使用误区,通过具体的代码示例和分析,深入浅出地阐述了错误设置可能带来的问题及其解决方案。嘿,各位小伙伴们!在你们未来的Lua编程之旅中,我真心希望你们能对设置默认值这事儿多留点心眼。咱们可不想因为这个小细节搞出什么逻辑上的大乱子,对吧?毕竟,咱的目标可是要写出既漂亮又没bug的代码啊!所以,动起手来时,记得仔细琢磨一下每个默认值的选择,确保它们不会偷偷影响到你的程序逻辑,让代码质量蹭蹭往上涨!加油,编程达人们!
2024-09-19 16:01:49
91
秋水共长天一色
HessianRPC
...第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
31
风轻云淡
转载文章
...的含义 config文件介绍: config文件中注释可以通过用‘’字符开始一行来添加 如果您希望更改具有影响,则“取消注释”意味着删除‘’ sdtv_mode=2将SDTV模式设置为PAL(在欧洲使用) hdmi_drive=1正常DVI模式(无声音) hdmi_drive=2将监视器强制到HDMI模式,以便通过HDMI电缆发送声音 hdmi_group=1将监视器模式设置为CEA hdmi_group=2将监视器模式设置为DMT hdmi_mode=16将监视器分辨率设置为1080P 60 Hz 这个是我侧屏解决黑屏的关键一个参数,先查看自己使用显示器的分辨率,对照hdmi_mode表值,进行改写。我的侧屏分辨率是19201080,选择hdmi_mode=16。 hdmi_group定义了CEA或DMT格式的屏幕分辨率 如果hdmi_group=1(CEA),则这些值有效。hdmi_mode=1 VGAhdmi_mode=2 480p 60 Hzhdmi_mode=3 480p 60 Hz Hhdmi_mode=4 720p 60 Hzhdmi_mode=5 1080i 60 Hzhdmi_mode=6 480i 60 Hzhdmi_mode=7 480i 60 Hz Hhdmi_mode=8 240p 60 Hzhdmi_mode=9 240p 60 Hz Hhdmi_mode=10 480i 60 Hz 4xhdmi_mode=11 480i 60 Hz 4x Hhdmi_mode=12 240p 60 Hz 4xhdmi_mode=13 240p 60 Hz 4x Hhdmi_mode=14 480p 60 Hz 2xhdmi_mode=15 480p 60 Hz 2x Hhdmi_mode=16 1080p 60 Hzhdmi_mode=17 576p 50 Hzhdmi_mode=18 576p 50 Hz Hhdmi_mode=19 720p 50 Hzhdmi_mode=20 1080i 50 Hzhdmi_mode=21 576i 50 Hzhdmi_mode=22 576i 50 Hz Hhdmi_mode=23 288p 50 Hzhdmi_mode=24 288p 50 Hz Hhdmi_mode=25 576i 50 Hz 4xhdmi_mode=26 576i 50 Hz 4x Hhdmi_mode=27 288p 50 Hz 4xhdmi_mode=28 288p 50 Hz 4x Hhdmi_mode=29 576p 50 Hz 2xhdmi_mode=30 576p 50 Hz 2x Hhdmi_mode=31 1080p 50 Hzhdmi_mode=32 1080p 24 Hzhdmi_mode=33 1080p 25 Hzhdmi_mode=34 1080p 30 Hzhdmi_mode=35 480p 60 Hz 4xhdmi_mode=36 480p 60 Hz 4xHhdmi_mode=37 576p 50 Hz 4xhdmi_mode=38 576p 50 Hz 4x Hhdmi_mode=39 1080i 50 Hz reduced blankinghdmi_mode=40 1080i 100 Hzhdmi_mode=41 720p 100 Hzhdmi_mode=42 576p 100 Hzhdmi_mode=43 576p 100 Hz Hhdmi_mode=44 576i 100 Hz hdmi_mode=45 576i 100 Hz Hhdmi_mode=46 1080i 120 Hz hdmi_mode=47 720p 120 Hz hdmi_mode=48 480p 120 Hz hdmi_mode=49 480p 120 Hz Hhdmi_mode=50 480i 120 Hz hdmi_mode=51 480i 120 Hz Hhdmi_mode=52 576p 200 Hz hdmi_mode=53 576p 200 Hz Hhdmi_mode=54 576i 200 Hz hdmi_mode=55 576i 200 Hz Hhdmi_mode=56 480p 240 Hz hdmi_mode=57 480p 240 Hz Hhdmi_mode=58 480i 240 Hz hdmi_mode=59 480i 240 Hz HH指16:9变体(通常为4:3模式)。2x意味着像素加倍(即更高的时钟速率,每个像素重复两次)4x意味着像素四倍(即更高的时钟速率,每个像素重复四次)。 如果hdmi_group=2(Dmt),则这些值有效。有一个像素时钟限制,这意味着支持的最高模式是1920x1200@60 Hz,减少了消隐。hdmi_mode=1 640x350 85 Hzhdmi_mode=2 640x400 85 Hzhdmi_mode=3 720x400 85 Hzhdmi_mode=4 640x480 60 Hzhdmi_mode=5 640x480 72 Hzhdmi_mode=6 640x480 75 Hzhdmi_mode=7 640x480 85 Hzhdmi_mode=8 800x600 56 Hzhdmi_mode=9 800x600 60 Hzhdmi_mode=10 800x600 72 Hzhdmi_mode=11 800x600 75 Hzhdmi_mode=12 800x600 85 Hzhdmi_mode=13 800x600 120 Hzhdmi_mode=14 848x480 60 Hzhdmi_mode=15 1024x768 43 Hz DO NOT USEhdmi_mode=16 1024x768 60 Hzhdmi_mode=17 1024x768 70 Hzhdmi_mode=18 1024x768 75 Hzhdmi_mode=19 1024x768 85 Hzhdmi_mode=20 1024x768 120 Hzhdmi_mode=21 1152x864 75 Hzhdmi_mode=22 1280x768 Reduced blankinghdmi_mode=23 1280x768 60 Hzhdmi_mode=24 1280x768 75 Hzhdmi_mode=25 1280x768 85 Hzhdmi_mode=26 1280x768 120 Hz Reduced blankinghdmi_mode=27 1280x800 Reduced blankinghdmi_mode=28 1280x800 60 Hz hdmi_mode=29 1280x800 75 Hz hdmi_mode=30 1280x800 85 Hz hdmi_mode=31 1280x800 120 Hz Reduced blankinghdmi_mode=32 1280x960 60 Hz hdmi_mode=33 1280x960 85 Hz hdmi_mode=34 1280x960 120 Hz Reduced blankinghdmi_mode=35 1280x1024 60 Hz hdmi_mode=36 1280x1024 75 Hz hdmi_mode=37 1280x1024 85 Hz hdmi_mode=38 1280x1024 120 Hz Reduced blankinghdmi_mode=39 1360x768 60 Hz hdmi_mode=40 1360x768 120 Hz Reduced blankinghdmi_mode=41 1400x1050 Reduced blankinghdmi_mode=42 1400x1050 60 Hz hdmi_mode=43 1400x1050 75 Hz hdmi_mode=44 1400x1050 85 Hz hdmi_mode=45 1400x1050 120 Hz Reduced blankinghdmi_mode=46 1440x900 Reduced blankinghdmi_mode=47 1440x900 60 Hz hdmi_mode=48 1440x900 75 Hz hdmi_mode=49 1440x900 85 Hz hdmi_mode=50 1440x900 120 Hz Reduced blankinghdmi_mode=51 1600x1200 60 Hz hdmi_mode=52 1600x1200 65 Hz hdmi_mode=53 1600x1200 70 Hz hdmi_mode=54 1600x1200 75 Hz hdmi_mode=55 1600x1200 85 Hz hdmi_mode=56 1600x1200 120 Hz Reduced blankinghdmi_mode=57 1680x1050 Reduced blankinghdmi_mode=58 1680x1050 60 Hz hdmi_mode=59 1680x1050 75 Hz hdmi_mode=60 1680x1050 85 Hz hdmi_mode=61 1680x1050 120 Hz Reduced blankinghdmi_mode=62 1792x1344 60 Hz hdmi_mode=63 1792x1344 75 Hz hdmi_mode=64 1792x1344 120 Hz Reduced blankinghdmi_mode=65 1856x1392 60 Hz hdmi_mode=66 1856x1392 75 Hz hdmi_mode=67 1856x1392 120 Hz Reduced blankinghdmi_mode=68 1920x1200 Reduced blankinghdmi_mode=69 1920x1200 60 Hz hdmi_mode=70 1920x1200 75 Hz hdmi_mode=71 1920x1200 85 Hz hdmi_mode=72 1920x1200 120 Hz Reduced blankinghdmi_mode=73 1920x1440 60 Hz hdmi_mode=74 1920x1440 75 Hz hdmi_mode=75 1920x1440 120 Hz Reduced blankinghdmi_mode=76 2560x1600 Reduced blankinghdmi_mode=77 2560x1600 60 Hz hdmi_mode=78 2560x1600 75 Hz hdmi_mode=79 2560x1600 85 Hz hdmi_mode=80 2560x1600 120 Hz Reduced blankinghdmi_mode=81 1366x768 60 Hz hdmi_mode=82 1080p 60 Hz hdmi_mode=83 1600x900 Reduced blankinghdmi_mode=84 2048x1152 Reduced blankinghdmi_mode=85 720p 60 Hz hdmi_mode=86 1366x768 Reduced blanking 建议的低分辨率尝试开始,出现正常桌面在不断调整参数 ps:在网上买的小显示屏坏的,怎么调都是黑屏,最后用电脑的侧屏成功了。 (先让屏幕亮,然后在调适合屏幕的参数) overscan_left=20在左边跳过的像素数 overscan_right=20在右边跳过的像素数 overscan_top=20要跳过顶部的像素数 overscan_bottom要跳过底部的像素数 使显示器变小,以防止文本从屏幕上溢出 start_x启用照相机模块。起始x=1 disable_camera_led=1在录制视频或拍摄静止照片时,关闭红色照相机LED gpu_mem=128摄像机用最小GPU内存 disable_audio_dither=1禁止在PWM音频算法上抖动。如果您在音频插孔上遇到白噪声问题,请尝试此方法。 sdtv_mode=0复合输出定义TV标准(默认值=0) sdtv_mode=0 正常 NTSCsdtv_mode=1 日文版 NTSC – (无基座)sdtv_mode=2 正常 PALsdtv_mode=3 巴西版本 PAL sdtv_aspect=1 4:3 sdtv_aspect=2 14:9 sdtv_aspect=3 16:9定义复合输出的高宽比(默认值=1) hdmi_safe=1使用“安全模式”设置尝试引导与最大的HDMI兼容性。这与以下组合相同: hdmi_force_hotplug=1hdmi_niel_edid=0xa5000080 config_hdmi_boost=4hdmi_group=2hdmi_mode=4disdable_overscan=0overcan_left=24overcan_right=24overscan_top=24overcan_base=24 ps:可参考 hdmi_edid_file=1当设置为1时,将从edid.dat文件而不是从监视器读取edid数据 hdmi_force_hotplug=1即使没有检测到hdmi监视器,也可以使用hdmi模式。 hdmi_niel_edid=0xa5000080如果显示没有准确的Edid,则启用忽略Edid/Display数据。 hdmi_ignore_hotplug=1即使检测到hdmi监视器,也可以使用复合模式。 config_hdmi_boost=2配置hdmi接口的信号强度。如果您对hdmi有干扰问题,尝试增加(例如,到7)11是最大的。 disdable_overscan=0设置为1以禁用过度扫描。 max_usb_current=1结合树莓PI B+,引入了一个新的config.txt设置。 max_usb_current=0当添加这一行时,USB电源管理器将将其输出电流限制(对所有4个USB端口加起来)从600 mA更改为1200 mA的两倍。 dtparam=i2c_arm=on在GPIO引脚上启用I2C。 dtparam=i2s=on启用I2S音频硬件。 dtparam=spi=on启用SPI驱动程序。 dtoverlay=xxx向设备树中添加一个覆盖/boot/overays/xxx-overlay.dtb(在树莓派的系统盘中搜索文件位置) 文章总结: 一个树莓派发烧友(小学生)使用树莓派版本4B,参考过很多文章和博客但是都没有成功,最后翻译官方文档,更改参数最终victory!!! 附上我的config文件参数 文章参考: https://elinux.org/RPiconfig 本篇文章为转载内容。原文链接:https://blog.csdn.net/gcyhacker/article/details/122666018。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-09 14:23:40
375
转载
转载文章
...VisibleItemPosition()和findLastVisibleItemPosition() 看字面意思就能知道这时干嘛用的。 但是我们的manager不止LinearLayoutManager一种,所以我们要做下区分, //这里我们用一个数组来记录起始位置int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}复制代码 LinearLayoutManager和GridLayoutManager获取起始位置方法如下 private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}复制代码 StaggeredGridLayoutManager获取起始位置有点复杂,如下 private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;}复制代码 四,获取到起始位置以后,我们就根据位置获取到view及view中的数据 上面第三步拿到屏幕内可见条目的起始位置以后,我们就用一个for循环,获取当前屏幕内可见的所有子view for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);}复制代码 recordViewCount是我自己写的用于获取子view内绑定数据的方法 //获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}复制代码 这里有几点需要注意 1,这这里起始位置的view显示区域如果不超过50%,就不算这个view可见,进而也就不统计曝光。 2,我们通过view.getTag();获取view里的数据,必须在此之前setTag()数据,我这里setTag是在viewholder中把数据set进去的 到这里我们就实现了recylerview列表中view控件曝光量的统计了。下面贴出来完整的代码给大家 package com.example.qcl.demo.xuexi.baoguang;import android.app.Activity;import android.graphics.Rect;import android.support.v7.widget.GridLayoutManager;import android.support.v7.widget.LinearLayoutManager;import android.support.v7.widget.RecyclerView;import android.support.v7.widget.StaggeredGridLayoutManager;import android.text.TextUtils;import android.util.Log;import android.view.View;import com.example.qcl.demo.utils.UiUtils;import java.util.concurrent.ConcurrentHashMap;/ 2019/4/2 13:31 author: qcl desc: 安卓曝光量统计工具类 wechat:2501902696/public class ViewShowCountUtils {//刚进入列表时统计当前屏幕可见viewsprivate boolean isFirstVisible = true;//用于统计曝光量的mapprivate ConcurrentHashMap<String, Integer> hashMap = new ConcurrentHashMap<String, Integer>();/ 统计RecyclerView里当前屏幕可见子view的曝光量 /void recordViewShowCount(RecyclerView recyclerView) {hashMap.clear();if (recyclerView == null || recyclerView.getVisibility() != View.VISIBLE) {return;}//检测recylerview的滚动事件recyclerView.addOnScrollListener(new RecyclerView.OnScrollListener() {@Overridepublic void onScrollStateChanged(RecyclerView recyclerView, int newState) {/我这里通过的是停止滚动后屏幕上可见view。如果滚动过程中的可见view也要统计,你可以根据newState去做区分SCROLL_STATE_IDLE:停止滚动SCROLL_STATE_DRAGGING: 用户慢慢拖动SCROLL_STATE_SETTLING:惯性滚动/if (newState == RecyclerView.SCROLL_STATE_IDLE) {getVisibleViews(recyclerView);} }@Overridepublic void onScrolled(RecyclerView recyclerView, int dx, int dy) {super.onScrolled(recyclerView, dx, dy);//刚进入列表时统计当前屏幕可见viewsif (isFirstVisible) {getVisibleViews(recyclerView);isFirstVisible = false;} }});}/ 获取当前屏幕上可见的view /private void getVisibleViews(RecyclerView reView) {if (reView == null || reView.getVisibility() != View.VISIBLE ||!reView.isShown() || !reView.getGlobalVisibleRect(new Rect())) {return;}//保险起见,为了不让统计影响正常业务,这里做下try-catchtry {int[] range = new int[2];RecyclerView.LayoutManager manager = reView.getLayoutManager();if (manager instanceof LinearLayoutManager) {range = findRangeLinear((LinearLayoutManager) manager);} else if (manager instanceof GridLayoutManager) {range = findRangeGrid((GridLayoutManager) manager);} else if (manager instanceof StaggeredGridLayoutManager) {range = findRangeStaggeredGrid((StaggeredGridLayoutManager) manager);}if (range == null || range.length < 2) {return;}Log.i("qcl0402", "屏幕内可见条目的起始位置:" + range[0] + "---" + range[1]);for (int i = range[0]; i <= range[1]; i++) {View view = manager.findViewByPosition(i);recordViewCount(view);} } catch (Exception e) {e.printStackTrace();} }//获取view绑定的数据private void recordViewCount(View view) {if (view == null || view.getVisibility() != View.VISIBLE ||!view.isShown() || !view.getGlobalVisibleRect(new Rect())) {return;}int top = view.getTop();int halfHeight = view.getHeight() / 2;int screenHeight = UiUtils.getScreenHeight((Activity) view.getContext());int statusBarHeight = UiUtils.getStatusBarHeight(view.getContext());if (top < 0 && Math.abs(top) > halfHeight) {return;}if (top > screenHeight - halfHeight - statusBarHeight) {return;}//这里获取的是我们view绑定的数据,相应的你要去在你的view里setTag,只有set了,才能getItemData tag = (ItemData) view.getTag();String key = tag.toString();if (TextUtils.isEmpty(key)) {return;}hashMap.put(key, !hashMap.containsKey(key) ? 1 : (hashMap.get(key) + 1));Log.i("qcl0402", key + "----出现次数:" + hashMap.get(key));}private int[] findRangeLinear(LinearLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeGrid(GridLayoutManager manager) {int[] range = new int[2];range[0] = manager.findFirstVisibleItemPosition();range[1] = manager.findLastVisibleItemPosition();return range;}private int[] findRangeStaggeredGrid(StaggeredGridLayoutManager manager) {int[] startPos = new int[manager.getSpanCount()];int[] endPos = new int[manager.getSpanCount()];manager.findFirstVisibleItemPositions(startPos);manager.findLastVisibleItemPositions(endPos);int[] range = findRange(startPos, endPos);return range;}private int[] findRange(int[] startPos, int[] endPos) {int start = startPos[0];int end = endPos[0];for (int i = 1; i < startPos.length; i++) {if (start > startPos[i]) {start = startPos[i];} }for (int i = 1; i < endPos.length; i++) {if (end < endPos[i]) {end = endPos[i];} }int[] res = new int[]{start, end};return res;} }复制代码 使用就是在我们的recylerview设置完数据以后,把recylerview传递进去就可以了。如下图: 我们统计到曝光量,拿到曝光view绑定的数据,就可以结合后面的view点击,来看下那些商品view的曝光量高,那些商品的转化率高。当然,这都是运营小伙伴的事了,我们只需要负责把曝光量统计到即可。 如果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
转载文章
...在下图位置,上传更新文件进行安装。 2.后面又看到一篇博客:https://blog.csdn.net/qq_36810544/article/details/115734795这篇博客比上边那篇早,应该是有参考吧,说是更新版本就行了,然并卵啊,可能是因为他是Ubuntu20.04,我是18.04的原因? 3.最后没招了,用IPMITOOL手动调节吧,参考了博客:https://blog.51cto.com/u_15072918/4392813 这篇博客也是更新后仍然无法识别3090(实际上我下的新版本的IDRAC是可以识别出有GPU的,但是还是显示不可用哇),所以就把IDRAC的版本回退到3.30以下使用IPMITOOL进行行手动调节转速了。 具体步骤如下: 将IDRAC回退到3.30版本,下载地址:https://www.dell.com/support/home/zh-cn/drivers/driversdetails 有的版本IDRAC可能需要把IMPI取消禁用,就在笔记本访问的IP地址的网页里修改即可,应该是在IDRAC设置中,没找到的话应该是不需要操作。 下载IPMITOOLWIN版本程序后解压,终端cd进入该文件夹,然后运行ipmitool命令: 关闭自动控制:ipmitool -I lanplus -U 用户名 -P 密码 -H 服务器地址 raw 0x30 0x30 0x01 0x00 设置风扇转速:ipmitool -I lanplus -U 用户名 -P 密码 -H 192.168.0.120 raw 0x30 0x30 0x02 0xff 0x64 ,最后两位对应16进制的风扇转速。64对应100%。 3.转速现在是可以手动调节了,但是每次都要执行终端命令太麻烦了,然后我写了一个小的gui界面,可以更方便地对风扇转速进行调节。界面如下,可以通过+和-增加和降低风速,也可以设定数值进行Set。 为了防止过热,最低风扇转速设置成了30%。需要注意:这个文件中IDRAC的IP必须是192.168.0.120才可以。 本文就先写到这里了,调节软件如果有需求的话可以后续上传,我在程序中也放了IPMITOOLWIN的文件,不需要再进行下载。有更好的解决方法也欢迎评论区分享。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42686221/article/details/125478351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 14:29:07
172
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl -I http://example.com
- 获取HTTP头部信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"