前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[长期运行Shell脚本的内存消耗控制]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HBase
...e 节点上,看看它的内存用得怎么样,GC 日志里有没有啥问题之类的。 示例代码: java import javax.management.MBeanServer; import javax.management.ObjectName; public class HBaseJMXExample { public static void main(String[] args) throws Exception { MBeanServer mbs = ManagementFactory.getPlatformMBeanServer(); ObjectName name = new ObjectName("Hadoop:service=HBase,name=Master,sub=MasterStatus"); Integer load = (Integer) mbs.getAttribute(name, "AverageLoad"); System.out.println("当前HBase Master的平均负载:" + load); } } 这段代码展示了如何通过Java程序读取HBase Master的负载信息。虽然看起来有点复杂,但只要理解了基本原理,后续操作就简单多了! --- 3. 第二步 深入分析——聚焦热点问题 当我们拿到整体性能数据后,接下来就需要深入分析具体的问题所在。这里我建议大家按照以下几个方向逐一排查: 3.1 Region分布不均怎么办? 如果发现某些RegionServer的压力过大,而其他节点却很空闲,这可能是由于Region分布不均造成的。解决方法很简单,调整负载均衡策略即可。 示例代码: bash hbase shell balance_switch true 上面这条命令会开启自动负载均衡功能。当然,你也可以手动执行balancer命令强制进行一次平衡操作。 3.2 GC时间过长怎么办? GC时间过长往往意味着内存不足。这时候你需要检查HBase的堆内存设置,并适当增加Xmx参数值。 示例代码: xml hbase.regionserver.heapsize 8g 将heapsize调大一些,看看是否能缓解GC压力。 --- 4. 第三步 实战演练——真实案例分享 为了让大家更直观地感受到性能优化的过程,我来分享一个真实的案例。有一天,我们团队收到用户的吐槽:“你们这个查询也太慢了吧?等得我花都谢了!”我们赶紧查看了一下情况,结果发现是RegionServer上某个Region在搞事情,一直在上演“你进我也进”的读写冲突大戏,把自己整成了个“拖油瓶”。 解决方案: 1. 首先,定位问题区域。通过以下命令查看哪些Region正在发生大量读写: sql scan 'hbase:metrics' 2. 然后,调整Compaction策略。如果发现Compaction过于频繁,可以尝试降低触发条件: xml hbase.hregion.majorcompaction 86400000 最终,经过一系列调整后,查询速度果然得到了显著提升。这种成就感真的让人欲罢不能! --- 5. 结语 保持好奇心,不断学习进步 检查HBase集群的性能并不是一件枯燥无味的事情,相反,它充满了挑战性和乐趣。每次解决一个问题,都感觉是在玩拼图游戏,最后把所有碎片拼在一起的时候,那成就感真的太爽了,简直没法用语言形容! 最后,我想说的是,无论你是刚入门的新手还是经验丰富的老手,都不要停止学习的步伐。HBase的技术栈非常庞大,每一次深入研究都会让你受益匪浅。所以,让我们一起努力吧!💪 希望这篇文章对你有所帮助,如果你还有任何疑问,欢迎随时来找我交流哦~
2025-04-14 16:00:01
63
落叶归根
Spark
...遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
转载文章
...128M HDFS的shell操作(重点) 基本语法 hadoop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
276
转载
Go Gin
...了Go环境,那么只需运行以下命令即可: bash go get -u github.com/gin-gonic/gin 接下来,我们来写一个最简单的HTTP服务程序: go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() r.GET("/ping", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{ "message": "pong", }) }) r.Run(":8080") // 启动服务器监听8080端口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
Mongo
...适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
148
柳暗花明又一村
转载文章
...i.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
483
转载
转载文章
...优化了RCU的性能和内存利用率,并针对大规模并发环境下的宽限期处理逻辑进行了改进,显著降低了锁竞争,提升了系统整体响应速度。 在实际应用场景上,Google开源项目BPF(Berkeley Packet Filter)利用RCU机制实现了高效的跟踪和分析工具,使得网络数据包过滤、性能监控等功能能够在不影响主线程性能的前提下实现近乎实时的数据读取与更新。 另外,知名计算机科学家Paul E. McKenney于2022年发表了一篇关于RCU最新进展和技术挑战的深度论文,其中深入剖析了RCU在未来多核处理器架构下的扩展性问题以及可能的解决方案。他强调,在面对日益复杂的硬件环境时,RCU机制需要不断演进以适应更高级别的并发控制需求。 同时,随着云计算和大数据技术的发展,RCU在分布式存储系统中的作用也逐渐凸显。例如,Ceph文件系统通过借鉴RCU思想,设计出适用于自身场景的读写同步算法,有效提高了大规模集群环境下的数据一致性保障能力。 综上所述,RCU作为Linux内核中不可或缺的同步原语,其理论研究和实践应用都在与时俱进,为现代操作系统及分布式系统的高效稳定运行提供了有力支撑。未来,我们有理由期待更多基于RCU机制的创新技术和解决方案涌现,持续推动软件工程领域的发展进步。
2023-09-25 09:31:10
105
转载
Tornado
...提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
DorisDB
...的DorisDB实例运行在一个资源有限的环境中,某天,当你试图插入大量数据时,系统提示磁盘空间不足。 问题浮现:尽管你已经确保了网络连接稳定,但写入仍然失败。 解决方案:增加磁盘空间是显而易见的解决方法,但这需要时间和成本。哎呀,兄弟,你得知道,咱们手头的空间那可是个大问题啊!要是想在短时间内搞定它,我这儿有个小妙招给你。首先,咱们得做个大扫除,把那些用不上的数据扔掉。就像家里大扫除一样,那些过时的文件、照片啥的,该删就删,别让它占着地方。其次呢,咱们可以用更牛逼的压缩工具,比如ZIP或者RAR,它们能把文件压缩得更小,让硬盘喘口气。这样一来,不仅空间大了,还能节省点资源,挺划算的嘛!试试看,说不定你会发现自己的设备运行起来比以前流畅多了!嘿,兄弟!你听说过 DorisDB 的分片和分布式功能吗?这玩意儿超级厉害!它就像个大仓库,能把咱们的数据均匀地摆放在多个小仓库里(那些就是节点),这样不仅能让数据更高效地存储起来,还能让我们的系统跑得更快,用起来更顺畅。试试看,保管让你爱不释手! 第四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
122
醉卧沙场
Javascript
...了移动端设备的能耗和内存占用,得到了用户的普遍好评。 与此同时,Google Chrome团队也在最新版本中加强了对AbortError的支持,新增了一项名为“智能取消”的功能。这项功能可以根据用户的操作习惯动态调整未完成请求的优先级,从而提升整体浏览体验。例如,在用户快速切换页面时,系统会自动取消低优先级的任务,确保核心功能的流畅运行。这种技术不仅减少了资源浪费,还大幅缩短了页面加载时间。 从技术角度来看,AbortError的应用不仅仅局限于前端开发。在后端服务中,通过结合WebSocket和AbortSignal,开发者可以实现更高效的实时通信协议。例如,某知名在线教育平台利用这一特性,成功将课堂互动延迟从原来的500毫秒降低到100毫秒以下,极大改善了师生间的协作效率。 此外,随着《通用数据保护条例》(GDPR)在全球范围内的实施,AbortError也被赋予了新的法律意义。在涉及用户隐私的数据传输过程中,合理运用AbortError可以帮助企业更好地遵守法规要求,避免因违规操作而导致的巨额罚款。例如,某跨国科技公司在其云存储服务中引入了基于AbortError的权限管理系统,确保敏感信息在未经授权的情况下无法被访问或下载。 总之,AbortError作为现代Web开发的重要组成部分,正逐步渗透到各个领域。无论是提升用户体验、优化系统性能,还是保障数据安全,它都展现出了巨大的潜力。未来,随着更多创新应用场景的涌现,相信AbortError将在数字世界中发挥更大的作用。
2025-03-27 16:22:54
106
月影清风
转载文章
... 给容器和Pod分配内存资源 1 Before you begin 2 创建一个命名空间 3 配置内存申请和限制 4 超出容器的内存限制 5 配置超出节点能力范围的内存申请 6 内存单位 7 如果不配置内存限制 8 内存申请和限制的原因 9 清理 这篇教程指导如何给容器分配申请的内存和内存限制。我们保证让容器获得足够的内存 资源,但是不允许它使用超过限制的资源。 Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube. 你的集群里每个节点至少必须拥有300M的内存。 这个教程里有几个步骤要求Heapster , 但是如果你没有Heapster的话,也可以完成大部分的实验,就算跳过这些Heapster 步骤,也不会有什么问题。 检查看Heapster服务是否运行,执行命令: kubectl get services --namespace=kube-system 如果Heapster服务正在运行,会有如下输出: NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGEkube-system heapster 10.11.240.9 <none> 80/TCP 6d 创建一个命名空间 创建命名空间,以便你在实验中创建的资源可以从集群的资源中隔离出来。 kubectl create namespace mem-example 配置内存申请和限制 给容器配置内存申请,只要在容器的配置文件里添加resources:requests就可以了。配置限制的话, 则是添加resources:limits。 本实验,我们创建包含一个容器的Pod,这个容器申请100M的内存,并且内存限制设置为200M,下面 是配置文件: memory-request-limit.yaml apiVersion: v1kind: Podmetadata:name: memory-demospec:containers:- name: memory-demo-ctrimage: vish/stressresources:limits:memory: "200Mi"requests:memory: "100Mi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在这个配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
494
转载
Apache Lucene
...款开源的全文检索库,长期以来在文本检索领域扮演着核心角色。本文旨在深入探讨Apache Lucene在现代搜索引擎架构中的地位、面临的挑战及未来的发展趋势。 当前应用与优势 Apache Lucene因其高效、可扩展性和灵活性,被广泛应用于各类搜索引擎和大数据处理系统中。它不仅支持多种语言的分词和索引构建,还能提供强大的查询解析和匹配算法,使得在大规模数据集上的实时搜索成为可能。此外,Lucene的社区活跃度高,持续更新与优化,使其在处理复杂查询、支持多语言和适应不同应用场景方面具有显著优势。 面临的挑战 尽管Apache Lucene表现突出,但随着技术的快速发展和用户需求的多样化,它也面临着一些挑战。首先,随着数据规模的不断扩大,如何在保持高性能的同时降低资源消耗成为关键。其次,面对实时性要求越来越高的应用场景,如何实现快速响应和低延迟成为了亟待解决的问题。再者,随着AI和机器学习技术的融合,如何将这些先进算法集成到Lucene中,提升检索精度和智能化水平,也是未来研究的重点。 未来发展展望 展望未来,Apache Lucene有望在以下几个方向上实现突破: 1. 性能优化与资源管理:通过算法优化和硬件加速技术,进一步提高处理速度和资源利用率,满足大流量、高并发场景的需求。 2. 集成AI与机器学习:引入深度学习、自然语言处理等AI技术,增强检索系统的智能性和个性化推荐能力。 3. 跨语言与多模态搜索:随着全球化的进程加快,支持更多语言的处理和多模态(文本、图像、语音等)搜索将成为重要发展方向。 4. 隐私保护与安全:在数据安全和个人隐私日益受到重视的背景下,开发基于差分隐私、同态加密等技术的检索系统,保障用户数据的安全性。 结语 Apache Lucene作为一款成熟且仍在不断演进的全文检索库,在现代搜索引擎架构中发挥着不可或缺的作用。面对未来的挑战,它不仅需要持续优化现有功能,还需不断创新,以适应不断变化的市场需求和技术发展趋势。通过融合前沿技术,Apache Lucene有望在未来的信息检索领域中继续引领创新,为用户提供更高效、更智能、更安全的搜索体验。 --- 这篇“延伸阅读”旨在讨论Apache Lucene在当前及未来可能面临的技术挑战与发展方向,强调其在现代搜索引擎架构中的核心地位,并提出可能的解决方案和展望。通过深入分析当前应用优势、面临的挑战及未来发展趋势,为读者提供了一个全面而前瞻性的视角。
2024-07-25 00:52:37
391
青山绿水
转载文章
...导语: C++指针的内存管理相信是大部分C++入门程序员的梦魇,受到Boost的启发,C++11标准推出了智能指针,让我们从指针的内存管理中释放出来,几乎消灭所有new和delete。既然智能指针如此强大,今天我们来一窥智能指针的原理以及在多线程操作中需要注意的细节。 智能指针的由来 在远古时代,C++发明了指针这把双刃剑,既可以让程序员精确地控制堆上每一块内存,也让程序更容易发生crash,大大增加了使用指针的技术门槛。因此,从C++98开始便推出了auto_ptr,对裸指针进行封装,让程序员无需手动释放指针指向的内存区域,在auto_ptr生命周期结束时自动释放,然而,由于auto_ptr在转移指针所有权后会产生野指针,导致程序运行时crash,如下面示例代码所示: auto_ptr<int> p1(new int(10));auto_ptr<int> p2 = p1; //转移控制权p1 += 10; //crash,p1为空指针,可以用p1->get判空做保护 因此在C++11又推出了unique_ptr、shared_ptr、weak_ptr三种智能指针,慢慢取代auto_ptr。 unique_ptr的使用 unique_ptr是auto_ptr的继承者,对于同一块内存只能有一个持有者,而unique_ptr和auto_ptr唯一区别就是unique_ptr不允许赋值操作,也就是不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
转载文章
...改或添加内容。当容器运行时,最上层为可读写层,其下的只读层则提供了容器的基础环境和应用依赖。这样设计的优点在于能够实现高效的存储和快速的部署,因为多个容器可以共享底层的只读层,同时保持各自的独立性和可变性。 进程隔离空间(Process Isolation Space) , 在Docker中,进程隔离空间是指为容器内的进程提供的一种资源隔离机制,确保容器内部的进程与主机和其他容器的进程互不影响。Docker利用操作系统级别的功能如控制组(cgroups)和命名空间(namespaces)来实现这一目标。每个运行态容器都有自己的独立进程空间,限制了它们对CPU、内存、网络、磁盘等资源的访问,并且让容器内的进程看起来像是在独立的操作系统环境中运行。 镜像层(Image Layer) , 在Docker镜像结构中,镜像层是构成镜像的基本单元。每一个镜像层代表了对文件系统的一次修改或新增内容,且每一层都包含相应的元数据以及指向其父层的指针。镜像层之间采用堆叠的方式组合在一起,形成最终的镜像。这种分层的设计使得镜像能够高效地复用已有的层,并且便于跟踪和理解镜像的历史变更记录。在创建容器时,基于镜像最上面加上一层可读写层,从而保证了容器具有独立的存储空间,可以在不改变镜像本身的情况下进行持久化存储或者动态调整。
2023-11-26 15:47:20
538
转载
转载文章
...Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
306
转载
Docker
...“容器”,然后轻松地运行在任何支持Docker的环境中。 举个例子吧,假如你想在一个全新的服务器上安装WordPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
ZooKeeper
...了约40%的系统资源消耗。此外,腾讯云也推出了类似的解决方案,其推出的TSeer组件同样基于ZooKeeper,专注于提供低延迟的服务发现和负载均衡能力。这些新技术的出现,不仅为企业提供了更多选择,也为ZooKeeper的未来发展注入了新活力。值得注意的是,尽管这些优化方案效果显著,但在实际应用中仍需结合自身业务特点进行定制化调整。例如,某些企业可能需要进一步增强SOFARegistry的容错能力,而另一些企业则可能需要TSeer提供的更细粒度的流量控制功能。总之,随着分布式系统规模的不断扩大,如何高效利用现有工具并持续创新将成为未来发展的关键。希望这些前沿技术和最佳实践能为读者带来启发,助力企业在数字化转型中抢占先机。
2025-03-16 15:37:44
10
林中小径
转载文章
...抓取网页数据的程序或脚本,它通过模拟人类浏览器的行为,遵循URL链接在网络中遍历,并使用HTML解析库(如Jsoup)对抓取到的页面内容进行解析和信息抽取。在本文语境中,作者通过Java编程语言实现了一个网络爬虫项目,用于从彼岸桌面网站上爬取各类分类图片。 Jsoup , Jsoup是一个用Java编写的开源库,专注于处理(解析、操作、清洗)HTML文档。它提供了一套基于DOM、CSS选择器以及便捷API的方法,使得开发者能够轻松地提取和操作HTML中的数据。在本文中,Jsoup被用来解析彼岸桌面网站的HTML结构,定位并获取图片链接等所需信息。 DOM解析 , DOM(Document Object Model,文档对象模型)是一种跨平台、与语言无关的接口,用于表示XML和HTML等格式文档的标准信息模型。DOM解析是指将整个HTML文档加载到内存中,形成一个树状结构(节点树),允许开发者通过编程方式动态访问和修改文档的内容、结构及样式。在文章所述的网络爬虫项目中,利用Jsoup进行DOM解析,以识别并提取目标网页上的图片链接及其他相关信息。
2023-06-12 10:26:04
130
转载
转载文章
...权指令,想要染指内核运行时,中断会把程序强行切断,内核从中断中重新获得CPU的执行权限。 虽说恶意用户程序难以攻击内核,但是系统当前还存在一个漏洞,使得恶意程序能取攻击另一个程序,我们看看这个问题到底是怎么实现的。我们先在内核C语言部分做简单修改,把原来的cmd_hlt函数改为cmd_execute_program: nt show_pos = 179;void cmd_execute_program(char file) {io_cli();struct Buffer appBuffer = (struct Buffer)memman_alloc(memman, 16);struct TASK task = task_now();task->pTaskBuffer = appBuffer;file_loadfile(file, appBuffer);struct SEGMENT_DESCRIPTOR gdt =(struct SEGMENT_DESCRIPTOR )get_addr_gdt();//select is multiply of 8, divided by 8 get the original valueint code_seg = 21 + (task->sel - first_task_cons_selector) / 8;//change hereint mem_seg = 30 + (task->sel - first_task_cons_selector) / 8;//22;char p = intToHexStr(mem_seg);showString(shtctl, sht_back, 0, show_pos, COL8_FFFFFF, p); show_pos += 16;set_segmdesc(gdt + code_seg, 0xfffff, (int) appBuffer->pBuffer, 0x409a + 0x60);//new memory char q = (char ) memman_alloc_4k(memman, 641024);appBuffer->pDataSeg = (unsigned char)q;set_segmdesc(gdt + mem_seg, 64 1024 - 1,(int) q ,0x4092 + 0x60);task->tss.esp0 = 0;io_sti();start_app(0, code_seg8,641024, mem_seg8, &(task->tss.esp0));io_cli();memman_free_4k(memman,(unsigned int) appBuffer->pBuffer, appBuffer->length);memman_free_4k(memman, (unsigned int) q, 64 1024);memman_free(memman,(unsigned int)appBuffer, 16);task->pTaskBuffer = 0;io_sti();}void console_task(struct SHEET sheet, int memtotal) {....for(;;) { ....else if (i == KEY_RETURN) {....} else if (strcmp(cmdline, "hlt") == 1) {//change herecmd_execute_program("abc.exe");}....}...} 原来的cmd_hlt函数默认加载并执行软盘中的abc.exe程序,现在我们把cmd_hlt改名为cmd_execute_program,并且函数需要传入一个字符串,用于表明要加载执行的程序名字。在该函数的代码实现中,我们使用showString函数把被加载执行的用户进程数据段所对应的全局描述符号给显示到桌面上,上面代码执行后情况如下: 我们看到,在控制台中执行hlt命令后,内核加载了用户进程,同时在控制台下方输出了一个字符串,也就是0x1E,这个数值对应的就是当前运行用户进程其数据段对应的全局描述符号。一旦有这个信息之后,另一个进程就可以有机可乘了。 接着我们在本地目录创建一个新文件叫crack.c,其内容如下: void main() {char p = (char)0x123;p[0] = 'c';p[1] = 'r';p[2] = 'a';p[3] = 'c';p[4] = 'k';p[5] = 0;} 它的目的简单,就是针对内存地址0x123处写入字符串”crack”.接着我们修改一下makefile,使得内核编译时,能把crack.c编译成二进制文件: CFLAGS=-fno-stack-protectorckernel : ckernel_u.asm app_u.asm crack_u.asm cp ckernel_u.asm win_sheet.h win_sheet.c mem_util.h mem_util.c write_vga_desktop.c timer.c timer.h global_define.h global_define.c multi_task.c multi_task.h app_u.asm app.c crack_u.asm crack.c makefile '/media/psf/Home/Documents/操作系统/文档/19/OS-kernel-win-sheet/'ckernel_u.asm : ckernel.o....crack_u.asm : crack.o./objconv -fnasm crack.o crack_u.asmcrack.o : crack.cgcc -m32 -fno-stack-protector -fno-asynchronous-unwind-tables -s -c -o crack.o crack.c 然后我们在本地目录下,把api_call.asm拷贝一份,并命名为crack_call.asm,后者内容与前者完全相同,只不过稍微有那么一点点改变,例如: BITS 32mov AX, 30 8mov DS, axcall mainmov edx, 4 ;返回内核int 02Dh.... 这里需要注意,语句: mov AX, 30 8mov DS, ax 其中30对应的就是前面显示的0x1E,这两句汇编的作用是,把程序crack的数据段设置成下标为30的全局描述符所指向的内存段一致。这就意味着crack进程所使用的数据段就跟hlt启动的进程所使用的数据段一致了!于是在crack.c中,它对内存地址为0x123的地方写入字符串”crack”,那就意味着对hlt加载用户进程的内存空间写入对应字符串! 完成上面代码后,我们在java项目中,增加代码,一是用来编译crack进程,而是把crack代码写入虚拟磁盘。在OperatingSystem.java中,将代码做如下添加: public void makeFllopy() {writeFileToFloppy("kernel.bat", false, 1, 1);....header = new FileHeader();header.setFileName("crack");header.setFileExt("exe");file = new File("crack.bat");in = null;try {in = new FileInputStream(file);long len = file.length();int count = 0;while (count < file.length()) {bbuf[count] = (byte) in.read();count++;}in.close();}catch(IOException e) {e.printStackTrace();return;}header.setFileContent(bbuf);fileSys.addHeader(header);....}public static void main(String[] args) {CKernelAsmPrecessor kernelPrecessor = new CKernelAsmPrecessor();kernelPrecessor.process();kernelPrecessor.createKernelBinary();CKernelAsmPrecessor appPrecessor = new CKernelAsmPrecessor("hlt.bat", "app_u.asm", "app.asm", "api_call.asm");appPrecessor.process();appPrecessor.createKernelBinary();CKernelAsmPrecessor crackPrecessor = new CKernelAsmPrecessor("crack.bat", "crack_u.asm", "crack.asm", "crack_call.asm");crackPrecessor.process();crackPrecessor.createKernelBinary();OperatingSystem op = new OperatingSystem("boot.bat");op.makeFllopy();} 在main函数中,我们把crack.c及其附属汇编文件结合在一起,编译成二进制文件crack.bat,在makeFllopy中,我们把编译后的crack.bat二进制数据读入,并把它写入到虚拟磁盘中,当系统运行起来后,可以把crack.bat二进制内容作为进程加载执行。 完成上面代码后,回到内核的C语言部分,也就是write_vga_desktop.c做一些修改,在kernel_api函数中,修改如下: int kernel_api(int edi, int esi, int ebp, int esp,int ebx, int edx, int ecx, int eax) {....else if (edx == 14) {sheet_free(shtctl, (struct SHEET)ebx);//change herecons_putstr((char)(task->pTaskBuffer->pDataSeg + 0x123));}....}void console_task(struct SHEET sheet, int memtotal) {....for(;;) {....else if (i == KEY_RETURN) {....else if (strcmp(cmdline, "crack") == 1) {cmd_execute_program("crack.exe");}....}....} 在kernel_api中,if(edx == 14)对应的api调用是api_closewin,也就是当用户进程关闭窗口时,我们把进程数据偏移0x123处的数据当做字符串打印到控制台窗口上,在console_task控制台进程主函数中,我们增加了对命令crack的响应,当用户在控制台上输入命令”crack”时,将crack代码加载到内核中运行。上面代码完成后,编译内核,然后用虚拟机将内核加载,系统启动后,我们现在一个控制台中输入hlt,先启动用户进程。然后点击”shift + w”,启动另一个控制台窗口,在其中输入crack,运行crack程序: 接着把点击tab键,把焦点恢复到窗口task_a,然后用鼠标点击运行hlt命令的窗口,把输入焦点切换到该控制台,然后再次点击tab键,把执行权限提交给运行hlt命令的控制台,此时点击回车,介绍用户进程启动的窗口,结果情况如下: 此时我们可以看到,运行hlt命令,执行用户进程的控制台窗口居然输出了字符串”crack”,而这个字符串正是crack.c在执行时,写入地址0x123的字符串。这就意味着一个恶意进程成功修改了另一个进程的内存数据,也相当于一个流氓程序把一只咸猪手伸到其他用户进程的裙底,蹂躏一番后留下了猥琐的证据。 那么如何防范恶意进程对其他程序的非法入侵呢,这就得使用CPU提供的LDT机制,也就是局部描述符表,该机制的使用,我们将在下一节详细讲解。更详细的讲解和代码演示调试,请参看视频: 更详细的讲解和代码调试演示过程,请参看视频 Linux kernel Hacker, 从零构建自己的内核 更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号: 本篇文章为转载内容。原文链接:https://blog.csdn.net/tyler_download/article/details/78731905。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-14 19:08:07
254
转载
转载文章
...始 mysql 容器运行 mysql 命令行客户端,允许您针对您的数据库实例执行 SQL 语句: $ docker run -it --network some-network --rm mysql mysql -hsome-mysql -uexample-user -p 其中 some-mysql 是原始 mysql 容器的名称(连接到 some-network Docker 网络)。 此镜像也可以用作非 Docker 或远程实例的客户端: $ docker run -it --rm mysql mysql -hsome.mysql.host -usome-mysql-user -p 有关 MySQL 命令行客户端的更多信息,请参阅 MySQL 文档。 2.4.3. 容器外访问和查看 MySQL 日志 docker exec 命令允许您在 Docker 容器内运行命令。 以下命令行将为您提供 mysql 容器内的 bash shell: $ docker exec -it some-mysql bash 第一次启动一个MySQL容器后,需要对账户进行授权,否则无法远程访问,请先使用上面的命令进入容器内,然后使用以下命令连接到mysql服务: mysql -uroot -p 输入密码回车,进入mysql命令界面mysql> 接着授权root远程访问权限: mysql> GRANT ALL PRIVILEGES ON . TO 'root'@'%' IDENTIFIED BY '123456'; 然后就可以远程用MySQL客户端连接到MySQL容器了。 日志可通过 Docker 的容器日志获得: $ docker logs some-mysql 2.4.4. 使用自定义 MySQL 配置文件 MySQL 的默认配置可以在 /etc/mysql/my.cnf 中找到,其中可能包含额外的目录,例如 /etc/mysql/conf.d 或 /etc/mysql/mysql.conf.d。 请检查 mysql 映像本身中的相关文件和目录以获取更多详细信息。 如果 /my/custom/config-file.cnf 是你的自定义配置文件的路径和名称,你可以这样启动你的 mysql 容器(注意这个命令只使用了自定义配置文件的目录路径): $ docker run --name some-mysql -v /my/custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 这将启动一个新容器 some-mysql,其中 MySQL 实例使用来自 /etc/mysql/my.cnf 和 /etc/mysql/conf.d/config-file.cnf 的组合启动设置,后者的设置优先 . 没有 cnf 文件的配置 许多配置选项可以作为标志传递给 mysqld。 这将使您可以灵活地自定义容器,而无需 cnf 文件。 例如,如果要将所有表的默认编码和排序规则更改为使用 UTF-8 (utf8mb4),只需运行以下命令: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci 如果您想查看可用选项的完整列表,只需运行: $ docker run -it --rm mysql:tag --verbose --help 2.4.5. 环境变量 启动 mysql 镜像时,可以通过在 docker run 命令行中传递一个或多个环境变量来调整 MySQL 实例的配置。 请注意,如果您使用已包含数据库的数据目录启动容器,则以下任何变量都不会产生任何影响:任何预先存在的数据库在容器启动时将始终保持不变。 另请参阅 https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html 以获取 MySQL 的环境变量的文档(尤其是 MYSQL_HOST 等变量,已知与此镜像一起使用时会导致问题)。 MYSQL_ROOT_PASSWORD 此变量是必需的,并指定将为 MySQL root 超级用户帐户设置的密码。 在上面的示例中,它被设置为 my-secret-pw。 MYSQL_DATABASE 此变量是可选的,允许您指定要在映像启动时创建的数据库的名称。 如果提供了用户/密码(见下文),则该用户将被授予对此数据库的超级用户访问权限(对应于 GRANT ALL)。 MYSQL_USER、MYSQL_PASSWORD 这些变量是可选的,用于创建新用户和设置该用户的密码。 该用户将被授予对 MYSQL_DATABASE 变量指定的数据库的超级用户权限(见上文)。 要创建用户,这两个变量都是必需的。 请注意,不需要使用此机制来创建超级用户超级用户,默认情况下会使用 MYSQL_ROOT_PASSWORD 变量指定的密码创建该用户。 MYSQL_ALLOW_EMPTY_PASSWORD 这是一个可选变量。 设置为非空值,例如 yes,以允许使用 root 用户的空白密码启动容器。 注意:除非您真的知道自己在做什么,否则不建议将此变量设置为 yes,因为这将使您的 MySQL 实例完全不受保护,从而允许任何人获得完全的超级用户访问权限。 MYSQL_RANDOM_ROOT_PASSWORD 这是一个可选变量。 设置为非空值,如 yes,为 root 用户生成随机初始密码(使用 pwgen)。 生成的根密码将打印到标准输出(生成的根密码:…)。 MYSQL_ONETIME_PASSWORD 一旦初始化完成,将 root(不是 MYSQL_USER 中指定的用户!)用户设置为过期,强制在第一次登录时更改密码。 任何非空值都将激活此设置。 注意:此功能仅在 MySQL 5.6+ 上受支持。 在 MySQL 5.5 上使用此选项将在初始化期间引发适当的错误。 MYSQL_INITDB_SKIP_TZINFO 默认情况下,入口点脚本会自动加载 CONVERT_TZ() 函数所需的时区数据。 如果不需要,任何非空值都会禁用时区加载。 2.4.6. Docker Secrets 作为通过环境变量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
转载文章
...只是 32 位系统,运行着 Linux 2.2 版本(后来又升级到了 2.4 和 2.6,而 2.6 才支持 x86_64),只配置了很少的内存(2GB)和千兆网卡。 怎么在这样的系统中支持并发 1 万的请求呢? 从资源上来说,对 2GB 内存和千兆网卡的服务器来说,同时处理 10000 个请求,只要每个请求处理占用不到 200KB(2GB/10000)的内存和 100Kbit (1000Mbit/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...试是一种系统性的质量控制过程,旨在通过执行软件或系统组件来评估其功能、性能、兼容性、安全性及可靠性是否满足既定需求和预期目标。在本文中,软件测试涵盖了多种测试类型和技术,包括网站测试、性能测试(如使用LoadRunner工具)、回归测试、面向对象软件测试等,并提供了丰富的资源网站供读者学习与实践。 性能测试工具LoadRunner , LoadRunner是HP(现Micro Focus)公司开发的一款业界领先的性能测试工具,主要用于模拟大量用户并发访问场景,对软件应用进行负载压力测试,以检验系统的稳定性和性能瓶颈。通过创建虚拟用户脚本模拟实际操作流程,LoadRunner能够在真实环境下验证应用程序能否在高负载条件下保持高效稳定的运行。 回归测试 , 回归测试是软件测试的一个重要环节,在代码修改或系统升级后重新执行先前已通过的测试用例,以确保现有功能未因新的更改而引入错误或缺陷。文中提到的Aristole研究组织就涉及了回归测试的研究,探讨如何优化回归测试策略,以及如何通过测试套最小化技术减少回归测试的工作量,提高测试效率。 CMMI(Capability Maturity Model Integration) , CMMI是由美国卡内基梅隆大学软件工程研究所(SEI)开发的一套能力成熟度集成模型,用于评估和改进组织在软件开发和服务方面的过程成熟度。文中提及的ESI组织提供了包括CMMI评估在内的各种服务,这表明CMMI在软件工程领域中被广泛用于衡量和提升企业项目管理、软件开发和服务的质量管理水平。 ISO(International Organization for Standardization) , ISO是一个国际标准化组织,负责制定全球认可的标准,以促进各行业间的技术合作与贸易交流。在本文语境下,ISO标准对于软件测试和质量保证具有重要意义,例如提供关于软件开发、测试过程、文档编制等方面的指导原则和最佳实践,有助于确保软件产品的质量和一致性。
2023-08-29 09:17:46
134
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
timeout 5 command
- 执行命令并在5秒后强制终止。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"