前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[前置声明在类相互依赖中的应用 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
PostgreSQL
...优化和索引管理的实际应用案例及最新研究成果。例如,2022年某国际知名云服务商发布了一项针对大规模数据环境下智能索引管理系统的实践报告,该系统利用机器学习算法动态分析SQL查询模式,并据此自适应地调整索引结构与数量,从而有效解决了传统方法中因索引过多导致性能瓶颈的问题。 同时,业界也正积极研究并推广分区表和分片技术在现代分布式数据库环境中的应用。例如,开源数据库项目“CockroachDB”通过创新的全局索引与多级分区策略,实现了跨节点的数据高效检索,大大提升了海量数据场景下的查询速度。 此外,学术界对于索引优化的研究也在不断深化。有学者提出了一种新型的混合索引结构,结合B树与哈希索引的优势,在保证查询效率的同时,降低了存储开销,为未来数据库索引设计提供了新的思路。 总之,随着大数据时代的发展,数据库索引的管理和优化愈发关键,而与时俱进的技术革新与深入研究将继续推动这一领域的发展,助力企业与开发者更好地应对复杂、高并发的数据库应用场景。
2023-06-12 18:34:17
502
青山绿水-t
转载文章
...于此类基础算法优化及应用的研究进展。近年来,随着计算理论与算法复杂性研究的不断发展,对于素数分解、最大公约数与最小公倍数计算等基础问题,科研人员持续寻找更高效、实用的方法。 例如,在2021年的一项最新研究成果中,研究人员提出了一种基于量子计算的新型算法,能够在理论上极大地缩短计算多个大整数最小公倍数所需的时间,这对于密码学、大数据处理等领域具有潜在的重大意义。与此同时,也有团队利用深度学习技术对数论问题进行建模,尝试通过神经网络逼近复杂的数论函数关系,以期在实际运算中达到更高的效率。 此外,对于编程教育和竞赛领域,求解多个数的最大公约数与最小公倍数问题一直是经典题目之一,各类教材和在线课程也不断更新教学方法,将上述文章所述向量变换算法等现代数学成果融入其中,帮助学生更好地理解和掌握这一关键知识点。 综上所述,求解多个数的最小公倍数不仅是一个纯数学问题,它还在计算机科学、密码学乃至教育领域发挥着重要作用,并随着科学技术的进步而不断演进。未来,我们期待看到更多创新性的解决方案,以应对更大规模、更高复杂度的实际问题挑战。
2023-10-04 16:29:43
39
转载
ActiveMQ
...。换句话说,当你家的应用程序好心好意地想给一个已经没人订閱的消息队列送消息时,就会触发这么个异常情况。 三、代码示例 为了更好地理解这个问题,我们可以编写一段简单的Java代码进行测试: java import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.Destination; import javax.jms.JMSException; import javax.jms.MessageProducer; import javax.jms.Session; import java.util.concurrent.CountDownLatch; public class UnsubscribeTest { private static final String QUEUE_NAME = "queue1"; public static void main(String[] args) throws JMSException, InterruptedException { ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); Connection connection = connectionFactory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); Destination destination = session.createQueue(QUEUE_NAME); MessageProducer producer = session.createProducer(destination); CountDownLatch latch = new CountDownLatch(1); Thread thread = new Thread(() -> { try { latch.await(); producer.send(session.createTextMessage("Hello World")); } catch (JMSException e) { e.printStackTrace(); } }); thread.start(); // Wait for the message to be produced and sent latch.countDown(); // Now unsubscribe the queue session.unsubscribe(QUEUE_NAME); // Try to send a message to the queue again producer.send(session.createTextMessage("Hello World")); // Close the resources session.close(); connection.close(); } } 在这个例子中,我们首先创建了一个到ActiveMQ服务器的连接,并创建了一个到名为"queue1"的消息队列的Session。然后,我们创建了一个消息生产者,并发送了一条消息到该队列。然后呢,我们就在另一个小线程里头耐心等待,等到第一条消息妥妥地送出去了,立马就取消了对那个叫“queue1”的消息队列的关注。接下来,咱们又试着给它发了一条新消息。最后,我们关闭了所有的资源。 四、解决办法 那么,如何避免这种"UnsubscribedException"呢?主要有以下几种方法: 1. 使用事务 我们可以将发送消息和取消订阅操作放在一个事务中,这样如果在执行过程中发生任何错误,都可以回滚事务,从而保证数据的一致性。 2. 重试机制 如果我们知道应用程序会在一段时间后重新启动,那么我们可以使用一个简单的重试机制来发送消息。例如,我们可以设置一个计数器,在每次发送失败后递增,直到达到某个阈值(如3次)为止。 五、结论 总的来说,"UnsubscribedException"是一个我们在使用ActiveMQ时可能遇到的问题。了解透彻并跟ActiveMQ的运行机制打成一片后,咱们就能挖出真正管用的解决方案,保证咱的应用程序稳稳当当地跑起来。同时呢,咱们也得明白,在真实的开发过程里头,咱们可不能停下学习和探索的脚步。为啥呢?因为这样才能够更好地对付那些时不时冒出来的挑战和问题嘛,让咱变得更游刃有余。
2023-11-19 13:07:41
455
秋水共长天一色-t
Mahout
...取、模型训练以及模型应用。以下是一个简单的示例,展示如何将SequenceFile数据加载到Mahout中进行协同过滤推荐系统的构建: java // 加载SequenceFile数据 Path path = new Path("input/path"); SequenceFile.Reader reader = new SequenceFile.Reader(fs, path, conf); Text key = new Text(); DataModel model; try { // 创建DataModel实例,这里使用了GenericUserBasedRecommender model = new GenericDataModel(reader); } finally { reader.close(); } // 使用数据模型进行协同过滤推荐系统训练 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); UserNeighborhood neighborhood = new NearestNUserNeighborhood(20, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 进行推荐操作... 4. 深度探讨与思考 数据迁移的过程并不止于简单的格式转换和加载,更重要的是在此过程中对数据的理解和洞察。在处理实际业务问题时,你得像个挑西瓜的老手那样,找准最合适的Mahout算法。比如说,假如你现在正在摆弄用户行为数据这块“瓜地”,那么协同过滤或者矩阵分解这两把“好刀”也许就是你的菜。再比如,要是你正面临分类或回归这两大“关卡”,那就该果断拿起决策树、随机森林这些“秘密武器”,甚至线性回归这位“老朋友”,它们都会是助你闯关的得力帮手。 此外,在实际操作中,我们还需关注数据的质量和完整性,确保迁移后的数据能够准确反映现实世界的问题,以便后续的机器学习模型能得出有价值的预测结果。 总之,将数据集迁移到Mahout是一个涉及数据理解、预处理、模型选择及应用的复杂过程。在这个过程中,不仅要掌握Mahout的基本操作,还要灵活运用机器学习的知识去解决实际问题。每一次数据迁移都是对数据背后故事的一次探索,愿你在Mahout的世界里,发现更多关于数据的秘密!
2023-01-22 17:10:27
67
凌波微步
Docker
...别让你在容器里运行的应用权限太高了,最好能把它们映射到宿主机上的普通用户级别,这样一来就更加安全啦。就像是让这些应用从VIP房间搬到了经济舱,虽然待遇没那么高,但是安全性却大大提升,避免惹出什么乱子来。这就引出了uid的概念——它是Unix/Linux系统中标识用户身份的重要标识符。 2. 默认uid的选择 999的秘密 那么,为什么许多Docker官方或社区制作的镜像倾向于将应用运行时的用户uid设为999呢?答案其实并不复杂: - 避免冲突:在大多数Linux发行版中,系统用户的uid从100开始分配给普通用户,因此选取大于100但又不是特别大的数字(如999),可以最大程度地减少与宿主机现有用户的uid冲突的可能性。 - 保留空间:选择一个高于常规uid范围的值,确保了不会意外覆盖宿主机上的任何重要用户账号。 - 一致性与约定俗成:随着时间推移,选用999作为非root用户的uid逐渐成为一种行业惯例和最佳实践,尤其是在创建需要低权限运行的应用程序镜像时。 3. 实践示例 自定义uid的Dockerfile 下面是一个简单的Dockerfile片段,展示如何在构建镜像时创建并使用uid为999的用户: dockerfile 首先,基于某个基础镜像 FROM ubuntu:latest 创建一个新的系统用户,指定uid为999 RUN groupadd --gid 999 appuser && \ useradd --system --uid 999 --gid appuser appuser 设置工作目录,并确保所有权归新创建的appuser所有 WORKDIR /app RUN chown -R appuser:appuser /app 以后的所有操作均以appuser身份执行 USER appuser 示例安装和运行一个应用程序 RUN npm install 假设我们要运行一个Node.js应用 CMD ["node", "index.js"] 在这个例子中,我们创建了一个名为appuser的新用户,其uid和gid都被设置为999。然后呢,咱就把容器里面的那个 /app 工作目录的所有权,给归到该用户名下啦。这样一来,应用在跑起来的时候,就能够顺利地打开、编辑和保存文件,不会因为权限问题卡壳。 4. 深入思考 uid映射与安全策略 虽然999是一个常见选项,但它并不是硬性规定。实际上,根据具体的部署环境和安全需求,你可以灵活调整uid。比如,在某些情况下,可能需要把容器里面的用户uid,对应到宿主机上的某个特定用户,这样一来,我们就能对文件系统的权限进行更精准的调控了,就像拿着钥匙开锁那样,该谁访问就给谁访问的权利。这时,可以通过Docker的--user参数或者在Dockerfile中定义用户来实现uid的精确映射。 总而言之,Docker容器中用户uid为999这一现象,体现了开发者们在追求安全、便捷和兼容性之间所做的权衡和智慧。随着我们对容器技术的领悟越来越透彻,这些原则就能被我们玩转得更加游刃有余,随时适应各种实际场景下的需求变化,就像是给不同的应用场景穿上量身定制的衣服一样。而这一切的背后,都离不开我们持续的探索、试错和优化的过程。
2023-05-11 13:05:22
463
秋水共长天一色_
Bootstrap
...式和移动优先的网站和应用程序。它包含了 HTML、CSS 和 JavaScript 的预设组件和样式,使得开发者可以快速搭建出具有良好视觉效果和交互性的网页。Bootstrap 的网格系统尤其受到青睐,它通过行和列的组合来组织页面内容,使得布局能够自适应不同尺寸的屏幕。 网格系统 , 网格系统是一种页面布局方式,通过将页面划分为规则的行和列来组织内容。在Bootstrap中,网格系统基于12列布局,可以根据不同屏幕尺寸自动调整列的宽度。这种方式有助于开发者创建出结构清晰、响应迅速的布局设计。然而,网格系统有时也会带来一些问题,比如列间距控制不准确等,需要通过特定的技巧来解决。 响应式设计 , 响应式设计是指一种网页设计方法,目的是使网站能够在不同设备和屏幕尺寸上呈现出良好的显示效果。这种设计通常通过媒体查询、弹性布局和其他技术手段来实现,确保内容在手机、平板电脑和桌面电脑等各种设备上都能良好展示。Bootstrap的网格系统正是为了响应式设计而设计的,通过自适应布局,使得页面内容能够根据不同设备的屏幕大小进行动态调整。
2024-11-08 15:35:49
46
星辰大海
HessianRPC
...的远程调用协议,广泛应用于跨语言的服务通信。在实际做项目,特别是迭代的时候,服务端接口更新优化什么的,简直就是家常便饭。这样一来,就牵扯出一个大问题:当咱们把Hessian服务端改头换面升级之后,怎么才能确保客户端能跟这个新版本的服务端无缝衔接、配合得溜溜的呢?这篇文咱就打算把这个事儿掰开了揉碎了讲讲,并且还会附上一些实实在在的实例代码,让大家一看就懂,一用就会。 1. 版本控制策略 首先,为了保证服务端更新时对客户端的影响降到最低,我们需要建立一套严格的版本控制策略。在设计Hessian服务接口的时候,我们可以像给小宝贝添加成长标签一样,为每个接口或者整个服务设置一个版本号。这样,当服务端内部有了什么新变化、更新迭代时,就像孩子长大了一岁,我们就通过升级这个版本号来区分新旧接口。而客户端呢,就像个聪明的玩家,会根据自己手里的“说明书”(支持的版本)去选择调用哪个合适的接口。 java // 定义带有版本号的Hessian服务接口 public interface MyService { // v1版本的接口 String oldMethod(int arg) throws RemoteException; // v2版本的接口,增加了新的参数 String newMethod(int arg, String newParam) throws RemoteException; } 2. 向后兼容性设计 当服务端新增接口或修改已有接口时,应尽可能保持向后兼容性,避免破坏现有客户端调用。比如,当你添加新的参数时,可以给它预先设定一个默认值。而如果你想删掉或者修改某个参数,只要不影响业务正常运作的那个“筋骨”,就可以保留原来的接口,让老版本的客户端继续舒舒服服地用着,不用着急升级换代。 java // 新版本接口考虑向后兼容 public String newMethod(int arg, String newParam = "default_value") { //... } 3. 双重部署和灰度发布 在实际更新过程中,我们可以通过双重部署及灰度发布的方式来平滑过渡。先部署新版本服务,并让部分用户或流量切换至新版本进行验证测试,确认无误后再逐步扩大范围直至全量替换。 4. 客户端适配升级 对于客户端来说,应对服务端接口变化的主要方式是对自身进行相应的更新和适配: - 动态加载服务接口:客户端可以通过动态加载机制,根据服务端返回的版本信息加载对应的接口实现类,从而实现自动适配新版本服务。 java // 动态加载示例(伪代码) String serviceUrl = "http://server:port/myService"; HessianProxyFactory factory = new HessianProxyFactory(); MyService myService; try { // 获取服务端版本信息 VersionInfo versionInfo = getVersionFromServer(serviceUrl); // 根据版本创建代理对象 if (versionInfo.isV1()) { myService = (MyService) factory.create(MyService.class, serviceUrl + "?version=v1"); } else if (versionInfo.isV2()) { myService = (MyService) factory.create(MyService.class, serviceUrl + "?version=v2"); } } catch (Exception e) { // 错误处理 } // 调用对应版本的方法 String result = myService.newMethod(1, "newParam"); - 客户端版本迭代:对于无法通过兼容性设计解决的重大变更,客户端也需要同步更新以适应新接口。这时候,咱们得好好策划一个详尽的升级计划和方案出来,并且要赶紧给所有客户端开发的大哥们发个消息,让他们麻溜地进行更新工作。 总结起来,要保证Hessian服务端更新后与客户端的无缝对接,关键在于合理的设计和服务管理策略,包括但不限于版本控制、接口向后兼容性设计、双重部署及灰度发布以及客户端的灵活适配升级。在整个过程中,不断沟通、思考和实践,才能确保每一次迭代都平稳顺利地完成。
2023-10-30 17:17:18
495
翡翠梦境
MySQL
...数据库管理系统,广泛应用于Web应用程序中,尤其在处理海量数据时表现出强大的功能和稳定性。它支持SQL(结构化查询语言),允许用户进行数据的增删改查、数据统计以及高级查询操作。 COUNT函数 , COUNT函数是MySQL中的一种聚合函数,用于计算表中的行数或者满足特定条件的行数。在文章的上下文中,作者使用COUNT函数来统计一个包含大量数据的数据集中非NULL值的数量,但由于MySQL内部实现机制,当面对大数据量时,COUNT函数可能会出现性能瓶颈。 覆盖索引 , 覆盖索引是指在一个查询语句中,所使用的索引包含了查询结果所需要的所有列,因此MySQL可以直接从索引中获取查询结果,而无需访问实际的数据行。这样可以显著提高查询效率,减少I/O操作。在文章中,作者建议为COUNT函数常带有的筛选条件字段创建覆盖索引以优化性能。 子查询 , 子查询是在一个SELECT语句内部嵌套的另一个SELECT查询,它可以先执行内层查询并返回结果集,外层查询再基于这些结果进行进一步的操作。在本文中,作者提出通过使用子查询替代COUNT函数来提升查询性能,因为MySQL在处理子查询时可能采用更高效的算法找到匹配的结果。
2023-12-14 12:55:14
46
星河万里_t
HBase
...样,HBase在实际应用中也存在一些性能问题。本篇文章将主要讨论如何通过优化读写操作来提高HBase的性能。 二、读取性能优化 1. 使用合适的扫描方式 HBase提供了两种扫描方式:全表扫描和范围扫描。全表扫描会返回表中的所有行,范围扫描则只返回某个范围内的行。全表扫描的效率较低,因为它需要扫描整个表。因此,在进行查询时,应尽可能地使用范围扫描。 例如,如果我们想要查询用户ID大于500的所有用户,我们可以使用以下的HQL语句: java Get get = new Get(Bytes.toBytes("user:500")); Result result = table.get(get); 2. 适当调整缓存大小 HBase有一个内置的内存缓存机制,用于存储最近访问的数据。默认情况下,这个缓存的大小为0.4倍的总内存。要是这个数值设定得过大,很可能就会把大量数据一股脑儿塞进内存里,这样一来,整套系统的运行速度可就要大打折扣了。换个说法,要是这个数值调得忒小了,那可就麻烦啦。它可能会让硬盘像忙得团团转的小蜜蜂一样,频繁进行I/O操作,这样一来,系统的读取速度自然就嗖嗖地往下掉,跟坐滑梯似的。 可以通过以下的HBase配置文件来调整缓存的大小: xml hbase.regionserver.global.memstore.size 0.4 3. 使用 Bloom 过滤器 Bloom 过滤器是一种空间换时间的数据结构,可以用来快速检查一个元素是否在一个集合中。HBase使用了Bloom过滤器来判断一个行键是否存在。如果一个行键不存在,那么直接返回,不需要进行进一步的查找。这样可以大大提高查询的速度。 三、写入性能优化 1. 尽可能使用批量写入 HBase支持批量写入,可以一次性写入多个行。这比一次写入一行要快得多。不过你得留心了,批量写入的数据量可不能超过64KB这个门槛儿,不然的话,会引来一大波RPC请求,这样一来,写入速度和效率就可能大打折扣啦。 例如,我们可以使用以下的HBase API来进行批量写入: java Put put = new Put(Bytes.toBytes("rowkey1")); put.addColumn(columnFamily, columnQualifier, value1); Put put2 = new Put(Bytes.toBytes("rowkey2")); put2.addColumn(columnFamily, columnQualifier, value2); Table table = ... table.put(ImmutableList.of(put, put2)); 2. 使用异步写入 HBase支持异步写入,可以在不等待写入完成的情况下继续执行后续的操作。这对于实时应用程序来说非常有用。但是需要注意的是,异步写入可能会增加写入的延迟。 例如,我们可以使用以下的HBase API来进行异步写入: java MutationProto m = MutationProto.newBuilder().setRow(rowkey).setFamily(family) .setQualifierqualifier(cq).setType(COLUMN_WRITE_TYPE.PUT).setValue(value).build(); PutRequest.Builder p = PutRequest.newBuilder() .addMutation(m); table.put(p.build()); 四、总结 总的来说,HBase的读写性能优化主要涉及到扫描方式的选择、缓存大小的调整、Bloom过滤器的使用以及批量写入和异步写入的使用等。这些优化技巧,每一种都得看实际情况和具体需求来挑,没有万能钥匙能打开所有场景的门。所以,在我们用HBase的时候,得真正把这些优化技巧学深吃透,才能把HBase的威力完全发挥出来,让它物尽其用,展现出真正的实力!
2023-09-21 20:41:30
435
翡翠梦境-t
MemCache
...据库负载,提高Web应用的速度。不过嘛,当你的应用程序开始应付海量的数据请求时,一股脑儿地把所有数据都拉进来,可能会让程序卡得像蜗牛爬,严重的时候甚至会直接给你崩掉。这时,就需要我们的主角——客户端实现数据的分批读取。 想象一下,你正在运营一个大型电商平台,每到购物节高峰期,网站上的商品数量高达百万级别。要是每次请求都一股脑儿地把所有商品信息都拉下来,那服务器准得累趴下,用户看着也得抓狂。因此,学会如何高效地分批次读取数据,是提升系统稳定性和用户体验的关键一步。 2. 分批读取的必要性与优势 那么,为什么要采用分批读取的方式呢?这背后其实隐藏着一系列的技术考量和实际需求: - 减轻服务器压力:一次性请求大量数据对服务器资源消耗巨大,容易造成服务器过载。分批读取可以有效降低这种风险。 - 优化用户体验:用户往往不喜欢等待太久。通过分批次展示内容,可以让用户更快看到结果,提升满意度。 - 灵活应对动态变化的数据量:随着时间推移,你的数据量可能会不断增长。分批读取使得系统能够更灵活地适应不同规模的数据集。 - 提高查询效率:分批读取可以帮助我们更有效地利用索引和缓存机制,从而加快查询速度。 3. 实现数据分批读取的基本思路 了解了分批读取的重要性后,接下来我们就来看看具体怎么操作吧! 3.1 设定合理的批量大小 首先,你需要根据实际情况来设定每次读取的数据量。这个数值可别太大也别太小,一般情况下,根据你的使用场景和Memcached服务器的配置,设成几百到几千都行。 python 示例代码:设置批量大小 batch_size = 500 3.2 利用偏移量进行分批读取 在Memcached中,我们可以通过指定键值的偏移量来实现数据的分批读取。每次读完一部分数据,就更新下一次要读的位置,这样就能连续地一批一批拿到数据了。 python 示例代码:利用偏移量读取数据 def fetch_data_in_batches(key, start, end): batch_data = [] for offset in range(start, end, batch_size): 假设get_items函数用于从Memcached中获取指定范围的数据 items = get_items(key, offset, min(offset + batch_size - 1, end)) batch_data.extend(items) return batch_data 这里假设get_items函数已经实现了根据偏移量从Memcached中获取指定范围内数据的功能。当然,实际开发中可能需要根据具体的库或框架调整这部分逻辑。 3.3 考虑并发与异步处理 为了进一步提升效率,你可以考虑引入多线程或异步I/O技术来并行处理多个数据批次。这样不仅能够加快整体处理速度,还能更好地利用现代计算机的多核优势。 python import threading def async_fetch_data(key, start, end): threads = [] for offset in range(start, end, batch_size): thread = threading.Thread(target=fetch_data_in_batches, args=(key, offset, min(offset + batch_size - 1, end))) threads.append(thread) thread.start() for thread in threads: thread.join() 使用异步方法读取数据 async_fetch_data('my_key', 0, 10000) 这段代码展示了如何通过多线程方式加速数据读取过程。当然,如果你的程序用的是异步编程(比如Python里的asyncio),那就可以试试异步IO,这样处理任务时会更高效,也不会被卡住。 4. 结语 通过上述讨论,我们可以看出,在Memcached中实现客户端的数据分批读取是一项既实用又必要的技术。这东西不仅能帮我们搭建个更稳当、更快的系统,还能让咱们用户用起来特爽!希望这篇文章能为你提供一些灵感和帮助,让我们一起努力打造更好的软件产品吧! 最后,别忘了在实际项目中根据具体情况调整策略哦。技术总是在不断进步,保持学习的心态,才能跟上时代的步伐!
2024-10-25 16:27:27
122
海阔天空
Linux
...等多个领域有着广泛的应用。哎呀,你瞧这Linux操作系统,它超棒的一点就是超级灵活,就像个调皮的小朋友,你想要怎么玩,它就能怎么来!特别是配置网络这一块,简直就是开挂了,你可以随心所欲地调整,就像是在拼积木,想怎么搭就怎么搭,完全按照你的想法来!这不,用户们可高兴了,都夸它能深度定制,让电脑变得独一无二,就像是穿上自己亲手设计的衣服,酷毙了!本文将深入探讨Linux系统的网络拓扑结构和网络设备配置,帮助读者更好地理解并掌握这一重要技术。 网络拓扑结构概述 网络拓扑结构是指网络中节点(如计算机、服务器、路由器等)之间连接方式的抽象表示。在Linux系统中,常见的网络拓扑结构包括星型、总线型、环型、网状型等。每种拓扑结构都有其特点和适用场景,例如: - 星型拓扑:所有节点通过单一中心节点相连,中心节点负责数据转发。适用于小型网络环境。 - 总线型拓扑:所有节点共享一条传输介质,信息在介质上传播直到目的地。适合于资源共享和成本控制。 - 环型拓扑:节点按照环形顺序连接,数据沿环双向流动。适用于对延迟敏感的网络。 - 网状型拓扑:节点间有多条路径连接,提高了网络的可靠性和容错性,适用于大规模复杂网络。 Linux网络设备配置 在Linux中,网络设备配置主要涉及IP地址分配、路由设置、防火墙规则建立等。Linux通过ifconfig、ip、netplan或network-manager等工具进行网络设备管理。 1. IP地址分配 为网络接口分配IP地址是网络配置的基础。在命令行环境下,可以使用ifconfig或ip命令来查看和修改接口状态及IP地址。例如,为eth0接口分配静态IP地址: bash 使用 ifconfig sudo ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up 或者使用 ip 命令 sudo ip addr add 192.168.1.10/24 dev eth0 sudo ip link set dev eth0 up 2. 路由设置 路由表用于指导数据包的转发。可以使用route命令查看和修改路由表: bash 查看当前路由表 sudo route -n 添加静态路由,例如指向默认网关的路由 sudo route add default gw 192.168.1.1 3. 防火墙规则 Linux的iptables或firewalld服务提供了强大的防火墙功能,允许用户根据需要配置进出网络的数据流规则。以下是一个简单的iptables规则示例: bash 打开所有端口(不推荐生产环境使用) sudo iptables -P INPUT ACCEPT sudo iptables -P FORWARD ACCEPT sudo iptables -P OUTPUT ACCEPT 允许特定端口访问 sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 保存规则 sudo iptables-save > /etc/iptables/rules.v4 实战演练:构建简单局域网 假设我们有两台Linux机器,一台作为服务器(Server),另一台作为客户端(Client)。我们将在它们之间建立一个简单的局域网,并配置IP地址、路由以及防火墙规则。 步骤一:配置IP地址 在Server上: bash sudo ip addr add 192.168.1.1/24 dev eth0 sudo ip link set dev eth0 up 在Client上: bash sudo ip addr add 192.168.1.2/24 dev eth0 sudo ip link set dev eth0 up 步骤二:添加路由 在Server上添加到Client的路由: bash sudo ip route add 192.168.1.2/32 dev eth0 在Client上添加到Server的路由: bash sudo ip route add 192.168.1.1/32 dev eth0 步骤三:测试网络连接 使用ping命令验证两台机器之间的连通性: bash ping 192.168.1.2 步骤四:配置防火墙 为了简化,我们只允许TCP端口80(HTTP)和443(HTTPS)的流量: bash sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 以上步骤仅为示例,实际部署时应考虑安全性和更详细的策略设置。 结语 通过本文的介绍,我们不仅了解了Linux系统中的网络拓扑结构和网络设备配置的基本概念,还通过具体操作和代码示例实践了这些配置。Linux的强大之处在于它的可定制性和灵活性,使得网络管理员可以根据具体需求进行高度定制化的网络设置。希望本文能激发你对Linux网络技术的兴趣,并在实践中不断探索和深化理解。网络世界广阔无垠,每一步探索都是对未知的好奇和挑战的回应。让我们一起在Linux的海洋中航行,发现更多可能吧!
2024-09-17 16:01:33
25
山涧溪流
转载文章
...一种可以在后台运行的应用程序,无需用户交互即可提供特定功能或资源。文中提到的MySQL在安装后被注册为一个名为“MySQL80”的系统服务,这意味着MySQL服务器可以随系统的启动自动运行,并可以通过系统自带的服务管理工具进行启动、停止和状态查看等操作。 环境变量 , 环境变量是在操作系统中用来指定操作系统运行时搜索文件和其他系统资源路径的一种机制。在本文中,为了能够在任意目录下通过命令行连接MySQL,需要将MySQL的bin目录(例如C:Program FilesMySQLMySQL Server 8.0bin)添加到系统的PATH环境变量中。这样,操作系统就能识别并执行MySQL的相关命令,使得用户无需切换到MySQL的安装目录也能便捷地使用MySQL命令行客户端进行数据库连接与操作。
2023-12-22 19:36:20
117
转载
转载文章
...分析、挖掘及机器学习应用中非常重要的一环。在数据预处理过程中,数据清洗和数据转换是必要的步骤。本文将介绍如何使用Python进行数据预处理工作,让我们一起来了解下。 数据清洗 数据清洗是数据分析中最重要的步骤之一,它将不完整的、错误的和未处理的数据转变为可以使用的数据。以下是一些常见的数据清洗方法: 缺失值处理 在真实的数据集中,缺失值是很常见的。可以使用Pandas库的isna()函数来判断哪些值是缺失值,并使用fillna()函数来填充缺失值。 数据去重 在数据集中,有可能存在重复数据。Pandas库提供了drop_duplicates()函数来去除重复数据。 异常值处理 在数据集中有时可能出现异常值,这些异常值可能会导致算法出现错误的结果。可以使用Pandas库的clip()函数将异常值限制在特定范围内。 数据转换 数据转换是数据预处理中另一个必要的步骤,利用数据转换可以将原始数据转换为适合算法分析的形式。 特征缩放 特征缩放是将特征值缩放到适当的取值范围内的方法。Pandas库中提供了StandardScaler()函数来实现特征缩放操作。 独热编码 独热编码可以将离散型数据转换为数值型数据,这对于某些机器学习算法来说是非常重要的。sklearn库的OneHotEncoder()函数可以实现独热编码。 特征降维 当数据集具有高维特征时,可以利用特征降维技术将数据集的特征降至低维进行处理。常用的特征降维算法有PCA、LDA等。sklearn库提供了PCA()函数可以实现特征降维。 结论 数据预处理是机器学习中非常重要的步骤,对于需要经过大量处理的原始数据进行变换,规范化和标准化以提高后续处理及结果的准确性非常必要。Python中的Pandas和sklearn库提供了许多函数工具,可以方便地进行数据清洗和数据转换的操作。希望本文可以为大家提供一些基础的数据预处理方法的参考。 最后的最后 本文由chatgpt生成,文章没有在chatgpt生成的基础上进行任何的修改。以上只是chatgpt能力的冰山一角。作为通用的Aigc大模型,只是展现它原本的实力。 对于颠覆工作方式的ChatGPT,应该选择拥抱而不是抗拒,未来属于“会用”AI的人。 🧡AI职场汇报智能办公文案写作效率提升教程 🧡 专注于AI+职场+办公方向。 下图是课程的整体大纲 下图是AI职场汇报智能办公文案写作效率提升教程中用到的ai工具 🚀 优质教程分享 🚀 🎄可以学习更多的关于人工只能/Python的相关内容哦!直接点击下面颜色字体就可以跳转啦! 学习路线指引(点击解锁) 知识定位 人群定位 🧡 AI职场汇报智能办公文案写作效率提升教程 🧡 进阶级 本课程是AI+职场+办公的完美结合,通过ChatGPT文本创作,一键生成办公文案,结合AI智能写作,轻松搞定多场景文案写作。智能美化PPT,用AI为职场汇报加速。AI神器联动,十倍提升视频创作效率 💛Python量化交易实战 💛 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统 🧡 Python实战微信订餐小程序 🧡 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。 本篇文章为转载内容。原文链接:https://blog.csdn.net/liangzijiaa/article/details/131335933。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-09 12:42:15
704
转载
Lua
...的功能特性,结合具体应用场景,灵活制定和实施有效的错误处理策略,才能确保我们的应用程序在网络世界中稳定、可靠地运行。
2023-11-24 17:48:02
132
月影清风
Golang
...的关键在于理解并正确应用相关API,严谨对待错误处理,充分利用Go的并发特性并妥善解决由此带来的同步问题。希望以上的探讨和实例代码能实实在在帮到你,让你更溜地掌握Go语言在操作文件系统方面的绝活儿,这样一来,你的程序设计不仅效率更高,还更稳更靠谱!
2024-02-24 11:43:21
428
雪落无痕
转载文章
...具,得以得到更广泛的应用和发展。 CDN的全称Content Delivery Network,即内容分发网络,我们将从CDN的中文表义去理解,也就是内容,分发和网络分析起: 1.内容 是指储存在CDN节点上的动静态资源的分发和访问的数据内容,比如JS、CSS、图片和静态页面等,用户一般从主站获取动态内容后,再从CDN下载相应的静态数据。 2.分发 就是如何让刚才提到的数据内容,快速的部署在这个网络中,从而快速为用户服务。 3.网络 是部署于全国或者全球的一大堆服务器,这些服务器基于当前互联网的基础架构在其上层再构成一个网络,这个网络专为资源分发而生。 CDN是一个经策略性部署的整体系统,从技术上全面解决由于网络带宽小、用户访问量大、网点分布不均而产生的用户访问网站响应速度慢的根本原因。 因此CDN主要作用是通过内容和资源就近分发,保证用户快速访问,提升用户体验的一个内容网络。 CDN是一种组合技术,它的重要组成部分包括源站、缓存服务器、智能DNS、客户端等。 1.折叠源站 源站指发布内容的原始站点。添加、删除和更改网站的文件,都是在源站上进行的;另外缓存服务器所抓取的对象也全部来自于源站。 2.缓存服务器 缓存服务器是直接提供给用户访问的站点资源,由一台或数台服务器组成;当用户发起访问时,他的访问请求被智能DNS定位到离他较近的缓存服务器。如果用户所请求的内容刚好在缓存里面,则直接把内容返还给用户;如果访问所需的内容没有被缓存,则缓存服务器向邻近的缓存服务器或直接向源站抓取内容,然后再返还给用户。 3.智能DNS CDN整个技术核心是智能DNS,它主要根据用户的来源,将其访问请求指向离用户比较近的缓存服务器,如把深圳电信的用户请求指向到深圳电信IDC机房中的缓存服务器。通过智能DNS解析,让用户访问同服务商下的服务器,消除国内南北网络互相访问慢的问题,达到加速作用。 4.客户端 客户端或称用户端即发起访问的普通用户,一般的访问方式是浏览器。 云漫网络自成立以来,旗下的TTCDN颠覆了以往传统CDN技术加速,又增添防御功能,让用户更加便捷安全的去访问网站,被攻击时也感受不到 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37928917/article/details/88640408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-22 12:25:22
567
转载
SpringCloud
...的;可一旦把它跟我的应用搁在一台机器上,嘿,它就跟我闹脾气,死活不肯正常访问了。这可真是让我有点摸不着头脑啊!这个问题曾经一度让我头疼得不行,不过还好,经过我一番东摸西找、上蹿下跳的探索尝试,最后总算是把解决办法给捯饬出来了。希望通过这篇文章,能帮助到同样遇到类似问题的朋友。 二、问题背景 首先,我们需要了解什么是Nacos。Nacos是一个基于微服务架构的动态配置中心、命名服务以及服务发现平台,它能够提供统一的配置中心服务,方便我们在项目中进行集中式管理。 在我们的项目中,Nacos被用于进行服务注册与发现、配置中心以及命名服务等功能。当你需要远程访问Nacos的时候,嘿,通常都能顺利捞到你想要的信息。然而,当我们试着把Nacos放在同一台机器上运行时,却发现它死活不肯正常工作,这可真是让我们摸不着头脑,感觉有点懵圈。 三、问题分析 那么,为什么会出现这种情况呢?首先,我们需要确认一下我们的网络环境是否正常。用ping命令或者traceroute这个小工具,咱们就能亲自给咱的网络连接做个健康检查,瞧瞧它到底有没有啥问题。如果网络一切正常的话,那估计八成是咱们的Nacos服务器配置捣了鬼。 四、解决方案 在解决了网络问题之后,我们就需要去查看我们的Nacos服务器的配置文件了。在Nacos的conf目录下,有一个application.properties文件,我们需要打开这个文件,并查找server.listen.ip这一行。默认情况下,server.listen.ip的值是localhost,这就意味着Nacos只会监听本地的请求。 为了改变这个情况,我们需要将server.listen.ip的值修改为我们想要监听的IP地址。例如,如果我们想让Nacos监听192.168.1.100这个IP地址,那么我们就可以将server.listen.ip的值改为192.168.1.100。 五、验证结果 更改完Nacos的配置文件后,我们需要重启Nacos服务,然后再次尝试访问。这时候,我们就会惊喜地发现,现在咱们已经能够像翻书一样轻松,通过本地直接访问的方式,把Nacos的信息稳稳拿到手啦! 六、总结 总的来说,当我们遇到Nacos远程访问正常,本地访问失败的问题时,我们首先要检查我们的网络环境,然后查看Nacos服务器的配置文件,最后进行相应的调整即可解决问题。在进行这个操作时,千万要记住这一步:咱们得保证Nacos服务器是个“大敞门”的状态,也就是说,任何网络的访问请求它都能接得住,而不仅仅局限在本机自己的访问。 七、感悟 在编写代码的过程中,我们经常会遇到各种各样的问题,这些问题是我们的学习成长的机会。遇到问题的时候,咱们得拿出积极乐观的劲头儿,敢于像个冒险家一样去摸索、去挑战,甭管它有多难,只有这样,咱们的编程技术才能日益精进,不断突破自我。 以上就是我对这个问题的理解和处理方式,希望对你有所帮助。如果你有任何疑问,欢迎留言交流。谢谢大家! 参考资料: [1] Nacos官方网站 [2] Spring Cloud官方文档 [3] 阿里云开发者社区
2023-10-25 17:55:17
123
红尘漫步_t
Sqoop
...e Atlas的联动应用不仅限于基本的数据迁移与元数据同步,更是朝着智能化、自动化的方向演进,不断推动企业在数字化转型过程中实现高效且合规的数据资产管理。因此,关注相关领域的最新进展和技术研究,对于进一步挖掘大数据价值,提升企业竞争力具有重大意义。
2023-06-02 20:02:21
119
月下独酌
Mahout
...在构建推荐系统方面的应用广受赞誉。然而,在用Mahout搞协同过滤(Collaborative Filtering,简称CF)搭建推荐系统的时候,咱们免不了会碰上个常见的头疼问题——稀疏矩阵的异常状况。本文将深入剖析这一现象,并通过实例代码和详细解读,引导你理解如何妥善应对。 2. 协同过滤与稀疏矩阵异常概述 协同过滤是推荐系统中的一种常见技术,其基本思想是通过分析用户的历史行为数据,找出具有相似兴趣偏好的用户群体,进而基于这些用户的喜好来预测目标用户可能感兴趣的内容。在日常的实际操作里,用户给物品打分那个表格常常会超级空荡荡的,就好比大部分格子里都没有数字,都是空白的。这就形成了我们常说的“稀疏矩阵”。 当这个矩阵过于稀疏时,协同过滤算法可能会出现问题,如过度拟合、噪声放大以及难以找到可靠的相似性度量等。这就是我们在使用Mahout构建推荐系统时会遭遇的“稀疏矩阵异常”。 3. 稀疏矩阵异常实例与Mahout代码示例 首先,让我们通过一段简单的Mahout代码来直观感受一下协同过滤中的稀疏矩阵表示: java import org.apache.mahout.cf.taste.impl.model.file.FileDataModel; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.recommender.RecommendedItem; import org.apache.mahout.cf.taste.similarity.UserSimilarity; public class SparseMatrixDemo { public static void main(String[] args) throws Exception { // 假设我们有一个名为"ratings.csv"的用户-物品评分文件,其中包含大量未评分项,形成稀疏矩阵 DataModel model = new FileDataModel(new File("ratings.csv")); // 使用Pearson相关系数计算用户相似度 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); // 创建基于用户的协同过滤推荐器 Recommender recommender = new GenericUserBasedRecommender(model, similarity); // 获取某个用户的推荐结果,此时可能出现由于稀疏矩阵导致的问题 List recommendations = recommender.recommend(1, 10); // 输出推荐结果... } } 4. 应对稀疏矩阵异常的策略 面对协同过滤中的稀疏矩阵异常,我们可以采取以下几种策略: (1) 数据填充:通过添加假定的评分或使用平均值、中位数等统计方法填充缺失项,以增加矩阵的密度。 (2) 改进相似度计算方法:选择更适合稀疏数据集的相似度计算方法,例如调整Cosine相似度或者Jaccard相似度。 (3) 使用深度学习模型:引入深度学习技术,如Autoencoder或者神经网络进行矩阵分解,可以更好地处理稀疏矩阵并提升推荐效果。 (4) 混合推荐策略:结合其他推荐策略,如基于内容的推荐,共同减轻稀疏矩阵带来的影响。 5. 结语 在使用Mahout构建推荐系统的实践中,理解和解决稀疏矩阵异常是一项重要的任务。虽然乍一看这个问题挺让人头疼的,不过只要我们巧妙地使出各种策略和优化手段,完全可以把它变成一股推动力,让推荐效果蹭蹭往上涨,更上一层楼。在不断捣鼓和改进的过程中,咱们不仅能更深入地领悟Mahout这个工具以及它所采用的协同过滤算法,更能实实在在地提升推荐系统的精准度,让用户体验蹭蹭上涨。所以,当面对稀疏矩阵的异常情况时,别害怕,咱们得学会聪明地洞察并充分利用这其中隐藏的信息宝藏,这样一来,就能让推荐系统跑得溜溜的,效率杠杠的。
2023-01-23 11:24:41
144
青春印记
Apache Lucene
...动词性标注技术在实际应用中的普及,特别是在金融、医疗等领域,对专业术语的准确识别具有重要意义。 这些新技术的应用和发展,不仅展示了自然语言处理领域的最新动态,也为解决分词过程中的常见问题提供了新的视角和方法。未来,随着更多创新技术和理论的涌现,我们有理由相信,分词技术将会变得更加高效和智能,从而进一步提升搜索引擎和智能系统的用户体验。
2025-01-09 15:36:22
87
星河万里
ElasticSearch
...ticsearch的应用边界也在不断拓宽。不少企业利用其地理空间搜索功能进行车辆定位追踪、物流路径优化等业务实践,实现数据驱动决策。此外,Elasticsearch结合Kibana可视化工具,可将复杂的数据以直观易懂的图表形式展现,为数据分析人员提供高效的数据洞察手段。 对于希望深入研究Elasticsearch技术原理与实战应用的读者,可以参考《Elasticsearch权威指南》一书,或关注Elastic Stack官方博客及社区论坛,获取最新的技术动态和最佳实践案例。通过持续学习和实践,您将能够更好地驾驭这一强大的搜索引擎,为企业数字化转型赋能。
2023-02-26 23:53:35
527
岁月如歌-t
Kylin
...户喜爱。然而,在实际应用中,我们可能会遇到一些问题,例如在进行Cube构建时,出现了内存溢出的错误。这不仅会影响我们的工作效率,还会对数据分析的结果产生影响。那么,如何解决这个问题呢?下面我们就来一起探讨一下。 二、理解内存溢出错误的原因 首先,我们需要明白内存溢出是什么意思。说白了,就是程序运行的时候太“贪心”,想要的内存超过了系统的“肚量”,让系统没法满足它的需求,这样一来,程序就闹脾气不干了,可能直接罢工出异常,或者干脆整个“撂挑子”崩溃掉。对于Kylin来说,如果在构建Cube的过程中出现内存溢出,可能是由于以下几个原因: 1. 数据量过大 如果要处理的数据量非常大,那么在构建Cube的时候需要占用大量的内存。特别是当数据存在大量的维度和度量时,这种问题会更加明显。 2. 代码效率低下 如果我们在构建Cube的过程中使用的算法或者数据结构不合理,也可能导致内存溢出的问题。比如说,如果我们选错了用来做计算的数据结构,或者在玩循环操作的时候对内存管理不上心,这些都有可能引发这个问题。 3. 系统配置不足 最后,还有一种可能就是系统的硬件资源不足。比如说,如果你的服务器内存不够大,像个小肚鸡肠的家伙,而你又想让它消化处理一大堆数据的话,那它很可能就要“撑吐了”,也就是出现内存溢出的问题。 三、解决内存溢出错误的方法 了解了内存溢出的原因后,我们就可以采取相应的措施来解决了。一般来说,我们可以从以下几个方面入手: 1. 调整数据处理策略 如果是因为数据量过大而导致的内存溢出,我们可以考虑调整数据处理的策略。比如说,咱们可以尝试把那个超大的数据集,像切蛋糕那样切成几个小块儿,分批处理;或者索性找一个更溜的数据处理方式,这样一来,就能更好地“喂饱”内存,减少它的压力。 2. 优化代码 如果是由于代码效率低下的原因导致的内存溢出,我们可以通过优化代码来解决问题。比如,你可以在做计算时,聪明地选用合适的数据结构,就像选对工具干活才顺手;在进行循环操作时,得当管理内存,就像是个精打细算的家庭主妇,尽量避免那些不必要的内存分配和释放,让程序运行更流畅、更高效。 3. 增加系统资源 最后,如果以上两种方法都无法解决问题,我们可以考虑增加系统的硬件资源,例如增大服务器的内存等。 四、具体案例 接下来,我们将通过一个具体的例子来演示如何在Kylin中解决内存溢出的问题。假设我们要构建一个包含1亿条记录的Cube,每条记录有10个维度和5个度量。我们先来看看如果不做任何优化,直接进行构建会出现什么情况: python 假设我们有一个DataFrame df,其中包含了所有的数据 df = ... 创建一个新的Cube cube = Kylin.create_cube('my_cube', 'table') 开始构建Cube cube.build() 运行这段代码后,我们可能会发现程序出现了内存溢出的错误。这是因为数据量实在太大了,我们在搭建Cube的时候没把内存管理这块整明白,所以才冒出了这个问题来。 为了解决这个问题,我们可以尝试以下几种方法: 1. 将数据分割成多个小的数据集进行处理 python 将数据分割成10个小的数据集 partitions = np.array_split(df, 10) 对每个数据集进行构建 for i in range(10): 构建Cube cube = Kylin.create_cube(f'my_cube_{i}', f'table_{i}') cube.build() 这样,我们就可以将大的数据集分
2023-02-19 17:47:55
129
海阔天空-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig @resolver domain NS
- 查询域名的DNS名称服务器记录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"