前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[使用mysql_num_rows统计记录...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Element-UI
...DOM进行高效比对和计算,然后仅针对差异部分更新实际DOM,从而极大地提高页面渲染性能。虽然文章未直接提到虚拟DOM在处理Element-UI树形组件问题中的作用,但在优化大型项目中树状数据的渲染效率时,虚拟DOM技术是不可或缺的一部分。 Element-UI版本问题 , 指在使用Element-UI的过程中,由于不同版本间可能存在API变更、特性增删或已知bug修复等情况,导致在特定版本下树形组件出现无法正常展开或收起的问题。解决此类问题时,开发者需要关注Element-UI的版本更新记录,并根据实际情况选择升级或降级至稳定版本以确保组件的正常运行。 递归组件 , 在Vue.js中,递归组件是指一个组件在其模板内部引用自身,形成无限层级的结构,常用于渲染树形数据。通过递归组件可以高效地处理任意深度的树状数据结构,确保每个节点都能够按照正确的逻辑顺序展开或收起。尽管文章没有明确提到递归组件在处理Element-UI树形组件问题中的具体应用,但理解递归组件的工作原理有助于深入解决这类问题。
2023-08-31 16:39:17
504
追梦人-t
PostgreSQL
...候,我们可能基于某个计算结果进行查询,例如,我们希望根据员工年龄(age)筛选出所有大于30岁的员工,尽管数据库中存储的是出生日期(birth_date),但可以通过创建表达式索引来实现: sql CREATE INDEX idx_employee_age ON employees ((CURRENT_DATE - birth_date)); 在这个示例中,索引并非直接针对birth_date,而是基于当前日期减去出生日期得出的虚拟年龄字段。 4. 理解索引类型及其应用场景 - B树索引(默认):适合范围查询和平行排序,如上所述的employee_id或age查询。 - 哈希索引:对于等值查询且数据分布均匀的情况效果显著,但不适合范围查询和排序。 - GiST、SP-GiST、GIN索引:这些索引适用于特殊的数据类型(如地理空间数据、全文搜索等),提供了不同于传统B树索引的功能和优势。 5. 并发创建索引 保持服务在线 在生产环境中,我们可能不愿因创建索引而阻塞其他查询操作。幸运的是,PostgreSQL支持并发创建索引,这意味着在索引构建过程中,表上的读写操作仍可继续进行: sql BEGIN; CREATE INDEX CONCURRENTLY idx_employee_ids ON employees (employee_id); COMMIT; 6. 思考与探讨 在实际使用中,索引虽好,但并非越多越好,也需权衡其带来的存储成本以及对写操作的影响。每次添加或删除记录时,相应的索引也需要更新,这可能导致写操作变慢。所以,在制定索引策略的时候,咱们得接地气儿点,充分考虑实际业务场景、查询习惯和数据分布的特性,然后做出个聪明的选择。 总结来说,PostgreSQL中的索引更像是幕后英雄,它们并不直接“显示”数据,却通过精巧的数据结构布局,让我们的查询请求如同拥有超能力一般疾速响应。设计每一个索引,其实就像是在开启一段优化的冒险旅程。这不仅是一次实实在在的技术操作实战,更是我们对浩瀚数据世界深度解读和灵动运用的一次艺术创作展示。
2023-01-07 15:13:28
430
时光倒流_
Javascript
...“语言”,确保咱们在使用它们的时候,能够正确无误、按规矩来。 3. 为何JS文件会关联到.d.ts声明文件? 场景还原: 假设我们有一个名叫mathUtils.js的纯JavaScript模块,其中包含一个计算平方根的方法: javascript // mathUtils.js function sqrt(number) { return Math.sqrt(number); } module.exports = sqrt; 在TypeScript项目中直接导入这个模块时,由于TypeScript并不知道sqrt函数需要传入什么类型的参数以及返回什么类型的值,因此会出现类型安全警告。为了消除这种不明确性,我们可以创建一个对应的声明文件mathUtils.d.ts: typescript // mathUtils.d.ts declare function sqrt(number: number): number; export default sqrt; 这样,当TypeScript编译器遇到对mathUtils.js的引用时,就会依据声明文件来推断和校验类型,使得整个项目能够在享受静态类型检查的同时,无缝兼容现有的JavaScript模块。 4. 如何编写和应用.d.ts声明文件? 编写声明文件是一个细致且富有创造性的过程,它要求开发者深入理解所要声明的JavaScript模块的内部结构和接口行为。例如,对于上述的mathUtils.js模块,我们简单明了地指定了sqrt函数的输入输出类型。在实际项目中,复杂的库可能需要更为详尽的类型声明,包括类、接口、枚举等。 5. 结合实战,畅谈优势 将类型声明文件引入JavaScript项目后,不仅提高了代码的健壮性,还能借助IDE的强大智能提示和错误检测功能,显著提升开发效率。而且,声明文件这玩意儿,可以说让团队成员间的沟通效率嗖嗖地往上涨。你想啊,现在大伙儿都门儿清每个API接口想要的输入和输出类型,这样一来,因为搞错类型而可能带来的小bug们,就被我们悄无声息地扼杀在摇篮里了。 6. 总结 从混沌到有序 回顾整篇文章,我们揭示了JavaScript项目为何会关联TypeScript的类型声明文件,这背后是开发者们追求更高代码质量、更好开发体验的不懈努力。在咱们的JavaScript项目里,哪怕它是个JS的大本营,只要引入了.d.ts声明文件这个神器,就能蹭上TypeScript的静态类型检测福利。这样一来,咱就可以打造出更稳如老狗、扩展性更强的应用程序,让开发过程更加顺滑,代码质量更高。所以,不论你是位对TypeScript痴迷到不行的开发者,还是个铁了心扎根JavaScript阵营的忠实战士,拥抱类型声明文件这玩意儿,绝对是个既聪明又接地气的选择,没得商量!
2024-01-08 09:18:02
300
清风徐来_
Datax
...二、问题描述 当我们使用Datax Writer插件向数据库中插入数据时,如果某个字段设置了唯一键约束,那么在插入重复数据时就会触发唯一键约束冲突。比如,我们弄了一个用户表,其中特意设了个独一无二的邮箱字段。不过,假如我们心血来潮,试图往这个表格里插两条一模一样的邮箱记录,那么系统就会毫不客气地告诉我们:哎呀,违反了唯一键约束,有冲突啦! 三、问题原因分析 首先,我们需要明白为什么会出现唯一键约束冲突。这是因为我们在插数据的时候,没对它们进行严格的“查重”工序,就直接一股脑儿地全塞进去了,结果就有了重复的数据跑进去啦。 其次,我们需要从数据库设计的角度来考虑这个问题。如果我们在设置数据库的时候,没把唯一键约束整对了,那么很可能就会出现唯一键冲突的情况。比如说,我们在用户表里给每位用户设了个独一无二的邮箱地址栏,然后在用户信息表里也整了个同样的邮箱地址栏,还把它设成了关键的主键。这样一来,当我们往里边输入数据的时候,就特别容易踩到“唯一键约束冲突”这个坑。 四、解决方案 对于上述问题,我们可以采取以下几种解决方案: 1. 数据预处理 在插入数据之前,我们需要对数据进行有效的去重处理。例如,我们可以使用Python的pandas库来进行数据去重。具体的代码如下: python import pandas as pd 读取数据 df = pd.read_csv('data.csv') 去重 df.drop_duplicates(inplace=True) 写入数据 df.to_sql('users', engine, if_exists='append', index=False) 这段代码会先读取数据,然后对数据进行去重处理,最后再将处理后的数据写入到数据库中。 2. 调整数据库设计 如果我们发现是由于数据库设计不当导致的唯一键约束冲突,那么我们就需要调整数据库的设计。比如说,我们能够把那些重复的字段挪到另一个表格里头,然后在往里填充数据的时候,就像牵线搭桥一样,通过外键让这两个表格建立起亲密的关系。 sql CREATE TABLE users ( id INT PRIMARY KEY, email VARCHAR(50) UNIQUE ); CREATE TABLE user_info ( id INT PRIMARY KEY, user_id INT, info VARCHAR(50), FOREIGN KEY (user_id) REFERENCES users(id) ); 在这段SQL语句中,我们将用户表中的email字段设置为唯一键,并将其移到了user_info表中,然后通过user_id字段将两个表关联起来。 五、总结 以上就是解决Datax Writer插件写入数据时触发唯一键约束冲突的方法。需要注意的是,这只是其中的一种方法,具体的操作方式还需要根据实际情况来确定。另外,为了让这种问题离我们远远的,咱们最好养成棒棒的数据处理习惯,别让数据重复“撞车”。
2023-10-27 08:40:37
721
初心未变-t
Sqoop
...(例如Oracle,MySQL,SQL Server等)导入数据到Hadoop生态系统中的各种文件系统(例如HDFS)。不过,当我们面对海量数据时,可能免不了会遇到一些头疼的小状况,比如错误信息老是不靠谱,日志记录多到让人眼花缭乱啥的。这些问题会影响我们的工作效率。因此,本文将介绍如何优化Sqoop的日志记录,从而提高我们的调试效率。 二、为何需要优化Sqoop的日志记录? 首先,我们需要了解为什么需要优化Sqoop的日志记录。日志记录是软件开发中非常重要的一部分,它可以帮助我们追踪程序运行过程中的各种细节,包括错误信息、警告信息、重要事件等。在使用Sqoop的过程中,如果日志记录不当,可能会导致以下问题: 1. 错误信息不准确 由于日志记录的不足,可能导致错误信息不够详细,甚至无法定位到具体的错误原因。 2. 日志记录过多 过多的日志记录不仅会占用大量的存储空间,而且也会增加系统的负担,影响性能。 3. 无法追踪程序运行过程 如果日志记录过于简单,可能无法追踪程序运行的具体过程,从而难以进行有效的调试。 三、如何优化Sqoop的日志记录? 针对以上问题,我们可以采取以下几种方法来优化Sqoop的日志记录: 1. 增加详细的错误信息 为了使错误信息更准确,我们可以在 Sqoop 的源代码中添加更多的异常捕获和错误处理代码。这样,咱们就能更轻松地揪出问题的根源啦,然后根据这些线索对症下药,手到病除。 下面是一段示例代码: java try { // 执行操作 } catch (Exception e) { // 记录异常信息 logger.error("Failed to execute operation", e); } 2. 减少不必要的日志记录 为了减少日志记录的数量,我们可以删除那些不必要的日志语句。这样不仅可以节省存储空间,还可以提高系统的运行速度。 下面是一段示例代码: java // 如果你确定这个操作一定会成功,那么就可以省略这个日志语句 //logger.info("Successfully executed operation"); 3. 使用日志级别控制日志输出 在 Sqoop 中,我们可以使用不同的日志级别(如 debug、info、warn、error 等)来控制日志的输出。这样一来,我们就能灵活地根据自身需求,像逛超市挑选商品那样,有选择性地查看日志信息,而不是被迫接收所有那些可能无关紧要的日志消息。 下面是一段示例代码: java // 设置日志级别为 info,这意味着只会在出现信息级别的日志消息时才会打印出来 Logger.getLogger(Sqoop.class.getName()).setLevel(Level.INFO); 四、总结 总的来说,优化 Sqoop 的日志记录可以帮助我们更好地调试程序,提高我们的工作效率。你知道吗,为了让 Sqoop 的日志记录更好使、更易懂,咱们可以采取这么几个招儿。首先,给错误信息多添点儿细节,让它说得明明白白,这样找问题时就一目了然了。其次,别啥都记,只把真正重要的内容写进日志里,减少那些不必要的“口水话”。最后,灵活运用日志级别调整输出内容,就像调节音量一样,需要详尽的时候调高点,日常运维时调低调静。这样一来,咱们就能更顺手地管理和解读 Sqoop 的日志啦。
2023-04-25 10:55:46
75
冬日暖阳-t
Docker
...起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
478
星河万里-t
VUE
...底部时触发加载。这里使用Intersection Observer API来检测元素是否进入视口。在mounted()生命周期钩子中,我们可以初始化这个观察者。 javascript mounted() { const observer = new IntersectionObserver((entries) => { entries.forEach((entry) => { if (entry.isIntersecting) { this.loadHistoricalData(); } }); }); // 添加滚动区域的元素到观察者 observer.observe(document.querySelector('scroll-region')); }, 在loadHistoricalData方法中,我们需要向后请求数据,比如最近的10条记录: javascript methods: { async loadHistoricalData() { this.isLoading = true; const lastItemIndex = this.dataList.length - 1; const startFrom = lastItemIndex - 9; // 假设每次加载10条,从最后一条的前一条开始 const historicalData = await this.fetchHistoricalData(startFrom); this.dataList = this.dataList.slice(0, startFrom).concat(historicalData); this.isLoading = false; }, fetchHistoricalData(startFrom) { return this.$http.get(/api/historical-data?startFrom=${startFrom}); } }, 序号4:优化和性能考虑 为了提高性能,你可以采取以下策略: - 缓存加载数据: 如果数据结构不变,可以将已加载的数据缓存起来,避免重复请求。 - 懒加载: 对于非关键部分的数据,可以使用懒加载(如图片),只在用户滚动到可视区域时加载。 - 分页和批次加载: 限制每次加载的数量,减少一次性发送大量请求的压力。 结论 Vue.js的强大在于其灵活性和组件化的设计,使得实现动态加载和滚动加载变得简单易行。用Mint UI和超酷的浏览器黑科技混搭,能整出那种顺滑又速度飞快的用户体验,就像丝般流畅,简直不要太爽!你知道吗,细节这家伙有时候就是胜负手,对前端工程来说,提升性能跟让用户爽歪歪一样重要,绝对马虎不得。嘿,看看这些实例,想象一下它们在你手头的项目里如何轻松玩转滚动加载的魔法,肯定能让你眼前一亮!
2024-06-16 10:44:31
97
断桥残雪_
转载文章
...️✒️本篇内容:综合使用Linux基础指令、vim编辑器、gcc工具、make/makefile编译工具完成Linux小程序 - 进度条 🚢🚢作者简介:计算机海洋的新进船长一枚,请多多指教( •̀֊•́ ) ̖́- 📡📡同期Linux工具文章:【Linux初阶】vim工具的使用 【Linux初阶】Linux项目自动化构建工具-make/Makefile touch(创建)四个文件(main.c,mycode.h,mycode.c,makefile) main.c 1 include "mycode.h"2 3 int main()4 {5 ProncessOn(); 6 //printf("hhhh\n"); - 测试使用7 return 0;8 } 【注意】通常我们使用make/makefile工具时,应该要分布测试程序的可执行情况 mycode.h 1 pragma once 2 3 include <stdio.h>4 include <string.h>//初始化需要使用5 include <unistd.h>//休眠需要使用6 7 define NUM 1018 define s_num 5 9 10 extern void ProncessOn(); mycode.c 1 include "mycode.h"2 3 char style[s_num] = {'-', '', '.', '>', '+'};//不同进度条风格选择4 5 extern void ProncessOn()6 {7 int cnt = 0;8 char bar[NUM];9 memset(bar, '\0', sizeof(bar));//初始化10 11 const char lable = "l\\-/";//显式图形12 13 while(cnt<=100)14 {15 printf("[%-100s][%d%%][%c]\r", bar, cnt, lable[cnt%4]);//-\r回到首行,%-100使中括号再100位置上(右对齐)16 fflush(stdout);//刷新E> 17 bar[cnt++] = style[N]; //这里的宏再makedile中定义 18 //sleep(1);19 usleep(50000); //5s/100==0.05==5000020 }21 22 printf("\n");23 } 使用头文件中的定义宏 s_num,便于修改 使用 style[N] - 外接的定义宏N,便于修改和使用 \r - 回到行首,每次循环需要打印不同的字符串 使用 fflush(stdout) 刷新之后,才不会形成“代码山”式的叠加 makefile 修改定义宏可以更换不同格式 1 mycode:mycode.c main.c2 gcc mycode.c main.c -o mycode -DN=1 这里用-D定义宏N=1 3 4 .PHONY:clean5 clean:6 rm -f mycode make编译 [ldx@VM-12-11-centos myfile]$ makegcc mycode.c main.c -o mycode -DN=1[ldx@VM-12-11-centos myfile]$ ./mycode[][100%][l] 🌹🌹Linux小程序 - 进度条大概就讲到这里啦,博主后续会继续更新更多Linux操作系统的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪 本篇文章为转载内容。原文链接:https://blog.csdn.net/Captain_ldx/article/details/127739163。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-26 19:04:57
100
转载
PHP
...用缓存技术,减少重复计算和数据库查询。 - 分批处理:对大数据进行分块处理,避免一次性加载所有数据。 - 优化算法:检查代码逻辑,避免不必要的循环和递归。 四、最佳实践与建议 3.1 根据项目需求调整 不同的项目对超时设置的需求不同。对于那些用户活跃度高、实时互动性强的网站,我们可能需要把超时设置调得短一些;反过来,如果是处理大量数据或者执行批量导入任务这类场景,那就很可能需要把超时时间适当延长。 3.2 使用信号处理 PHP提供了一个ignore_user_abort()函数,可以在脚本被中断时继续执行部分操作,这在处理长任务时非常有用。 php ignore_user_abort(true); set_time_limit(0); // 设置无限制的超时时间 // 处理任务... 3.3 监控与日志记录 定期检查服务器的日志,了解哪些脚本经常超时,以便针对性地优化或调整设置。 五、结语 服务器超时设置是PHP开发者必须关注的一个细节,它直接影响到我们的应用程序性能和用户体验。这个参数理解透彻并合理调整一下,就能像魔法一样帮助我们在复杂场景里游刃有余,让代码变得更加结实耐用、易于维护,效果绝对杠杠的!记住了啊,作为一个优秀的程序员,光会写那些飞快运行的代码还不够,你得知道怎么让这些代码在面对各种挑战时,还能保持那种酷炫又不失风度的姿态,就像一位翩翩起舞的剑客,面对困难也能挥洒自如。
2024-03-11 10:41:38
158
山涧溪流-t
转载文章
...2:设计一个key,使用用户uid跟攻略sid进行区分,value值随意,需要设置有效性 实现步骤 1.创建一个点赞接口,传入当前点赞攻略sid,获取当前登录用户uid2.通过sid跟uid拼接记号的key3.判断key是否存在如果存在,说明今天已经点赞(顶)过,不做任何处理,页面提示如果不存在,说明具体没点赞(顶)过,获取vo对象,点赞数属性+1,将记号缓存到redis中,设置过期时间:今天最后一秒到当前时间间隔[单位是秒]4.更新vo对象 具体实现 //判断是否顶过@Overridepublic boolean strategyThumbup(String id, String sid) {String key = RedisKeys.USER_STRATEGY_THUMBUP.join(id, sid);//如果不包含,表示没有顶过,执行点赞,点赞数+1,并设置key有效时间if (!template.hasKey(key)) {StrategyStatisVO statisVO = this.getStrategyStatisVO(sid);statisVO.setThumbsupnum(statisVO.getThumbsupnum() + 1);this.setStrategyStatisVO(statisVO);//拿到最晚时间Date endDate = DateUtil.getEndDate(new Date());//计算时间间隔long time = DateUtil.getDateBetween(endDate, new Date());//设置有效时间template.opsForValue().set(key, "1", time, TimeUnit.SECONDS);return true;}return false;}-----------------------------------------------------------------------------------//时间工具类public class DateUtil {/ 获取两个时间的间隔(秒) /public static long getDateBetween(Date d1, Date d2){return Math.abs((d1.getTime()-d2.getTime())/1000);//取绝对值}public static Date getEndDate(Date date) {if (date == null) {return null;}Calendar c = Calendar.getInstance();c.setTime(date);c.set(Calendar.HOUR_OF_DAY,23);c.set(Calendar.MINUTE,59);c.set(Calendar.SECOND,59);return c.getTime();} } 小结 1.核心问题需要区分是第一次顶还是的二次顶,这种请求操作属于有状态请求操作2.有状态请求操作我们需要设置记号,问题的关键在于记号的设计3.这个记号,我们也可以使用与点赞/收藏功能类似的记号,就是以用户id为key,然后将顶的文章id放到集合中为value4.但是更推荐使用以用户id和攻略id拼接而成的为key,value随意取5.我们操作时只需要判断key是否存在,存在,我们什么操作也不用做,不存在,我们就将点赞(数)+1,然后设置key的时间即可6.最后更新vo对象7.难点在于时间的设置,看工具类,这个key键设置体现了key键的唯一性,灵活性和时效性 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_47555380/article/details/108081752。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-31 21:48:44
128
转载
ClickHouse
...别的自动扩缩容和内存使用限制,从而更好地满足现代数据中心弹性需求。 此外,对于大规模数据分析场景,业内专家建议结合数据预处理技术(如数据压缩、列裁剪)以及分布式计算框架(如Apache Spark),有效降低单个节点的内存压力,并通过整合不同层次的存储和计算资源,达到整体性能最优。 综上所述,ClickHouse集群内存管理是一个涵盖数据库内核优化、系统配置调优以及云环境适配等多个层面的综合性课题,值得广大开发者和技术团队深入研究和实践。不断跟踪ClickHouse官方动态,结合实际生产环境特点,才能真正实现ClickHouse集群内存使用的高效利用和稳定运行。
2023-03-18 23:06:38
492
夜色朦胧
Ruby
...这个单例类,我们可以使用.singleton_class方法,就像我们在上面看到的那样。 4. 在单例类中定义方法 一旦我们有了单例类,我们就可以在这个类中定义方法。这些方法只能由单例类的实例调用。下面是一个例子: ruby class User end user = User.new user_singleton_class = user.singleton_class def user_singleton_class.greet puts "Hello, I am the singleton class of {self.class}" end user_singleton_class.greet => "Hello, I am the singleton class of User" 在这个例子中,我们定义了一个名为greet的方法,它可以打印出一条消息,告诉我们它是哪个类的单例类。 5. 使用单例类的实际应用场景 虽然单例类看起来可能有些抽象,但在实际的应用中,它们可以非常有用。下面是一些使用单例类的例子: - 日志记录:我们可以为每个线程创建一个单例类,用于收集和存储该线程的日志。 - 缓存管理:我们可以为每个应用程序创建一个单例类,用于存储和检索缓存数据。 - 数据库连接池:我们可以为每个数据库服务器创建一个单例类,用于管理和共享数据库连接。 6. 总结 单例类是Ruby的一种独特特性,它提供了一种在特定对象上定义行为的方式,而不需要修改整个类。虽然初看之下,单例类可能会让你觉得有点绕脑筋,但在实际使用中,它可是能带来大大的便利呢!了解并熟练掌握单例类的运作机制后,你就能更充分地挖掘Ruby的威力,用它打造出高效给力的软件。这样一来,你的编程之路就会像加了强力引擎一样,飞速前进,让软件开发效率嗖嗖提升。 7. 结语 Ruby的世界充满了各种各样的技巧和工具,每一个都值得我们去学习和探索。单例类就是其中之一,我相信通过这篇文章的学习,你已经对单例类有了更深刻的理解。如果你有任何疑问或者想要分享你的经验,请随时留言,我会尽力帮助你。 以上是我对Ruby单例类的理解和实践,希望对你有所帮助!
2023-06-08 18:42:51
104
翡翠梦境-t
Spark
...发现实时数据处理与流计算领域的发展日新月异。最近,Apache Flink 1.14版本也推出了对事件时间和 watermark 的改进,进一步强化了其在复杂事件处理和乱序数据管理上的能力。该版本优化了watermark生成逻辑,并引入了更为灵活的event time策略配置,使得开发者能够更好地应对不同业务场景下的延迟数据挑战。 另外,随着物联网、金融交易、社交网络等领域的快速发展,实时数据的价值日益凸显,对流处理系统提出了更高要求。例如,阿里巴巴在其2021年双十一活动中,就运用了升级版的实时计算引擎,结合事件时间驱动的数据一致性保障机制,确保了数十亿级别交易数据的实时统计分析准确性。 同时,学术界也在不断探索和完善实时数据处理理论框架,如加州大学伯克利分校AMPLab团队提出的“Lambda架构”,以及斯坦福大学DINOSAUR项目中的“Kappa架构”,都在尝试以不同的方式整合Processing Time和Event Time,旨在构建更高效、更健壮的实时数据处理解决方案。 因此,在实际应用Spark Structured Streaming进行实时数据处理时,关注行业动态和技术前沿,对比研究其他流处理框架的时间模型处理方式,将有助于我们更好地适应快速变化的数据环境,设计出更加符合业务需求的数据处理策略。
2023-11-30 14:06:21
106
夜色朦胧-t
Golang
...天,我们就来看看如何使用Go处理多进程间的通信和同步。 二、使用channel进行通信和同步 1. channel的基本概念 在Go中,channel是一种特殊的类型,它可以让不同的goroutine(Go程序中的轻量级线程)之间进行数据传递和同步操作。你可以把channel想象成是goroutine之间的秘密小隧道,它们通过这个隧道来传递信息和交换数据,就像我们平时排队传话或者扔纸飞机那样,只不过在程序的世界里,它们是在通过管道进行通信啦。如下是一个简单的channel的例子: go package main import ( "fmt" "time" ) func send(msg string, ch chan<- string) { fmt.Println("Sending:", msg) ch <- msg } func receive(ch <-chan string) string { msg := <-ch fmt.Println("Receiving:", msg) return msg } func main() { ch := make(chan string) go send("Hello", ch) msg := receive(ch) fmt.Println("Done:", msg) } 在这个例子中,我们定义了一个send函数和一个receive函数,分别用来发送和接收数据。然后我们捣鼓出了一个channel,就像建了个信息传输的通道。在程序的大脑——主函数那里,我们让它同时派出两个“小分队”——也就是goroutine,一个负责发送数据,另一个负责接收数据,这样一来,数据就在它们之间飞快地穿梭起来了。运行这个程序,我们会看到输出结果为: makefile Sending: Hello Receiving: Hello Done: Hello 可以看到,两个goroutine通过channel成功地进行了数据交换。 2. 使用channel进行同步 除了用于数据交换外,channel还可以用于同步goroutine。当一个goroutine在channel那儿卡壳了,等待着消息时,其他goroutine完全不受影响,可以该干嘛干嘛,继续欢快地执行任务。这样一来,咱们就能妥妥地防止多个并发执行的小家伙(goroutine)一起挤进共享资源的地盘,从而成功避开那些让人头疼的数据冲突问题啦。例如,我们可以使用channel来控制任务的执行顺序: go package main import ( "fmt" "time" ) func worker(id int, jobs <-chan int, results chan<- int) { for j := range jobs { time.Sleep(time.Duration(j)time.Millisecond) results <- id j } } func main() { jobs := make(chan int, 100) results := make(chan int, 100) for i := 0; i < 10; i++ { go worker(i, jobs, results) } for i := 0; i < 50; i++ { jobs <- i } close(jobs) var sum int for r := range results { sum += r } fmt.Println("Sum:", sum) } 在这个例子中,我们定义了一个worker函数,用来处理任务。每个worker都从jobs channel读取任务,并将结果写入results channel。然后呢,我们在main函数里头捣鼓出10个小弟worker,接着一股脑向那个叫jobs的通道塞了50个活儿。最后一步,咱们先把那个jobs通道给关了,然后从results通道里把所有结果都捞出来,再把这些结果加一加算个总数。运行这个程序,我们会看到输出结果为: python Sum: 12750 可以看到,所有的任务都被正确地处理了,并且处理顺序符合我们的预期。 三、使用waitgroup进行同步 除了使用channel外,Go还提供了一种更高级别的同步机制——WaitGroup。WaitGroup允许我们在一组goroutine完成前等待其全部完成。比如,我们可以在主程序里头创建一个WaitGroup对象,然后每当一个新的并发任务(goroutine)开始执行时,就像在小卖部买零食前先拍一下人数统计器那样,给这个WaitGroup调用Add方法加一记数。等到所有并发任务都嗨皮地完成它们的工作后,再挨个儿调用Done方法,就像任务们一个个走出门时,又拍一下统计器减掉一个人数。当计数器变为0时,主函数就会结束。 go package main import ( "fmt" "sync" ) func worker(id int, wg sync.WaitGroup) { defer wg.Done() for i := 0; i < 10; i++ { fmt.Printf("Worker %d did something.\n", id) } } func main() { wg := sync.WaitGroup{} for i := 0; i < 10; i++ { wg.Add(1) go worker(i, &wg)
2023-01-15 09:10:13
586
海阔天空-t
Kibana
...不断更新迭代,用户在使用过程中遇到的问题也在不断变化。比如,最近有不少用户反馈在使用Kibana 7.15.0版本时遇到了新的排序功能问题。经过调查发现,这可能与新版本中引入的一些优化有关,但具体原因仍需进一步研究。 此外,社区中也有用户提出,除了上述问题外,Kibana在处理大量数据时性能表现不如人意。特别是在对包含数百万条记录的数据集进行排序操作时,延迟现象较为明显。对此,Elastic团队正在积极优化查询引擎,并计划在未来版本中引入更多性能提升措施。 与此同时,一些技术专家指出,用户在面对此类问题时,除了关注官方文档和社区讨论外,还可以尝试利用Kibana提供的更多高级功能,如聚合查询、脚本排序等,以提高数据分析效率。同时,合理规划索引策略,避免过度复杂的数据结构,也能在一定程度上缓解性能瓶颈。 值得一提的是,针对Kibana性能优化,国外开发者社区中已有不少成功案例分享。例如,一位名叫David的开发者通过改进数据索引设计和使用自定义脚本排序,显著提升了其应用在处理大数据量时的表现。这些实践经验值得我们在实际工作中借鉴参考。 总之,面对Kibana中的各种问题,我们既要关注官方动向,也要善于利用现有资源和技术手段,持续探索和实践,才能更好地发挥这一强大工具的作用。
2025-01-08 16:26:06
82
时光倒流
SeaTunnel
...ce: type: mysql jdbcUrl: "jdbc:mysql://localhost:3306/test" username: root password: password table: my_table 数据转换(这里暂时为空,但实际可以用于清洗、去重等操作) transforms: 数据目的地(备份到另一个MySQL数据库或HDFS等存储系统) sink: type: mysql jdbcUrl: "jdbc:mysql://backup-server:3306/backup_test" username: backup_root password: backup_password table: backup_my_table 2. 数据备份功能实现 对于数据备份,我们可以将SeaTunnel配置为从生产环境的数据源读取数据,并将其写入到备份存储系统。例如,从MySQL数据库中抽取数据,并存入到另一台MySQL服务器或者HDFS、S3等大数据存储服务: yaml 备份数据到另一台MySQL服务器 sink: type: mysql ... 或者备份数据到HDFS sink: type: hdfs path: /backup/data/ file_type: text 在此过程中,你可以根据业务需求设置定期备份任务,确保数据的实时性和一致性。 3. 数据恢复功能实现 当需要进行数据恢复时,SeaTunnel同样可以扮演关键角色。通过修改配置文件,将备份数据源替换为目标系统的数据源,并重新执行任务,即可完成数据的迁移和恢复。 yaml 恢复数据到原始MySQL数据库 source: type: mysql 这里的配置应指向备份数据所在的MySQL服务器及表信息 sink: type: mysql 这里的配置应指向要恢复数据的目标MySQL服务器及表信息 4. 实践中的思考与探讨 在实际使用SeaTunnel进行数据备份和恢复的过程中,我们可能会遇到一些挑战,如数据量大导致备份时间过长、网络状况影响传输效率等问题。这就需要我们根据实际情况,像变戏法一样灵活调整我们的备份策略。比如说,我们可以试试增量备份这个小妙招,只备份新增或改动的部分,就像给文件更新打个小补丁;或者采用压缩传输的方式,把数据“挤一挤”,让它们更快更高效地在网路上跑起来,这样就能让整个流程更加顺滑、更接地气儿啦。 此外,为了保证数据的一致性,在执行备份或恢复任务时,还需要考虑事务隔离、并发控制等因素,以避免因并发操作引发的数据不一致问题。在SeaTunnel这个工具里头,我们能够借助它那牛哄哄的插件系统和超赞的扩展性能,随心所欲地打造出完全符合自家业务需求的数据备份与恢复方案,就像是量体裁衣一样贴合。 总之,借助SeaTunnel,我们能够轻松实现大规模数据的备份与恢复,保障业务连续性和数据安全性。在实际操作中不断尝试、改进,我坚信你一定能亲手解锁更多SeaTunnel的隐藏实力,让这个工具变成企业数据安全的强大守护神,稳稳地护航你的数据安全。
2023-04-08 13:11:14
114
雪落无痕
Oracle
... Oracle 数据统计信息:深度探索与实战解析 1. 引言 在数据库的世界里,Oracle犹如一位深思熟虑的智者,其内核中蕴含着强大的数据统计信息功能。这些“数据统计信息”,你就想象成是给海量数据做全面体检和深度分析的超级神器。没有它们,就像我们在优化数据库性能、提升查询速度、管理存储空间这些重要环节时缺了个趁手的好工具,那可真是干瞪眼没办法了。这篇东西,咱们会手把手、深度探索,并配上满满干货的实例代码,一起把Oracle数据统计信息这块儿神秘面纱给揭个底朝天,让大家明明白白瞧个清楚。 2. 数据统计信息的重要性 在我们日常的数据库运维过程中,Oracle会自动收集并维护各类数据统计信息,包括表、索引、分区等对象的行数、分布情况、空值数量等。这些信息对SQL优化器来说,就好比是制定高效执行计划的“导航图”,要是没了这些准确的数据统计信息,那就相当于飞行员在伸手不见五指的夜里,没有雷达的帮助独自驾驶飞机,这样一来,SQL执行起来可能就会慢得像蜗牛,还可能导致资源白白浪费掉。 例如,当Oracle发现某字段存在大量重复值时,可能选择全表扫描而非索引扫描,这就是基于统计信息做出的智能决策。 3. 数据统计信息的收集与维护 (1)自动收集 Oracle默认开启了自动统计信息收集任务,如DBMS_STATS.AUTO_STATS_JOB_ENABLED参数设定为TRUE,系统会在适当的时间自动收集统计信息。 sql -- 检查自动统计信息收集是否开启 SELECT name, value FROM v$parameter WHERE name = 'dbms_stats.auto_stats_job_enabled'; (2)手动收集 当然,你也可以根据业务需求手动收集特定表或索引的统计信息: sql -- 手动收集表EMP的统计信息 EXEC DBMS_STATS.GATHER_TABLE_STATS('SCOTT', 'EMP'); -- 收集所有用户的所有对象的统计信息 BEGIN DBMS_STATS.GATHER_DATABASE_STATS; END; / 4. 数据统计信息的解读与应用 (1)查看统计信息 获取表的统计信息,我们可以使用DBA_TAB_STATISTICS视图: sql -- 查看表EMP的统计信息 SELECT FROM dba_tab_statistics WHERE table_name = 'EMP'; (2)基于统计信息的优化 假设我们发现某个索引的基数(distinct_keys)远小于实际行数,这可能意味着该索引的选择性较差,可以考虑优化索引或者调整SQL语句以提高查询效率。 5. 进阶探讨 统计信息的影响与策略 - 影响:统计信息的准确性和及时性直接影响到SQL优化器生成执行计划的质量。过时的统计信息可能导致最优路径未被选中,进而引发性能问题。 - 策略:在高并发、大数据量环境下,我们需要合理设置统计信息的收集频率和时机,避免在业务高峰期执行统计信息收集操作,同时,对关键业务表和索引应定期或按需更新统计信息。 6. 结语 总的来说,Oracle中的数据统计信息像是数据库运行的晴雨表,它默默记录着数据的变化,引导着SQL优化器找到最高效的执行路径。对于我们这些Oracle数据库管理员和技术开发者来说,摸透并熟练运用这些统计信息进行高效管理和巧妙利用,绝对是咱们不可或缺的一项重要技能。想要让咱的数据库系统始终保持巅峰状态,灵活应对各种复杂的业务场景,就得在实际操作中不断瞅瞅、琢磨和调整。就像是照顾一颗生机勃勃的树,只有持续观察它的生长情况,思考如何修剪施肥,适时做出调整,才能让它枝繁叶茂,结出累累硕果,高效地服务于咱们的各项业务需求。
2023-04-01 10:26:02
132
寂静森林
ClickHouse
...结果。 2. 使用Replication(复制)机制 2.1 配置Replicated表 ClickHouse支持ZooKeeper或Raft协议实现的多副本复制功能。例如,创建一个分布式且具有复制特性的表: sql CREATE TABLE replicated_table ( ... ) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{database}/{table}', 'replica1') PARTITION BY ... ORDER BY ... 这里,/clickhouse/tables/{database}/{table}是一个 ZooKeeper 路径,用于协调多个副本之间的数据同步;'replica1'则是当前副本标识符。 2.2 数据自动同步与容灾 一旦某台服务器上的数据出现异常,其他拥有相同Replicated表的服务器仍保留完整的数据。当有新的服务器小弟加入集群大家庭,或者主节点大哥不幸挂掉的时候,Replication机制这个超级替补队员就会立马出动,自动把数据同步得妥妥的,确保所有数据都能保持一致性、完整性,一个字都不会少。 3. 数据一致性检查与修复 3.1 使用checksum函数 ClickHouse提供checksum函数来计算表数据的校验和,可用于验证数据是否完整: sql SELECT checksum() FROM table_name; 定期执行此操作并记录结果,以便在后续时间点对比校验和的变化,从而发现可能的数据丢失问题。 3.2 表维护及修复 若发现数据不一致,可以尝试使用OPTIMIZE TABLE命令进行表维护和修复: sql OPTIMIZE TABLE table_name FINAL; 该命令会重新整理表数据,并尝试修复任何可能存在的数据损坏问题。 4. 实践思考与探讨 尽管我们可以通过上述方法来减少和应对ClickHouse中的数据丢失风险,但防患于未然总是最优策略。在搭建和运用ClickHouse系统的时候,千万记得要考虑让它“坚如磐石”,也就是要设计出高可用性方案。比如说,我们可以采用多副本这种方式,就像备份多个小帮手一样,让数据安全无忧;再者,跨地域冗余存储也是一招妙计,想象一下,即使地球另一边的机房挂了,这边的数据也能照常运作,这样就大大提升了系统的稳健性和可靠性啦!同时,建立一个完善、接地气的数据监控系统,能够灵敏捕捉并及时解决那些可能冒头的小问题,这绝对是一个无比关键的步骤。 总结起来,面对ClickHouse数据丢失问题,我们需采取主动防御和被动恢复相结合的方式,既要做好日常的数据备份和Replication配置,也要学会在问题发生后如何快速有效地恢复数据,同时结合数据一致性检查以及表维护等手段,全面提升数据的安全性和稳定性。在实践中不断优化和完善,才能真正发挥出ClickHouse在海量数据分析领域的强大威力。
2023-01-20 13:30:03
445
月影清风
转载文章
...I/O效率,可以探索使用异步编程模型如asyncio结合aiohttp库实现高并发HTTP请求。 近日,一篇发表在《Python开发者》杂志上的深度解析文章详细探讨了如何在大规模分布式系统中优化Python的HTTP客户端性能,其中不仅介绍了标准库的用法,还推荐了第三方库如requests、grequests等在实际项目中的最佳实践,并强调了合理设计请求头(如User-Agent)、连接池管理和超时设置对提升系统并发能力的重要性。 此外,随着云计算和微服务架构的发展,容器化和Kubernetes等技术普及,针对服务端性能测试和压测工具也不断推陈出新。比如Apache JMeter与locust等开源工具,它们能够模拟大量并发用户访问,对API接口进行压力测试,并提供详尽的性能报告,包括响应时间分布、吞吐量和错误率分析,这对于评估基于Python构建的HTTP服务在真实场景下的表现具有重要意义。 总之,通过学习和掌握Python中处理HTTP请求的基本方法和并发策略,结合当前最新的技术和工具,开发者能更好地优化应用程序在网络通信层面的性能,以满足日益增长的高并发需求。
2023-10-19 20:57:06
74
转载
Hive
...的海量数据进行存储、计算和分析。 然而,在使用Hive的过程中,我们可能会遇到各种各样的问题,其中就包括“60、存储过程调用错误。”这样的问题。今天呢,咱们就一起把这个话题掰扯掰扯,我希望能实实在在地帮到你,让你对这个问题有个透彻的理解,顺顺利利地把它给解决了哈! 二、什么是存储过程? 在数据库中,存储过程是一种预编译的SQL语句集合,它可以接受参数,执行一系列的操作,并返回结果。用存储过程,咱们就能实现一举多得的效果:首先,让代码重复利用的次数蹭蹭上涨;其次,能有效减少网络传输的数据量,让信息跑得更快更稳;再者,还能给系统安全加把锁,提升整体的安全性。 三、为什么会出现存储过程调用错误? 当我们尝试调用一个不存在的存储过程时,就会出现“存储过程调用错误”。这可能是由于以下几个原因: 1. 存储过程的名字拼写错误。 2. 存储过程所在的数据库或者表名错误。 3. 没有给存储过程传递正确的参数。 四、如何避免存储过程调用错误? 为了避免存储过程调用错误,我们可以采取以下几种方法: 1. 在编写存储过程的时候,一定要确保名字的正确性。如果存储过程的名字太长,可以用下划线代替空格,如“get_customer_info”代替“get customer info”。 2. 确保数据库和表名的正确性。如果你正在连接的是远程服务器上的数据库,那可别忘了先确认一下网络状况是否一切正常,再瞅瞅服务器是否已经在线并准备就绪。 3. 在调用存储过程之前,先查看其定义,确认参数的数量、类型和顺序是否正确。如果有参数,还要确保已经传入了对应的值。 五、如何解决存储过程调用错误? 如果出现了存储过程调用错误,我们可以按照以下步骤进行排查: 1. 首先,查看错误信息。错误信息通常会告诉你错误的原因和位置,这是解决问题的第一步。 2. 如果错误信息不够清晰,可以通过日志文件进行查看。日志文件通常记录了程序运行的过程,可以帮助我们找到问题所在。 3. 如果还是无法解决问题,可以通过搜索引擎进行查找。嘿,你知道吗?这世上啊,不少人其实都碰过和我们一样的困扰呢。他们积累的经验那可是个宝,能帮咱们火眼金睛般快速找准问题所在,顺道就把解决问题的锦囊妙计给挖出来啦! 六、总结 总的来说,“存储过程调用错误”是一个常见的Hive错误,但只要我们掌握了它的产生原因和解决方法,就可以轻松地处理。记住啊,每当遇到问题,咱得保持那颗淡定的心和超级耐心,像剥洋葱那样一层层解开它,只有这样,咱们的编程功夫才能实打实地提升上去! 七、附录 Hive代码示例 sql -- 创建一个名为get_customer_info的存储过程 CREATE PROCEDURE get_customer_info(IN cust_id INT) BEGIN SELECT FROM customers WHERE id = cust_id; END; -- 调用存储过程 CALL get_customer_info(1); 以上就是一个简单的存储过程的创建和调用的Hive代码示例。希望对你有所帮助!
2023-06-04 18:02:45
455
红尘漫步-t
Apache Atlas
...跟踪数据从源头到最终使用过程的技术方法,它揭示了数据在整个系统中的流转路径和处理过程。在实际应用中,Apache Atlas能够记录并展示数据在不同阶段的转换和流动情况,便于用户在面临数据问题时快速定位问题源头,评估影响范围,并据此制定相应的修复策略。 数据治理 , 数据治理是指企业为确保数据质量、安全性和合规性而建立的一系列政策、流程、标准和度量体系。借助Apache Atlas这类元数据管理工具,企业能够实现更精细的数据资产管理与控制,包括但不限于数据生命周期管理、数据权限管理、数据质量和一致性维护,从而提升整体数据价值,并满足日益严格的数据法规要求。
2023-05-17 13:04:02
438
昨夜星辰昨夜风
Shell
... 一种软件工具,用于记录文件(特别是源代码)的所有更改历史。它允许用户回溯到过去的版本,追踪每个版本的修改内容,并且在多人协作开发时,能有效地管理不同版本之间的差异,从而避免冲突。在本文中,版本控制系统主要用于Shell脚本的版本管理,帮助开发者追踪脚本的修改历史,便于问题定位和团队协作。 Git , 目前最流行的分布式版本控制系统之一。与传统的集中式版本控制系统不同,Git允许每个开发者在本地计算机上拥有完整的代码库副本,支持离线操作,并且具有强大的分支管理功能。本文中,Git作为主要示例,演示了如何在Shell脚本中进行版本控制,包括初始化仓库、添加文件、提交更改以及使用别名简化命令等操作。 别名 , 在Shell脚本中,别名是一种简化命令行输入的方法,通过定义简短的命令来执行复杂的命令序列。例如,在本文中,作者建议在配置文件(如~/.bashrc或~/.zshrc)中设置gs作为git status的别名,gc作为git commit -m的别名,从而提高工作效率。
2025-01-26 15:38:32
50
半夏微凉
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
xz -z -k file.txt
- 使用xz工具对文件进行压缩(更强压缩比)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"