前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Elasticsearch集成应用 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hibernate
...1. 引言 在企业级应用开发中,Hibernate作为一款强大的ORM框架,极大地简化了Java对象与关系型数据库之间的映射操作。然而,在实际做项目的时候,我们常常会碰到关于数据库表权限分配的难题,尤其在那种用户多、角色乱七八糟的复杂系统里头,这个问题更是频繁出现。这篇文儿,咱们要接地气地聊聊Hibernate究竟是怎么巧妙应对和化解这类权限问题的,并且会结合实际的代码例子,掰开了揉碎了给你细细道来。 2. Hibernate与数据库权限概述 在使用Hibernate进行持久化操作时,开发者需要理解其底层是如何与数据库交互的。默认情况下,Hibernate是通过连接数据库的用户身份执行所有CRUD(创建、读取、更新、删除)操作的。这就意味着,这个用户的数据库权限将直接影响到应用能否成功完成业务逻辑。 3. 权限控制的重要性 假设我们的系统中有不同角色的用户,如管理员、普通用户等,他们对同一张数据表的访问权限可能大相径庭。例如,管理员可以完全操作用户表,而普通用户只能查看自己的信息。这个时候,咱们就得在Hibernate这个环节上动点小心思,搞个更精细化的权限管理,确保不会因为权限不够而整出什么操作失误啊,数据泄露之类的问题。 4. Hibernate中的权限控制实现策略 (a) 配置文件控制 首先,最基础的方式是通过配置数据库连接参数,让不同的用户角色使用不同的数据库账号登录,每个账号具有相应的权限限制。在Hibernate的hibernate.cfg.xml配置文件中,我们可以设置如下: xml admin secret (b) 动态SQL与拦截器 对于更复杂的场景,可以通过自定义拦截器或者HQL动态SQL来实现权限过滤。例如,当我们查询用户信息时,可以添加一个拦截器判断当前登录用户是否有权查看其他用户的数据: java public class AuthorizationInterceptor extends EmptyInterceptor { @Override public String onPrepareStatement(String sql) { // 获取当前登录用户ID Long currentUserId = getCurrentUserId(); return super.onPrepareStatement(sql + " WHERE user_id = " + currentUserId); } } (c) 数据库视图与存储过程 另外,还可以结合数据库自身的安全性机制,如创建只读视图或封装权限控制逻辑于存储过程中。Hibernate照样能搞定映射视图或者调用存储过程来干活儿,这样一来,我们就能在数据库这一层面对权限实现滴水不漏的管控啦。 5. 实践中的思考与挑战 尽管Hibernate提供了多种方式实现权限控制,但在实际应用中仍需谨慎对待。比如,你要是太过于依赖那个拦截器,就像是把所有鸡蛋放在一个篮子里,代码的侵入性就会蹭蹭上涨,维护起来能让你头疼到怀疑人生。而如果选择直接在数据库层面动手脚做权限控制,虽然听起来挺高效,但特别是在那些视图或者存储过程复杂得让人眼花缭乱的情况下,性能可是会大打折扣的。 因此,在设计权限控制系统时,我们需要根据系统的具体需求,结合Hibernate的功能特性以及数据库的安全机制,综合考虑并灵活运用各种策略,以达到既能保证数据安全,又能优化性能的目标。 6. 结语 总之,数据库表访问权限管理是构建健壮企业应用的关键一环,Hibernate作为 ORM 框架虽然不能直接提供全面的权限控制功能,但通过合理利用其扩展性和与数据库的良好配合,我们可以实现灵活且高效的权限控制方案。在这个历程里,理解、探索和实践就像是我们不断升级打怪的“能量饮料”,让我们一起在这场技术的大冒险中并肩前进,勇往直前。
2023-09-21 08:17:56
419
夜色朦胧
Java
...oxyTable中的应用,都体现了Vue.js社区不断追求技术创新和解决问题的决心。这也提示我们,在面对类似问题时,不仅要善于运用已有的解决手段,还要关注行业动态,适时引入新的技术和方案来提升开发效率和用户体验。
2023-03-05 23:22:24
344
星辰大海_t
转载文章
...续繁荣以及各类企业级应用对于权限管理要求的提高,类似“uni-app 微信小程序根据角色动态的更改底部tabbar”的解决方案正逐步成为行业内的标准配置。 结合最新的uni-app开发框架和uview-ui组件库,开发者可以更加高效地实现动态tabbar的设计与实施。事实上,诸如阿里、腾讯等大型企业在其内部或对外提供的多角色权限控制类小程序中,也广泛运用了状态管理工具(如Vuex)进行数据同步和界面更新,确保不同权限用户在登录后能迅速切换到与其身份相符的功能页面。 此外,随着微信小程序平台对安全性、性能优化等方面的不断升级,如何在满足功能需求的同时兼顾页面加载速度和白屏问题,也成为开发者关注的重点。未来,我们期待更多关于动态设置tabbar的技术探讨和最佳实践涌现,进一步推动小程序开发领域向着更高效、更安全、更个性化的方向发展。 同时,针对权限管理在全栈开发中的重要性,推荐读者深入了解OAuth2.0、JWT等授权协议的应用场景,以便在设计复杂权限系统时提供理论支撑和技术指导。通过研读相关文献及成功案例,开发者可以更好地将角色权限控制与前端UI展示相结合,打造更为流畅、灵活且符合业务需求的小程序产品。
2023-03-06 15:14:00
136
转载
Golang
...方式,还要根据具体的应用场景和个人偏好来决定。 2. 实践篇 构建高性能数据库访问 现在,让我们进入实践部分。咱们这就来点儿实战教学,用几个小例子带你看看怎么用Go语言搞定又快又稳的数据库操作。 2.1 使用标准库 database/sql Go语言的标准库提供了database/sql包,它是一个用于SQL数据库的通用接口。下面是一个简单的例子: go package main import ( "database/sql" _ "github.com/go-sql-driver/mysql" // 注意这里需要导入MySQL驱动 "fmt" ) func main() { db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/dbname") if err != nil { panic(err.Error()) } defer db.Close() // 执行一个简单的查询 rows, err := db.Query("SELECT id, name FROM users") if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var id int var name string err = rows.Scan(&id, &name) if err != nil { panic(err.Error()) } fmt.Println(id, name) } } 2.2 使用ORM工具:Gorm 对于更复杂的项目,使用ORM工具如Gorm可以极大地简化数据库操作。Gorm就像是给数据库操作加了个“翻译”,让我们可以用更贴近日常说话的方式来摆弄数据库里的数据,感觉就像是在玩弄对象一样轻松。下面是如何使用Gorm的一个简单示例: go package main import ( "gorm.io/driver/mysql" "gorm.io/gorm" "log" ) type User struct { ID uint Name string } func main() { dsn := "user:password@tcp(127.0.0.1:3306)/dbname?charset=utf8mb4&parseTime=True&loc=Local" db, err := gorm.Open(mysql.Open(dsn), &gorm.Config{}) if err != nil { log.Fatal(err) } // 创建用户 newUser := User{Name: "John Doe"} db.Create(&newUser) // 查询用户 var user User db.First(&user, newUser.ID) log.Printf("Found user: %s\n", user.Name) } 3. 性能优化技巧 在实际开发中,除了基础的数据库操作外,我们还需要考虑如何进一步优化性能。这里有几个建议: - 索引:确保你的数据库表上有适当的索引,特别是对于那些频繁查询的字段。 - 缓存:利用缓存机制(如Redis)来存储常用的数据结果,可以显著减少数据库的负载。 - 批量操作:尽量减少与数据库的交互次数,比如批量插入或更新数据。 - 异步处理:对于耗时的操作,可以考虑使用异步处理方式,避免阻塞主线程。 4. 结语 通过以上的内容,我们大致了解了如何使用Go语言进行高性能的数据库访问和操作。当然,这只是冰山一角,真正的高手之路还很长。希望能给你带来点儿灵感,让你在Go语言的路上越走越远,越走越顺!记住,编程是一场马拉松,不是短跑,保持耐心,不断学习和尝试新的东西吧! --- 希望这篇文章能帮助你更好地理解和应用Golang在数据库访问方面的最佳实践。如果你有任何问题或想法,欢迎随时交流讨论!
2024-10-21 15:42:48
78
百转千回
Tomcat
...何解决Tomcat中应用程序的性能瓶颈? 1. 引言 嗨,小伙伴们!今天我们要聊的是Tomcat服务器中常见的问题——性能瓶颈。汤姆猫(Tomcat)是一款轻量级的网页服务器,因为它开源且容易上手,所以很多人都在用。有时候我们会碰到一些让人头疼的问题,比如说应用反应迟钝,服务器也快扛不住了之类的。这些问题背后往往隐藏着一些性能瓶颈。那么,我们该如何解决呢?让我们一起来探索一下吧! 2. 性能瓶颈的常见原因 2.1 内存泄漏 内存泄漏是Tomcat中常见的一个问题。当你的应用里有很多对象没及时放手,JVM就会占用太多内存,这样整个系统都会变慢。 示例代码: java public class MemoryLeakExample { private static List list = new ArrayList<>(); public void createMemoryLeak() { while (true) { byte[] b = new byte[1024 1024]; // 创建一个1MB大小的数组 list.add(b); // 添加到列表中 } } } 这段代码会不断创建新的byte[]对象并添加到list中,导致内存不断增长,最终造成内存泄漏。 2.2 线程阻塞 线程阻塞是另一个常见的问题。当线程苦苦等待数据库连接或者网络请求这些资源时,整个系统就会变得磨磨蹭蹭的,响应速度明显下降。 示例代码: java public class ThreadBlockingExample { public void blockThread() { try { Thread.sleep(5000); // 模拟5秒的阻塞 } catch (InterruptedException e) { e.printStackTrace(); } } } 这段代码中的Thread.sleep()方法会导致当前线程阻塞5秒钟,如果这种阻塞频繁发生,就会严重影响系统性能。 2.3 数据库查询效率低下 数据库查询效率低下也是常见的性能瓶颈之一。例如,执行复杂的SQL查询或未优化的索引可能导致查询速度变慢。 示例代码: sql SELECT FROM users WHERE age > 20; -- 这条查询语句可能会导致全表扫描 这条SQL查询语句没有使用索引,会导致全表扫描,进而降低查询效率。 3. 解决方案 3.1 优化内存管理 要解决内存泄漏问题,我们可以采用以下几种方法: - 定期重启Tomcat:虽然不太优雅,但确实是一种简单有效的方法。 - 使用Profiler工具:如VisualVM、JProfiler等工具可以帮助我们定位内存泄漏的位置。 - 优化代码逻辑:确保及时释放不再使用的对象。 示例代码: java public class OptimizedMemoryExample { private static List list = new ArrayList<>(); public void optimizeMemoryUsage() { for (int i = 0; i < 1024 1024; i++) { byte[] b = new byte[1024]; list.add(b); } list.clear(); // 清空列表,释放内存 } } 这段代码在创建完数组后立即清空列表,释放了内存,避免了内存泄漏。 3.2 减少线程阻塞 减少线程阻塞的方法包括: - 异步处理:将耗时操作放在后台线程中执行。 - 设置超时时间:为网络请求、数据库查询等操作设置合理的超时时间。 示例代码: java public class AsyncProcessingExample { public void processAsync() throws InterruptedException { Thread thread = new Thread(() -> { try { Thread.sleep(5000); // 模拟耗时操作 System.out.println("Async task completed"); } catch (InterruptedException e) { e.printStackTrace(); } }); thread.start(); // 主线程继续执行其他任务 } } 这段代码通过创建一个新的线程来执行耗时操作,主线程可以继续执行其他任务,从而减少了线程阻塞。 3.3 优化数据库查询 优化数据库查询的方法包括: - 使用索引:确保经常使用的字段上有索引。 - 优化SQL语句:避免使用SELECT ,只选择需要的列。 示例代码: sql CREATE INDEX idx_users_age ON users(age); -- 创建索引 SELECT id, name FROM users WHERE age > 20; -- 使用索引查询 这条SQL语句使用了索引,并且只选择了需要的列,从而提高了查询效率。 4. 结论 总之,解决Tomcat中的性能瓶颈需要从多个角度入手。内存泄漏、线程阻塞和数据库查询效率低下都是常见的问题。要想让系统跑得飞快,咱们就得动动手,好好捯饬一下代码。比如理顺逻辑,用上异步操作,再把那些SQL语句打磨得漂漂亮亮的。这样子一来,系统性能蹭蹭上涨,用起来也更顺畅了。希望这篇文章对你有所帮助,如果你还有其他好的解决方案,欢迎留言分享! 加油,我们一起让Tomcat跑得更快更稳!
2025-01-07 16:14:31
35
草原牧歌
转载文章
...的庆祝活动也开始广泛应用定制化的烟花特效。《虚拟世界中的烟火:从2D到3D的演变》一文就介绍了在VR/AR环境中,开发团队如何根据用户的空间感知和交互方式,设计出既符合现实物理规律又能满足沉浸式体验需求的烟花特效。 不仅如此,烟花特效也在游戏开发领域得到广泛应用。许多在线游戏会在特定节日或活动中添加烟花元素,以此提升玩家的游戏体验和情感共鸣。例如,《游戏开发者杂志》最近一篇报道揭示了游戏设计师如何将烟花特效融入游戏剧情与任务设定,让玩家在游戏中感受到浓厚的节庆氛围。 综上所述,在不断发展的前端技术和新兴应用场景下,烟花特效的设计与实现正迎来更多的可能性与挑战,值得广大开发者持续关注和研究。
2023-02-15 08:02:38
277
转载
Kubernetes
...Filter)技术的应用正在逐步改变传统网络数据包处理方式,为解决复杂网络问题提供了新的思路。此外,Service Mesh架构也在推动着服务间通信模式的变革,Istio、Linkerd等项目正着力于提供跨多个Pod甚至跨集群的服务间安全、可靠且可观测的通信能力。 3. 实战案例分析与故障排查经验分享:各大云服务商和技术博客上常有基于真实场景的Kubernetes网络故障排查实例,包括因网络桥接异常导致的容器间通信问题。学习这些案例不仅能帮助您掌握排查方法,还能了解如何结合日志分析、网络抓包等工具快速定位问题根源,提升运维效率。 4. Kubernetes官方文档与社区讨论:保持对Kubernetes官方文档中关于网络部分的关注是必不可少的,其中详细介绍了不同网络模型的工作原理及配置方法。同时,积极参与Stack Overflow、GitHub Issues等社区平台上的讨论,可以及时获取到第一手的问题反馈与解决方案,紧跟社区步伐,确保您的Kubernetes网络环境始终处于最佳状态。
2024-03-01 10:57:21
122
春暖花开
Netty
...性能异步事件驱动网络应用框架,在众多大型项目中承担了关键角色。尤其在实时通信、游戏后端服务器开发以及分布式系统构建等领域,Netty的资源管理机制显得尤为重要。 事实上,Netty团队持续致力于改进其资源回收及性能优化策略。就在最近的4.1版本更新中,Netty进一步强化了其内存管理和对象生命周期控制能力,例如引入更精细化的ByteBuf池化管理,有效减少了内存碎片并提升了资源利用率。 同时,有开发者深度研究了Netty在高并发场景下的资源回收表现,并撰写了相关实战案例分析文章,通过对比不同资源管理策略的实际效果,为社区提供了宝贵的实践参考。此外,一些知名互联网公司如阿里巴巴、腾讯等也在其技术博客上分享了如何结合业务特点定制化使用Netty进行资源管理的经验心得。 因此,对于软件开发者而言,紧跟Netty的最新发展动态,深入理解并灵活运用其资源管理机制,不仅可以解决大规模数据传输过程中的资源瓶颈问题,更能有力地保障系统的稳定性和健壮性,从而更好地适应现代复杂分布式系统的挑战。
2023-03-21 08:04:38
209
笑傲江湖-t
Netty
...l类型时,应根据实际应用场景选择最适合的实现方式,例如对于低延迟需求,可以选择NioSocketChannel;而对于高并发场景,则推荐使用EpollSocketChannel。 此外,Netty社区也一直在不断更新和完善,最新版本中引入了一些新特性,如改进的内存管理机制、增强的安全性功能以及对HTTP/3协议的支持。这些更新不仅提升了Netty的性能,还增强了其在现代网络环境下的适应性和安全性。 值得一提的是,Netflix作为Netty的重要用户之一,也在其内部项目中大量使用了Netty。Netflix的技术博客中分享了他们在大规模分布式系统中使用Netty的经验和最佳实践,其中包括如何有效地管理和扩展EventLoop线程池,以及如何利用ChannelPipeline进行复杂的业务逻辑处理。这些经验对于正在考虑使用Netty的企业和技术人员来说,具有很高的参考价值。 通过上述案例可以看出,Netty作为一种高性能的网络通信框架,在实际应用中展现出强大的能力和灵活性。无论是针对特定场景的优化,还是社区持续的技术更新,都使得Netty成为构建现代分布式系统不可或缺的一部分。对于希望提升系统性能和可靠性的开发者而言,深入学习和掌握Netty的相关知识无疑是非常必要的。
2025-02-26 16:11:36
60
醉卧沙场
Golang
...写健壮的Golang应用程序的关键在于,时刻关注并妥善处理代码中的异常情况。虽然Go语言没有那种直接内置的异常处理功能,但是它自个儿独创的一种错误处理模式可厉害了,能更好地帮我们写出既清晰又易于掌控的代码,让编程变得更有逻辑、更靠谱。只有当我们真正把那些藏起来的风险点都挖出来,然后对症下药,妥妥地处理好,才能保证咱们的程序在面对各种难缠复杂的场景时,也能稳如老狗,既表现出强大的实力,又展现无比的靠谱。所以,甭管你是刚摸Go语言的小白,还是已经身经百战的老鸟,都得时刻记在心里:每一个错误都值得咱好好对待,这可是对程序生命力的呵护和尊重呐!
2024-01-14 21:04:26
530
笑傲江湖
Scala
...例子,但在真实世界的应用场景里,ParMap这个家伙可是能够轻轻松松处理那些让人头疼的复杂并行任务。 4. 思考与理解 使用并发集合时,我们需要充分理解其背后的并发模型和机制。虽然ParSeq和ParMap可以大幅提升性能,但并非所有的操作都适合并行化。比如,当你手头的数据量不大,或者你的操作特别依赖先后顺序时,一股脑儿地追求并行处理,可能会适得其反,反而给你带来更多的额外成本。 此外,还需注意的是,虽然ParSeq和ParMap能自动利用多核资源,但我们仍需根据实际情况调整并行度,以达到最优性能。就像在生活中,“人多好办事”这句话并不总是那么灵验,只有大家合理分工、默契合作,才能真正让团队的效率飙到最高点。 总结来说,Scala的ParSeq和ParMap为我们打开了并发编程的大门,让我们能在保证代码简洁的同时,充分发挥硬件潜力,提升程序性能。但就像任何强大的工具一样,合理、明智地使用才是关键所在。所以呢,想要真正玩转并发集合这玩意儿,就得不断动手实践、动脑思考、一步步优化,这就是咱们必须走的“修行”之路啦!
2023-03-07 16:57:49
130
落叶归根
Go Gin
...。想象一下,你的酷炫应用得应对各种宝贝,比如用户的点击,商品的信息,还有那些五花八门的评价,这时候,用上路由组这个神奇的东西,所有的关联操作URL都能井井有条,就像整理了一个超棒的文件夹,再也不怕代码重复累赘了,是不是轻松多了? 三、创建基本路由组 首先,让我们来创建一个基础的路由组。在main.go中,我们导入gin包并初始化一个gin.Engine: go package main import ( "github.com/gin-gonic/gin" ) func main() { r := gin.Default() } 接下来,我们可以定义一个路由组,它会接收所有以"/api/v1"开头的URL: go r := gin.Default() v1 := r.Group("/api/v1") 四、添加路由到路由组 现在,我们在v1路由组下添加一些常见的HTTP方法(GET, POST, PUT, DELETE): go v1.GET("/users", getUserList) v1.POST("/users", createUser) v1.PUT("/users/:id", updateUser) v1.DELETE("/users/:id", deleteUser) 这里,:id是一个动态参数,表示URL中的某个部分可以变化。比如说,当你访问"/api/v1/users/123"这个路径时,它就像个神奇的按钮,直接触发了“updateUser”这个函数的执行。 五、嵌套路由组 有时候,你可能需要更复杂的URL结构,这时可以使用嵌套路由组: go v1 := r.Group("/users") { v1.GET("/:id", getUser) v1.POST("", createUser) // 注意这里的空字符串,表示没有特定的路径部分 } 六、中间件的应用 在路由组上添加中间件可以为一组路由提供通用的功能,如验证、日志记录等。例如,我们可以在所有v1组的请求中添加身份验证中间件: go authMiddleware := func(c gin.Context) { // 这里是你的身份验证逻辑 } v1.Use(authMiddleware) 七、总结与拓展 通过以上步骤,你已经掌握了如何在Go Gin中使用路由组。路由组不仅帮助我们组织代码,还使我们能够更好地复用和扩展代码。当你碰到那些需要动点脑筋的难题,比如权限控制、出错应对的时候,你就把这玩意儿往深里挖,扩展升级,让它变得更聪明更顺溜。 记住,编程就像搭积木,每一块都对应着一个功能。用Go Gin的聪明路由功能,就像给你的代码设计了个贴心的导航系统,让结构井然有序,维护起来就像跟老朋友聊天一样顺溜。祝你在Go Gin的世界里玩得开心,构建出强大的Web应用!
2024-04-12 11:12:32
502
梦幻星空
NodeJS
...方式来构建高性能网络应用程序。随着Node.js的日益火爆和不断进步,现在市面上涌现出一大批五花八门的web开发框架,真是让人眼花缭乱哪!其中,Express和Koa是最受欢迎的两个框架之一。那么,这两者之间有何不同呢?接下来,我们将深入探讨这个问题。 二、什么是Koa和Express? Koa和Express都是基于Node.js的web开发框架,它们都提供了强大的路由系统、中间件机制和模板引擎等功能。然而,两者的实现方式和设计理念有所不同。 三、Koa的特点 1. 轻量级设计 相比Express,Koa的代码更简洁,没有过多的内置特性,使得开发者能够更好地专注于业务逻辑。 2. 原生异步I/O Koa采用了最新的ES6语法,支持Promise和async/await等特性,这使得Koa具有更好的性能和可读性。 3. 中间件流程控制 Koa使用了柯里化和函数式编程的理念,提供了一种新的中间件处理方式,使得中间件的调用变得更加清晰和易于维护。 四、Express的特点 1. 大而全 Express提供了大量的内置特性,包括模板引擎、静态文件服务器、错误处理等,使得开发者能够更快地搭建出一个完整的web应用。 2. 更丰富的第三方模块支持 由于Express有着广泛的用户群体和社区支持,因此有很多优秀的第三方模块可供选择,如Passport、Body-parser等。 3. 优雅的错误处理 Express提供了优雅的错误处理机制,可以在发生错误时自动捕获并返回一个统一的错误页面,从而提高了用户体验。 五、对比总结 综上所述,Koa和Express各有其特点和优势。如果你追求简洁快速,对高效有着特别的偏爱,那么Koa绝对是个不错的选择;而如果你更倾向于稳扎稳打,喜欢久经沙场、成熟可靠的框架,那Express绝对是你的不二之选。在实际开发中,可以根据项目需求和个人喜好来选择合适的框架。 六、示例代码 为了更好地理解和掌握这两种框架,我们来通过一些代码示例来进行比较。 首先,我们来看一下如何使用Express来创建一个新的web应用: javascript const express = require('express'); const app = express(); const port = 3000; app.get('/', (req, res) => { res.send('Hello World!'); }); app.listen(port, () => { console.log(Server is listening at http://localhost:${port}); }); 这段代码定义了一个简单的HTTP服务,当访问根路径时,会返回'Hello World!'字符串。如果需要添加更多的路由,就像在地图上画出新路线一样简单,你只需要在对应的位置“挥笔一画”,加个新的app.get()或者app.post()方法就大功告成了。就像是给你的程序扩展新的“小径”一样,轻松便捷。 然后,我们来看一下如何使用Koa来创建一个新的web应用: javascript const Koa = require('koa'); const app = new Koa(); app.use(async ctx => { ctx.body = 'Hello World!'; }); app.listen(3000, () => { console.log('Server is listening at http://localhost:3000'); }); 这段代码也定义了一个简单的HTTP服务,但是使用了Koa的柯里化和async/await特性,使得代码更加简洁和易读。举个例子来说,这次咱们就做了件特简单的事儿,就是把返回的内容设成'Hello World!',别的啥路由规则啊,都没碰,没加。 七、结论 总的来说,Koa和Express都是非常优秀的Node.js web开发框架,它们各有各的优点和适用场景。无论是选择哪一种框架,都需要根据自己的需求和技术水平进行考虑。希望通过这篇文章,能够帮助大家更好地理解和掌握这两种框架,为自己的web开发工作带来更大的便利和效率。
2023-07-31 20:17:23
102
青春印记-t
MemCache
...对象缓存系统,被广泛应用于减轻数据库负载,提高动态Web应用的响应速度。然而,在实际开发过程中,我们偶尔会遇到设置的缓存过期时间并未如预期那样生效的情况,这无疑给我们的系统带来了一定困扰。本文将深入探讨这个问题,并通过实例代码进行解析和解决方案演示。 2. Memcached过期时间设定原理 在使用Memcached时,我们可以为每个存储的对象指定一个过期时间(TTL, Time To Live)。当达到这个时间后,该缓存项将自动从Memcached中移除。但是,这里有个关键知识点要敲黑板强调一下:Memcached这家伙并不严格按照你给它设定的时间去清理过期的数据,而是玩了个小聪明,用了一个叫LRU(最近最少使用)的算法,再搭配上数据的到期时间,来决定哪些数据该被淘汰掉。 python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=0) mc.set('key', 'value', time=60) 这里设置了60秒后过期 上述Python示例中,我们尝试设置了一个60秒后过期的缓存项。按理说,60秒一过,你应该能见到这个键变成失效状态。不过呢,实际情况可能不是那么“听话”。除非Memcached这家伙发现自己的空间快不够用了,急需存储新的数据,然后还刚好挑中了这个最不常用的键,否则它可能并不会那么痛快地立马消失不见。 3. 过期时间未生效的原因及分析 3.1 时间精度问题 首先,我们要明确的是,Memcached服务器内部对过期时间的处理并不保证绝对的精度。这就意味着,就算你把过期时间精细到秒去设置了,但Memcached这家伙由于自身内部的定时任务执行不那么准时,或者其他一些小插曲,可能会让过期时间的判断出现一点小误差。 3.2 LRU缓存淘汰策略 其次,正如前面所述,Memcached基于LRU算法以及缓存项的过期时间进行数据淘汰。只有当缓存满载并且某个缓存项已过期,Memcached才会将其淘汰。所以,就算你设置的缓存时间已经过了保质期,但如果这个缓存项是个“人气王”,被大家频频访问,或者Memcached的空间还绰绰有余,那么这个缓存项就可能还在缓存里赖着不走。 3.3 客户端与服务器时间差 另外,客户端与Memcached服务器之间的时间差异也可能导致过期时间看似未生效的问题。确保客户端和服务器时间同步一致对于正确计算缓存过期至关重要。 4. 解决方案与实践建议 4.1 确保时间同步 为了防止因时间差异导致的问题,我们需要确保所有涉及Memcached操作的服务器和客户端具有准确且一致的时间。 4.2 合理设置缓存有效期 理解并接受Memcached过期机制的非实时性特点,根据业务需求合理设置缓存的有效期,尽量避免依赖于过期时间的精确性来做关键决策。 4.3 使用touch命令更新过期时间 Memcached提供了touch命令用于更新缓存项的过期时间,可以在某些场景下帮助我们更好地控制缓存生命周期。 python mc.touch('key', 60) 更新key的过期时间为60秒后 5. 结语 总的来说,Memcached过期时间未按预期生效并非其本身缺陷,而是其基于LRU策略及自身实现机制的结果。在日常开发过程中,我们需要深入了解并适应这些特性,以便更高效地利用Memcached进行缓存管理。而且,通过灵活巧妙的设置和实际编码操作,我们完全可以成功避开这类问题引发的影响,让Memcached变成我们提升系统性能的好帮手,就像一位随时待命、给力的助手一样。在捣鼓技术的道路上,能够理解、深入思考,并且灵活机动地做出调整,这可是我们不断进步的关键招数,也是编程世界让人欲罢不能的独特趣味所在。
2023-06-17 20:15:55
122
半夏微凉
MyBatis
...溜转,这样一来,你的应用性能就能噌噌往上涨,开发效率也能像火箭升空一样蹭蹭提升。同时呢,掌握并实际运用这些小技巧,也能让你在面对其他各种复杂场景下的数据处理难题时,更加游刃有余,轻松应对。
2024-02-19 11:00:31
76
海阔天空-t
转载文章
...建RIA(丰富互联网应用)中的重要作用。随着技术的发展和浏览器对HTML5、WebGL等现代标准的支持增强,Flash的地位虽有所改变,但其在网络通信和实时数据处理方面的理念仍然值得借鉴。 现今,开发者更倾向于采用WebSocket或Fetch API实现网页与服务器之间的双向通信。例如,通过WebSocket协议,前端JavaScript可以直接创建持久化的TCP连接,实现实时数据推送与接收,类似于本文中NetConnection的功能。同时,Fetch API则提供了更为便捷的HTTP请求机制,用于获取或提交服务器数据。 此外,在Adobe宣布停止更新Flash Player之后,Flex框架已转向Apache Flex项目,并支持以JSFL(JavaScript Flash库)的形式运行在现代浏览器上,结合最新的web开发技术如Angular、React等,继续为开发者提供高效构建企业级应用的解决方案。 深入到服务器端编程领域,Node.js、Python Flask/Django、Java Spring Boot等平台提供了丰富的API接口设计和开发工具,使得前后端的数据交换更为灵活高效。这些技术同样强调事件驱动和异步编程模型,与ActionScript 3.0中的网络通信原理不谋而合。 总的来说,尽管Flash的时代已经过去,但它所承载的技术思想和模式在现代web开发中得到了延续和升华。理解并掌握这些核心概念,无论是在学习新的前端技术栈还是优化现有系统的过程中,都将大有裨益。
2023-09-10 18:10:29
67
转载
Netty
...ldUpdater的应用 Netty巧妙地利用volatile变量和AtomicIntegerFieldUpdater来跟踪ByteBuf的读写索引,减少了对象状态同步的开销,并有效地控制了内存碎片。这种设计使得并发环境下对ByteBuf的操作更为安全,也更有利于JVM进行内存优化。 结语:思考与探讨 面对复杂多变的网络环境和苛刻的性能要求,Netty的ByteBuf内存管理机制犹如一位深思熟虑的管家,细心照料着每一份宝贵的系统资源。它的设计真有两把刷子,一方面,开发团队那帮家伙对性能瓶颈有着鹰眼般的洞察力,另一方面,他们在实际动手干工程时,也展现出了十足的匠心独运,让人不得不服。深入理解并合理运用这些机制,无疑将有助于我们构建出更加稳定、高效的网络应用服务。下回你手里捏着ByteBuf这把锋利的小家伙时,不妨小小地惊叹一下它里面蕴藏的那股子深厚的技术功底,同时,也别忘了那些开发者们对卓越品质那份死磕到底的热情和坚持。
2023-11-04 20:12:56
292
山涧溪流
Redis
...,Redis这种广泛应用于缓存和消息中间件中的NoSQL数据库,它的数据结构是如何影响其性能和可扩展性的呢?让我们一起来深入探究。 二、数据结构简介 Redis支持多种数据类型,包括字符串、哈希、列表、集合和有序集合等。每种数据类型都有其独特的特性和适用范围。 1. 字符串 字符串是最基础的数据类型,可以存储任意长度的文本。在Redis中,字符串可以通过SET命令设置,通过GET命令获取。 python 设置字符串 r.set('key', 'value') 获取字符串 print(r.get('key')) 2. 哈希 哈希是一种键值对的数据结构,可以用作复杂的数据库表。在Redis中,哈希可以通过HSET命令设置,通过HGET命令获取。 python 设置哈希 h = r.hset('key', 'field1', 'value1') print(h) 获取哈希 print(r.hgetall('key')) 3. 列表 列表是一种有序的元素序列,可以用于保存事件列表或者堆栈等。在Redis中,列表可以通过LPUSH命令添加元素,通过LRANGE命令获取元素。 python 添加元素 l = r.lpush('list', 'item1', 'item2') print(l) 获取元素 print(r.lrange('list', 0, -1)) 4. 集合 集合是一种无序的唯一元素序列,可以用于去重或者检查成员是否存在。在用Redis的时候,如果你想给集合里添点儿啥元素,就使出"SADD"这招命令;想确认某个元素是不是已经在集合里头了,那就派"SISMEMBER"这个小助手去查一查。 python 添加元素 s = r.sadd('set', 'item1', 'item2') print(s) 检查元素是否存在 print(r.sismember('set', 'item1')) 5. 有序集合 有序集合是一种有序的元素序列,可以用于排序和查询范围内的元素。在Redis中,有序集合可以通过ZADD命令添加元素,通过ZRANGE命令获取元素。 python 添加元素 z = r.zadd('sorted_set', {'item1': 1, 'item2': 2}) print(z) 获取元素 print(r.zrange('sorted_set', 0, -1)) 三、数据结构与性能的关系 数据结构的选择直接影响了Redis的性能表现。下面我们就来看看几种常见的应用场景以及对应的最优数据结构选择。 1. 缓存 对于频繁读取但不需要持久化存储的数据,使用字符串类型最为合适。因为字符串类型操作简单,速度快,而且占用空间小。 2. 键值对 对于只需要查找和更新单个字段的数据,使用哈希类型最为合适。因为哈希类型可以快速地定位到具体的字段,而且可以通过字段名进行更新。 3. 序列 对于需要维护元素顺序且不关心重复数据的情况,使用列表或者有序集合类型最为合适。因为这两种类型都支持插入和删除元素,且可以通过索引来访问元素。 4. 记录 对于需要记录用户行为或者日志的数据,使用集合类型最为合适。你知道吗,集合这种类型超级给力的!它只认独一无二的元素,这样一来,重复的数据就会被轻松过滤掉,一点儿都不费劲儿。而且呢,你想确认某个元素有没有在集合里,也超方便,一查便知,简直不要太方便! 四、数据结构与可扩展性的关系 数据结构的选择也直接影响了Redis的可扩展性。下面我们就来看看如何根据不同的需求选择合适的数据结构。 1. 数据存储需求 根据需要存储的数据类型和大小,选择最适合的数据类型。比如,假如你有大量的数字信息要存起来,这时候有序集合类型就是个不错的选择;而如果你手头有一大堆字符串数据需要存储的话,那就挑字符串类型准没错。 2. 性能需求 根据业务需求和性能指标,选择最合适的并发模型和算法。比如说,假如你想要飞快的读写速度,内存数据结构就是个好选择;而如果你想追求超快速的写入同时又要求几乎零延迟的读取体验,那么磁盘数据结构绝对值得考虑。 3. 可扩展性需求 根据系统的可扩展性需求,选择最适合的分片策略和分布模型。比如,假如你想要给你的数据库“横向发展”,也就是扩大规模,那么选用键值对分片的方式就挺合适;而如果你想让它“纵向生长”,也就是提升处理能力,哈希分片就是个不错的选择。 五、总结 综上所述,数据结构的选择对Redis的性能和可扩展性有着至关重要的影响。在实际操作时,咱们得瞅准具体的需求和场景,然后挑个最对口、最合适的数据结构来用。另外,咱们也得时刻充电、不断摸爬滚打尝试新的数据结构和算法,这样才能应对业务需求和技术挑战的瞬息万变。 六、参考文献 [1] Redis官方文档 [2] Redis技术内幕
2023-06-18 19:56:23
274
幽谷听泉-t
ActiveMQ
...实时客户服务系统中的应用。嘿,你们知道吗?ActiveMQ可是JMS(Java消息服务)规范的实现,也就是说,它能帮我们搞定一些头疼的问题,比如数据传输和异步通信。在如今这个信息爆炸的时代,实时客户支持变得越来越重要,而ActiveMQ就是那个能帮你搞定这一切的利器。 2. 什么是ActiveMQ? ActiveMQ是一个开源的消息代理,它的功能非常强大,能够处理大量的消息,并且具有很高的可靠性。这个工具超级 versatile(多才多艺),既能一对一聊天,也能像广播一样发消息给大家。而且,它跟各种编程语言都能愉快地玩耍,比如 Java、C、Python 这些,完全没有沟通障碍!这使得它成为构建复杂分布式系统的理想选择。设想一下,你正忙着搞一个实时客服系统,结果各种渠道的海量请求一股脑儿涌来——电邮、社交媒体、电话,应有尽有。这时你会发现,有个能高效处理这些消息的队列简直是救星啊! 3. 实时客户服务系统的需求分析 在设计一个实时客户服务系统时,我们需要考虑几个关键因素: - 高并发性:系统需要能够同时处理大量用户请求。 - 低延迟:响应时间要快,不能让用户等待太久。 - 可扩展性:随着业务的增长,系统需要能够轻松地进行水平扩展。 - 可靠性:即使出现故障,也不能丢失任何一条消息。 为了满足这些需求,我们可以利用ActiveMQ的强大功能来搭建我们的消息传递平台。接下来,我将通过几个具体的例子来展示如何使用ActiveMQ来实现这些目标。 4. 使用ActiveMQ实现消息传递 4.1 创建一个简单的点对点消息传递系统 首先,我们需要创建一个生产者(Producer)和消费者(Consumer)。生产者负责发送消息,而消费者则负责接收并处理这些消息。 java // 生产者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.MessageProducer; import javax.jms.Queue; import javax.jms.Session; import javax.jms.TextMessage; public class Producer { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建队列 Queue queue = session.createQueue("CustomerSupportQueue"); // 创建消息生产者 MessageProducer producer = session.createProducer(queue); // 发送消息 TextMessage message = session.createTextMessage("Hello, Customer!"); producer.send(message); System.out.println("Message sent successfully."); // 关闭资源 session.close(); connection.close(); } } java // 消费者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.Queue; import javax.jms.Session; public class Consumer { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建队列 Queue queue = session.createQueue("CustomerSupportQueue"); // 创建消息消费者 MessageConsumer consumer = session.createConsumer(queue); // 接收消息 Message message = consumer.receive(1000); if (message instanceof TextMessage) { TextMessage textMessage = (TextMessage) message; System.out.println("Received message: " + textMessage.getText()); } else { System.out.println("Received non-text message."); } // 关闭资源 session.close(); connection.close(); } } 4.2 实现发布/订阅模式 在实时客服系统中,我们可能还需要处理来自多个来源的消息,这时候可以使用发布/订阅模式。 java // 发布者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.MessageProducer; import javax.jms.Topic; import javax.jms.Session; import javax.jms.TextMessage; public class Publisher { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建主题 Topic topic = session.createTopic("CustomerSupportTopic"); // 创建消息生产者 MessageProducer producer = session.createProducer(topic); // 发送消息 TextMessage message = session.createTextMessage("Hello, Customer!"); producer.send(message); System.out.println("Message sent successfully."); // 关闭资源 session.close(); connection.close(); } } java // 订阅者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.Message; import javax.jms.MessageListener; import javax.jms.Session; import javax.jms.Topic; import javax.jms.TopicSubscriber; public class Subscriber implements MessageListener { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建主题 Topic topic = session.createTopic("CustomerSupportTopic"); // 创建消息订阅者 TopicSubscriber subscriber = session.createSubscriber(topic); subscriber.setMessageListener(new Subscriber()); // 等待接收消息 Thread.sleep(5000); // 关闭资源 session.close(); connection.close(); } @Override public void onMessage(Message message) { if (message instanceof TextMessage) { TextMessage textMessage = (TextMessage) message; try { System.out.println("Received message: " + textMessage.getText()); } catch (javax.jms.JMSException e) { e.printStackTrace(); } } else { System.out.println("Received non-text message."); } } } 5. 总结 通过以上示例,我们可以看到,ActiveMQ不仅功能强大,而且易于使用。这东西能在咱们的实时客服系统里头,让消息传得飞快,提升大伙儿的使用感受。当然了,在实际操作中你可能会碰到更多复杂的情况,比如要处理事务、保存消息、搭建集群之类的。不过别担心,只要你们把基础的概念和技能掌握好,这些难题都能迎刃而解。希望这篇文章对你有所帮助,如果有任何问题或者想法,欢迎随时交流讨论!
2025-01-16 15:54:47
85
林中小径
SpringCloud
...GraphQL的实际应用场景及最佳实践,将有助于我们在微服务架构设计与实现过程中更好地应对挑战,提升系统性能与开发效率。此外,对于服务治理、容错机制、链路追踪等方面的知识拓展,也是完善微服务技能树的重要组成部分。
2023-07-03 19:58:09
90
寂静森林_t
JSON
...格式:深入解析与实践应用 在当今的编程世界中,数据交换已经成为软件开发中的核心环节之一。你知道吗,这玩意儿叫JSON(JavaScript Object Notation),就像个轻量级的“数据快递员”,它超级给力的地方就在于那简单易懂的“语言”和书写起来贼方便的特点。正因为如此,这家伙在Web服务、前后端交流这些场合里,可以说是如鱼得水,大展身手,甚至在配置文件这块地盘上,也玩得风生水起,可厉害啦!嘿,伙计们,这次咱们要一起捣鼓点新鲜玩意儿——“JSON线段格式”,一种特别的JSON用法。我将通过一些实实在在的代码实例和咱们的热烈讨论,让你对它有更接地气、更深刻的领悟,保证你掌握起来得心应手! 1. JSON线段格式简介 "JSON线段格式"这一概念并非JSON标准规范的一部分,但实际开发中,我们常会遇到需要按行分割JSON对象的情况,这种处理方式通常被开发者称为“JSON线段格式”。比如,一个日志文件就像一本日记本,每行记录就是一个独立的小故事,而且这个小故事是用JSON格式编写的。这样一来,我们就能像翻书一样,快速地找到并处理每一条单独的记录,完全没必要把整本日记本一次性全部塞进大脑里解析! json {"time": "2022-01-01T00:00:00Z", "level": "info", "message": "Application started."} {"time": "2022-01-01T00:01:00Z", "level": "debug", "message": "Loaded configuration."} 2. 解析JSON线段格式的思考过程 当面对这样的JSON线段格式时,我们的首要任务是设计合理的解析策略。想象一下,你正在编写一个日志分析工具,需要逐行读取并解析这些JSON对象。首先,你会如何模拟人类理解这个过程呢? python import json def parse_json_lines(file): with open(file, 'r') as f: for line in f: 去除末尾换行符,并尝试解析为JSON对象 parsed_line = json.loads(line.strip()) 对每个解析出的JSON对象进行操作,如打印或进一步处理 print(parsed_line) 调用函数解析JSON线段格式的日志文件 parse_json_lines('log.json') 在这个例子中,我们逐行读取文件内容,然后对每一行进行JSON解析。这就像是在模仿人的大脑逻辑:一次只聚焦一行文本,然后像变魔术一样把它变成一个富含意义的数据结构(就像JSON对象那样)。 3. 实战应用场景及优化探讨 在实际项目中,尤其是大数据处理场景下,处理JSON线段格式的数据可能会涉及到性能优化问题。例如,我们可以利用Python的ijson库实现流式解析,避免一次性加载大量数据导致的内存压力: python import ijson def stream_parse_json_lines(file): with open(file, 'r') as f: 使用ijson库的items方法按行解析JSON对象 parser = ijson.items(f, '') for item in parser: process_item(item) 定义一个函数来处理解析出的每个JSON对象 定义处理单个JSON对象的函数 def process_item(item): print(item) 调用函数流式解析JSON线段格式的日志文件 stream_parse_json_lines('log.json') 这样,我们就实现了更加高效且灵活的JSON线段格式处理方式,不仅节约了内存资源,还能实时处理海量数据。 4. 结语 JSON线段格式的魅力所在 总结起来,“JSON线段格式”以其独特的方式满足了大规模数据分块处理的需求,它打破了传统单一JSON文档的概念,赋予了数据以更高的灵活性和可扩展性。当你掌握了JSON线段格式的运用和理解,就像解锁了一项超能力,在解决实际问题时能够更加得心应手,让数据像流水一样顺畅流淌。这样一来,咱们的整体系统就能跑得更欢畅,效率和性能蹭蹭往上涨! 所以,下次当你面临大量的JSON数据需要处理时,不妨考虑采用“JSON线段格式”,它或许就是你寻找的那个既方便又高效的解决方案。毕竟,技术的魅力就在于不断发掘和创新,而每一次新的尝试都可能带来意想不到的收获。
2023-03-08 13:55:38
495
断桥残雪
Kylin
...数据工具的最新动态和应用实践备受业界关注。 近日,Apache Kylin社区宣布发布了4.0版本,新版本引入了一系列重要改进,如支持更丰富的SQL功能、优化Cube构建速度以及增强与云环境的兼容性等(来源:Apache Kylin官网)。这一重大更新标志着Kylin在提升大数据查询性能和易用性方面又向前迈进了一大步,为更多企业在实时分析、数据可视化及复杂报表生成等方面提供强有力的支持。 此外,有越来越多的企业开始结合Kylin与其他大数据生态系统组件,如Hadoop、Spark、Flink以及各类BI工具进行深度整合,构建起全面的数据仓库解决方案。例如,《利用Apache Kylin加速企业级大数据分析》一文中详尽解读了某电商巨头如何借助Kylin有效应对“双11”期间产生的海量交易数据,实现业务洞察的实时化和精准化。 总的来说,Kylin凭借其实时分析能力和卓越的扩展性,在大数据领域持续发光发热,值得企业和开发者深入研究并应用于实际业务场景中。紧跟Kylin社区的发展动态和成功案例,将有助于我们更好地掌握前沿的大数据分析技术,并为企业决策赋能。
2023-05-03 20:55:52
112
冬日暖阳-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
jobs
- 列出当前Shell会话中的后台作业及其状态。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"