前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Class文件主版本号与JDK兼容性 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
RabbitMQ
...bbitMQ 3.9版本引入了更多高级特性,如基于TLS的加密传输、改进的消息持久化策略以及对AMQP 1.0协议的支持等。这些改进使得RabbitMQ不仅在微服务架构中发挥关键作用,更能在金融、物联网、大数据处理等高要求场景下提供强有力的支持。 另外,值得关注的是开源社区对于RabbitMQ与其他流行技术栈集成的研究与实践,如将其与Apache Kafka进行功能对比分析,探讨两者在实时流处理、大规模数据分发等方面的应用场景及优劣;或者研究如何结合Service Mesh(如Istio)来优化微服务间的通信机制,利用RabbitMQ构建更为灵活、高效的分布式消息传递系统。 总之,在不断发展的信息技术领域,深入研究RabbitMQ的最新特性和应用场景,将有助于我们更好地运用这一工具解决实际业务问题,并为构建稳定、可靠的分布式系统提供有力支撑。
2023-09-07 10:09:49
96
诗和远方-t
ClickHouse
...人员排查解决。 - 版本管理与发布策略:在进行大规模架构变更或表结构调整时,采用灰度发布、分批次更新等策略,降低对线上服务的影响。 总结来说,“TableAlreadyLockedException”是ClickHouse保障数据一致性和完整性的一个重要机制体现。搞明白它产生的来龙去脉以及应对策略,不仅能让我们在平时运维时迅速找到问题的症结所在,还能手把手教我们打造出更为结实耐用、性能强大的大数据分析系统。所以,让我们在实践中不断探索和学习,让ClickHouse更好地服务于我们的业务需求吧!
2024-02-21 10:37:14
351
秋水共长天一色
.net
...关系型数据库、XML文件等)进行交互。在本文中,ADO.NET被用来作为数据访问层,通过Entity Framework等ORM框架执行SQL查询。 Entity Framework , 是一个ORM(Object-Relational Mapping)框架,用于.NET平台,它将数据库表映射为.NET对象,使得开发者可以直接使用面向对象的方式来操作数据库。在文章中,Entity Framework示例代码展示了如何使用它来查询数据库并处理结果,包括如何通过OrderBy和GroupBy进行排序和去重。 DISTINCT关键字 , SQL查询中的关键字,用于从查询结果中去除重复的行。当在SQL查询中使用DISTINCT时,数据库会在执行查询时自动去除相同值的行,这在处理可能包含重复数据的数据库查询时非常有用。在Entity Framework中,可以通过GroupBy操作符实现类似的功能。 IQueryable<T> , .NET框架中的接口,用于表示一个可延迟执行的查询。在使用IQueryable时,查询不会立即执行,而是在需要结果时才执行,这对于处理大量数据或流式处理非常有效。在.NET Core 6.0的更新中,IQueryableExtensions扩展了这个接口,提供了更多的查询操作选项,增强了性能和灵活性。 Lazy Loading , 一种数据加载模式,在.NET中,当访问一个关联对象时,只有当它真的被请求时才会从数据库加载。这种方法可以减少内存占用,但在处理大量数据时需要谨慎,因为它可能导致不必要的数据库查询。 Serverless , 一种云计算模型,用户无需管理底层服务器资源,只需编写代码并按照使用的资源付费。在数据处理场景中,Serverless可以帮助开发者专注于业务逻辑,而无需关心服务器运维和扩展问题。 Azure Functions , 微软提供的无服务器计算服务,它允许开发者创建和部署小型、独立的函数,这些函数在事件触发时自动运行。在处理大数据时,Azure Functions可以作为数据处理的中间层,处理和过滤数据,然后再将其存储或转发到其他系统。
2024-04-07 11:24:46
437
星河万里_
Nacos
...g Boot 2.4版本引入了Actuator的改进功能,提供更详尽的内存使用报告和健康检查机制,有助于预防和发现潜在的内存泄漏问题。 与此同时,专家建议开发者深入理解内存管理和垃圾回收机制,遵循资源有限、适时释放的原则编写代码,并结合容器化、服务网格等新兴技术对应用进行合理部署和扩容,以应对高并发场景下的内存挑战。 综上所述,在享受Nacos等配置中心带来便利的同时,时刻关注并解决内存泄漏等性能隐患,已成为现代微服务架构设计与运维的重要课题。通过紧跟社区动态、掌握最新技术和工具,我们能更好地驾驭复杂环境下的微服务架构,实现系统的稳定、高效运行。
2023-03-16 22:48:15
116
青山绿水_t
MyBatis
... MyBatis映射文件配置 接下来,在MyBatis的映射文件(Mapper XML)中定义相应的SQL查询语句。这里的关键在于正确地构建全文搜索的SQL语句。比如,假设我们要实现根据商品描述搜索商品的功能,可以这样编写: xml SELECT FROM product WHERE MATCH(description) AGAINST ({keyword} IN NATURAL LANGUAGE MODE) 这里的MATCH(description) AGAINST ({keyword})就是全文搜索的核心部分。“IN NATURAL LANGUAGE MODE”就是用大白话来搜东西,这种方式更直接、更接地气。搜出来的结果也会按照跟你要找的东西的相关程度来排个序。 3. 实际应用中的常见问题及解决方案 在实际开发过程中,可能会遇到一些配置不当导致全文搜索功能失效的情况。这里,我将分享几个常见的问题及其解决方案。 3.1 搜索结果不符合预期 问题描述:当你执行全文搜索时,发现搜索结果并不是你期望的那样,可能是因为搜索关键词太短或者太常见,导致匹配度不高。 解决方法:尝试调整全文搜索的模式,比如使用BOOLEAN MODE来提高搜索精度。此外,确保搜索关键词足够长且具有一定的独特性,可以显著提高搜索效果。 xml SELECT FROM product WHERE MATCH(description) AGAINST ({keyword} IN BOOLEAN MODE) 3.2 性能瓶颈 问题描述:随着数据量的增加,全文搜索可能会变得非常慢,影响用户体验。 解决方法:优化索引设计,比如适当减少索引字段的数量,或者对索引进行分区。另外,也可以考虑在应用层缓存搜索结果,减少数据库负担。 4. 总结与展望 通过上述内容,我们了解了如何在MyBatis项目中正确配置全文搜索功能,并探讨了一些实际操作中可能遇到的问题及解决策略。全文搜索这东西挺强大的,但你得小心翼翼地设置才行。要是设置得好,不仅能让人用起来更爽,还能让整个应用变得更全能、更灵活。 当然,这只是全文搜索配置的一个起点。随着业务越做越大,技术也越来越先进,我们可以试试更多高大上的功能,比如支持多种语言,还能处理同义词啥的。希望本文能对你有所帮助,如果有任何疑问或想法,欢迎随时交流讨论! --- 希望这篇文章能够帮助到你,如果有任何具体的需求或者想了解更多细节,随时告诉我!
2024-11-06 15:45:32
136
岁月如歌
转载文章
...;<view class=""><view class="all"><scroll-view class="nav-bar" scroll-x @scroll="scroll"><!-- 要想使用flex布局实现横向滚动,就要在scroll-view里加一层容器包裹,并且使用子组件才会出现滚动效果 --><view class="nav-bar-wrap"><block v-for="(item,index) in navbarArr" :key="index"><view class="nav-bar-item" @click="onNavbarItem(item.id)" :id="item.id"><image :src="item.pic_url" /><text>{ {item.name} }</text></view></block></view></scroll-view></view><view class="slider"><view class="slider-inside .slider-inside-location" :style="{left:lefts}"></view></view></view></template><script>export default {name: "scroll",data() {return {lefts:0} },props: {navbarArr: {type: Array},left: {type: Number} },created: function(e) {console.log(this.left,"leftinfo")},methods: {onNavbarItem(id) {console.log(id)// const id = options.currentTarget.dataset.id// wx.navigateTo({// url: /pages/mysignup/mysignup?id=${id},// })},scroll(event) {let that = thisconsole.log(event)let scrollLeft = event.detail.scrollLeft;let scrllWidth = event.detail.scrollWidth - 375;// that.left = ${(scrollLeft) / scrllWidth 100}%// this.$emit("changeLeft",that.lefts)// 32是剩余要滑动的地方let newLeft = scrollLeft / scrllWidth 32that.lefts =newLeft + 'rpx'} }}</script><style>.all {position: relative;height: 330rpx;overflow: hidden;background: fff;}scroll-view {white-space: nowrap;}/ 去除滚动条 /::-webkit-scrollbar {display: none;width: 0;height: 0;color: transparent;}.nav-bar-wrap {display: flex;flex-flow: column wrap;height: 330rpx;}.nav-bar-item {width: 187.5rpx;display: flex;flex-direction: column;align-items: center;padding-top: 28rpx;}.nav-bar-item image {display: block;height: 90rpx;width: 90rpx;margin: 0;}.nav-bar-item text {margin-top: 5rpx;line-height: 32rpx;font-size: 25rpx;}.slider {position: relative;margin-left: 50%;/ left: 50%; /transform: translateX(-50%);width: 64rpx;height: 6rpx;border-radius: 3rpx;background: eee;}.slider-inside {/ transform: translateX(-50%); /width: 32rpx;height: 100%;border-radius: 3rpx;background-color: 11BEA7;}.slider-inside-location {position: absolute;/ left: 50%; /}</style> 使用组件:<template><view><scroll :navbarArr="navbarArr" :left="left" @changeLeft="changeLeft"></scroll></view></template><script>import scroll from "../../components/scroll.vue"export default {components:{scroll},data() {return {navbarArr: [{pic_url: '../static/images/ic_57@2x.png',name: '骨科',id: 1},{pic_url: '../static/images/ic_59@2x.png',name: '检验科',id: 2},{pic_url: '../static/images/ic_56@2x.png',name: '外壳',id: 3},{pic_url: '../static/images/ic_53@2x.png',name: '口腔科',id: 4},{pic_url: '../static/images/ic_54@2x.png',name: '猫科',id: 5},{pic_url: '../static/images/ic_52@2x.png',name: '内科',id: 6},{pic_url: '../static/images/ic_50@2x.png',name: '皮肤科',id: 7},{pic_url: '../static/images/ic_52@2x.png',name: '肾病',id: 8},{pic_url: '../static/images/ic_58@2x.png',name: '血透科',id: 9},{pic_url: '../static/images/ic_62@2x.png',name: '肾病',id: 10},{pic_url: '../static/images/ic_64@2x.png',name: '血透科',id: 11},],left:0.65625} },methods: {changeLeft(e){let that = thisthat.left = e} },}</script> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_45584157/article/details/117958700。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-06 12:38:02
625
转载
Apache Solr
...e Solr 9.0版本针对大规模数据集的facet统计性能进行了深度优化,引入了新的并行化处理机制和内存管理策略,在保证跨分片统计准确性的同时,有效缓解了由于facet.method=enum带来的性能瓶颈问题。 同时,业界也开始探索结合实时计算引擎(如Apache Flink、Spark)与Solr进行联合查询的可能性,通过将部分复杂的facet统计任务卸载到这些引擎中处理,实现更高效的大规模数据聚合。例如,某知名电商平台就成功实践了这一方案,他们利用Flink流式处理能力对Solr检索出的数据进行实时统计分析,既确保了facet统计的精确性,又显著提升了响应速度。 此外,随着云原生技术的发展,容器化和Kubernetes等技术也被应用于Solr集群的部署与管理,以实现资源的弹性伸缩,这为解决分布式环境下facet统计的问题提供了新的思路。通过精细调控各分片资源,可以更灵活地应对高并发查询及大数据量facet统计的需求,从而在实际业务场景中取得更好的效果。因此,紧跟Apache Solr项目发展动态以及行业内的最佳实践案例,对于持续优化分布式搜索系统的facet统计功能具有重要意义。
2023-11-04 13:51:42
377
断桥残雪
转载文章
...如,在最新的OpenJDK版本中,垃圾回收器(如ZGC和Shenandoah)已经大大减少了GC暂停时间,使得即使在大量对象构造和销毁的情况下,系统也能保持更高的响应速度。 同时,为了提升开发者的内存管理意识,业界提出了“对象池”、“享元模式”等设计策略,以及提倡使用更高效的集合类库(如Google的Guava库),以减少不必要的对象创建和内存消耗。此外,对于面向对象设计中的基础类型问题,现代Java编程实践中更多倡导了函数式编程范式,通过引入Optional、Stream API等方式,既能有效处理基础类型,又能提高代码的可读性和健壮性。 在不可变性方面,随着反应式编程(Reactive Programming)和函数式编程思想的普及,不可变对象的重要性日益凸显。Java社区正积极推广不可变数据结构,并通过Project Valhalla等项目探索值类型(Value Types)的可能性,力求在保持不可变优势的同时,解决由此引发的内存占用问题。 至于复杂性问题,尽管Java语言特性的丰富性带来了学习曲线陡峭的问题,但同时也为开发者提供了更加灵活多样的解决方案。随着模块化(Jigsaw)项目的落地,Java 9及后续版本在一定程度上缓解了API膨胀和依赖管理的复杂性。此外,现代IDE和构建工具如IntelliJ IDEA和Gradle也极大地提升了对Java新特性的支持与理解,助力开发者更好地应对复杂性挑战。 综上所述,虽然Java存在一些固有的挑战,但随着技术的发展和社区的努力,许多问题正在得到有效解决或改进。作为开发者,紧跟时代步伐,深入了解并合理运用这些新技术与最佳实践,才能最大化发挥Java的优势,编写出高性能且易于维护的代码。
2023-11-21 23:48:35
277
转载
ActiveMQ
...选项及功能特性。最新版本的ActiveMQ Artemis支持更高效的内存管理和持久化策略,用户可以根据实际场景进行深度定制以达到最优延迟效果。同时,也有开发团队分享了他们如何通过调整ActiveMQ内部参数,结合消费者并行处理机制,有效提升了系统整体的消息处理速度。 此外,对于特定业务场景下的延迟优化案例分析同样值得关注。例如,在金融交易、物联网(IoT)设备数据同步等领域,有专家详细解读了如何借助ActiveMQ实现低延迟、高可靠的消息传输,并对比了不同消息队列产品在类似场景下的表现,这些深入解读有助于开发者更好地应对实际问题,将理论知识转化为实实在在的性能提升。 综上所述,无论是从技术演进的宏观视角,还是具体到ActiveMQ产品的微观调优,我们都有充足的理由相信,通过紧跟技术潮流与实践经验,可以持续改善ActiveMQ在P2P模式下的消息传递延迟问题,从而满足现代分布式系统对高性能、低延迟的需求。
2023-11-19 09:23:19
435
追梦人
Logstash
...ogstash的较新版本开始,推荐的做法是在input阶段配置multiline codec来直接合并多行日志: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" 或者是 "end" 以追加模式读取 codec => multiline { pattern => "^%{TIMESTAMP_ISO8601}" 自定义匹配下一行开始的正则表达式 what => "previous" 表示当前行与上一行合并 negate => true 匹配失败才合并,对于堆栈跟踪等通常第一行不匹配模式的情况有用 } } } 在这个例子中,codec会根据指定的pattern识别出新的一行日志的开始,并将之前的所有行合并为一个事件。当遇到新的时间戳时,Logstash认为一个新的事件开始了,然后重新开始合并过程。 3. 使用multiline Filter的旧版方案 在Logstash的早期版本中,multiline功能是通过filter插件实现的: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" } } filter { multiline { pattern => "^%{TIMESTAMP_ISO8601}" what => "previous" negate => true } } 尽管在最新版本中这一做法已不再推荐,但在某些场景下,你仍可能需要参考这种旧有的配置方法。 4. 解析多行日志实战思考 在实际应用中,理解并调整multiline配置参数至关重要。比如,这个pattern呐,它就像是个超级侦探,得按照你日志的“穿衣风格”准确无误地找到每一段多行日志的开头标志。再来说说这个what字段,它就相当于我们的小助手,告诉我们哪几行该凑到一块儿去,可能是上一个兄弟,也可能是下一个邻居。最后,还有个灵活的小开关negate,你可以用它来反转匹配规则,这样就能轻松应对各种千奇百怪的日志格式啦! 当你调试多行日志合并规则时,可能会经历一些曲折,因为不同的应用程序可能有着迥异的日志格式。这就需要我们化身成侦探,用敏锐的眼光去洞察,用智慧的大脑去推理,手握正则表达式的“试验田”,不断试错、不断调整优化。直到有一天,我们手中的正则表达式如同一把无比精准的钥匙,咔嚓一声,就打开了与日志结构完美匹配的那扇大门。 总结起来,在Logstash中处理多行日志合并是一个涉及对日志结构深入理解的过程,也是利用Logstash强大灵活性的一个体现。你知道吗,如果我们灵巧地使用multiline这个codec或者filter小工具,就能把那些本来七零八落的上下文信息,像拼图一样拼接起来,对齐得整整齐齐的。这样一来,后面我们再做数据分析时,不仅效率蹭蹭往上涨,而且结果也会准得没话说,简直不要太给力!
2023-08-19 08:55:43
250
春暖花开
Spark
... Spark 2.x版本中引入的一个核心接口,它封装了Spark SQL上下文的所有功能,包括DataFrame、DataSet API以及SQL查询功能。通过SparkSession,开发者可以方便地在一个统一的入口点执行各种数据处理操作,简化了代码编写和管理。 Spark Streaming , Apache Spark的一部分,提供了一种可扩展且高吞吐量的微批处理模型来处理实时流数据。Spark Streaming将实时数据流分割成一系列小的数据批次,然后使用Spark的批处理能力对每个批次进行处理,使得实时流处理具有与批处理相似的延迟性和容错性。 DNS服务器 , DNS(Domain Name System)服务器是一种网络服务,负责将人们易于记忆的域名转换为计算机能够识别的IP地址。当应用程序请求访问某个域名时,系统会向DNS服务器查询对应的IP地址,若无法从DNS服务器获取有效的IP地址,则可能抛出UnknownHostException。
2024-01-09 16:02:17
136
星辰大海-t
Kubernetes
...netes 1.23版本中,引入了对“Pod优先级与抢占”功能的重大改进,这使得在多个Pod对应一个应用的场景下,系统可以根据优先级智能地调度和管理资源,从而在保持高可用性和稳定性的同时,也能灵活应对突发流量或关键服务需求。 另外,有专家深入解读了Pod设计原则,并引用Netflix等大型企业实践案例,强调在设计Pod时需充分考虑容错性、可观察性和扩展性。他们提倡采用Sidecar模式,即将辅助服务作为独立容器部署在同一Pod内,既能共享主应用容器的网络命名空间,又能避免单点故障影响整体服务。 此外,针对资源利用率问题,社区提出了基于垂直 Pod 自动扩缩的解决方案,通过监控Pod内部各容器的资源使用情况,实现精细化管理和动态扩容,从而在确保服务性能的同时,有效提升集群资源的整体效率。 总之,Kubernetes中的Pod设计与部署是一个持续演进的话题,结合最新的技术和行业最佳实践,我们可以不断优化微服务在Kubernetes环境下的部署方式,以满足日益复杂的业务需求。
2023-06-29 11:19:25
135
追梦人_t
SeaTunnel
...n转换成Druid兼容的yyyy-MM-dd HH:mm:ss格式并重命名为new_timestamp_column。最后,将处理后的数据写入到Druid数据源。 0 4. 探讨与思考 当然,这只是Druid数据摄入失败众多可能情况的一种。当面对其他那些让人头疼的问题,比如字段类型对不上、数据量大到惊人的时候,我们也能灵活运用SeaTunnel强大的功能,逐个把这些难题给搞定。比如,对于字段类型冲突,可通过cast转换器改变字段类型;对于数据量过大,可通过split处理器或调整Druid集群配置等方式应对。 0 5. 结论 在处理Druid数据摄入失败的过程中,SeaTunnel以其灵活、强大的数据处理能力,为我们提供了便捷且高效的解决方案。同时,这也让我们意识到,在日常工作中,咱们得养成一种全方位的数据质量管理习惯,就像是守护数据的超级侦探一样,摸透各种工具的脾性,这样一来,无论在数据集成过程中遇到啥妖魔鬼怪般的挑战,咱们都能游刃有余地应对啦! 以上内容仅为一个基础示例,实际上,SeaTunnel能够帮助我们解决更复杂的问题,让Druid数据摄入变得更为顺畅。只有当我们把这些技术彻底搞懂、玩得溜溜的,才能真正像驾驭大河般掌控大数据的洪流,从那些海量数据里淘出藏着的巨大宝藏。
2023-10-11 22:12:51
338
翡翠梦境
转载文章
...自动完成、单元测试、版本控制等操作。 Python常用工具: 1、Python Tutor Python Tutor 是由 Philip Guo 开发的一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在 Web 浏览器中编写 Python 代码,并逐步可视化地运行程序。如果你不知道代码在内存中是如何运行的,不妨把它拷贝到Tutor里可视化执行一遍加深理解。 2、IPython IPython 是一个 for Humans 的 Python 交互式 shell,用了它之后你就不想再用自带的 Python shell ,IPython 支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台。 3、Jupyter Notebook Jupyter Notebook 就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以 Web 页面的方式展示。它是数据分析、机器学习的必备工具。回复 “jupyter” 给你看一个基于 jupyter 写的 Python 教程。 4、Anaconda Python 虽好,可总是会遇到各种包管理和 Python 版本问题,特别是 Windows 平台很多包无法正常安装,为了解决这些问题,Anoconda 出现了,Anoconda 包含了一个包管理工具和一个Python管理环境,同时附带了一大批常用数据科学包,也是数据分析的标配。 5、Skulpt Skulpt 是一个用 Javascript 实现的在线 Python 执行环境,它可以让你轻松在浏览器中运行 Python 代码。使用 skulpt 结合 CodeMirror 编辑器即可实现一个基本的在线Python编辑和运行环境。 以上主要介绍Python Tutor、IPython、Jupyter Notebook、Anaconda、Skulpt常见的五种工具。 Python经验分享 学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助! Python学习路线 这里把Python常用的技术点做了整理,有各个领域的知识点汇总,可以按照上面的知识点找对应的学习资源。 学习软件 Python常用的开发软件,会给大家节省很多时间。 学习视频 编程学习一定要多多看视频,书籍和视频结合起来学习才能事半功倍。 100道练习题 实战案例 光学理论是没用的,学习编程切忌纸上谈兵,一定要动手实操,将自己学到的知识运用到实际当中。 最后祝大家天天进步!! 上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67991858/article/details/128340577。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:38:26
44
转载
Mongo
...ongoDB从4.0版本开始,就引入了对事务的支持。事务是一种处理多个数据库操作的方法,它能够确保一组相关的操作要么全部执行成功,要么全部失败,从而保证了数据的一致性和完整性。在MongoDB中,我们可以使用startTransaction()方法开启一个事务,然后通过commit()或者abort()方法提交或回滚事务。 三、事务处理的原子性 在数据库操作中,原子性是指一次完整的操作被视为一个不可分割的单元,不能被分解成更小的操作。如果其中任何一个操作失败,整个事务就会被回滚到初始状态。这是为了防止由于中间状态导致的数据不一致。 让我们看一个简单的例子。假设我们在开发一个电商网站,我们需要同时更新用户信息和商品库存。要是我们这两步操作直接硬来的话,可能会碰上这么个情况:正当你兴冲冲地想要更新商品库存,却发现这库存早被其他手速快的买家给抢购一空了。这时候,咱们就得把前面更新用户信息的操作像卷铺盖一样回滚回去,这样一来,就能有效防止数据出现对不上的尴尬状况。 在MongoDB中,我们可以使用事务来实现这种原子性操作。首先,咱们先来手动触发一下startTransaction()这个方法,相当于告诉系统“嗨,我们要开始一个全新的事务了”。接下来,咱俩就像接力赛跑一样,一鼓作气把两个操作挨个儿执行掉。最后,当所有步骤都稳稳妥妥地完成,我们再潇洒地调用一下commit()方法,给这次事务画上完美的句号,表示“确认无误,事务正式生效!”要是执行过程中不小心出了岔子,我们可以手一挥,调用个abort()方法,就像电影里的时光倒流一样,把整个交易状态恢复到最初的起点。 四、代码示例 下面是一个简单的例子,展示了如何在MongoDB中使用事务来更新用户信息和商品库存: javascript const MongoClient = require('mongodb').MongoClient; const url = 'mongodb://localhost:27017'; async function run() { try { const client = await MongoClient.connect(url); const db = client.db('test'); // 开启事务 const result = await db.startTransaction(); // 更新用户信息 await db.collection('users').updateOne( { _id: 'user_id' }, { $set: { balance: 10 } } ); // 更新商品库存 await db.collection('products').updateOne( { name: 'product_name' }, { $inc: { stock: -1 } } ); // 提交事务 await result.commit(); console.log('Transaction committed successfully!'); } catch (err) { // 回滚事务 await result.abort(); console.error('Error occurred, rolling back transaction:', err); } finally { client.close(); } } run(); 在这个例子中,我们首先连接到本地的MongoDB服务器,然后开启一个事务。接着,我们依次更新用户信息和商品库存。要是执行过程中万一出了岔子,我们会立马把事务回滚,确保数据一致性不掉链子。最后,当所有操作都完成后,我们提交事务,完成这次操作。 五、结论 通过上述的例子,我们深入了解了MongoDB的事务支持以及如何处理多操作的原子性。MongoDB的事务功能真是个大救星,它就像一把超级可靠的保护伞,实实在在地帮我们在处理数据库操作时,确保每一步都准确无误,数据的一致性和完整性得到了妥妥的保障。所以,作为一位MongoDB开发者,咱们真得好好下功夫学习和掌握这门技术。这样一来,在实际项目里遇到各种难缠的问题时,才能更加游刃有余地搞定它们,让挑战变成小菜一碟!
2023-12-06 15:41:34
135
时光倒流-t
Go-Spring
...方团队发布的1.18版本,其中对网络库进行了一系列优化,有望进一步提升包括Go-Spring在内的各类基于Golang开发的微服务框架在网络通信和负载均衡方面的性能表现。 综上所述,理解并掌握负载均衡技术的同时,持续关注行业动态和技术趋势,将有助于我们在实践中更好地利用Go-Spring等工具构建高性能、高可用的分布式系统。
2023-12-08 10:05:20
530
繁华落尽
Kibana
...提供商)发布了其最新版本的Kibana,强化了数据预处理和异常检测功能,帮助用户在源头上就发现并修正可能影响可视化准确性的数据问题。 此外,随着大数据和人工智能技术的发展,自动化数据清洗和智能图表生成技术也逐渐崭露头角。例如,一些新型的数据分析工具已经开始整合机器学习算法,能够根据数据特征自动选择最优的可视化方案,并在实时流数据中动态调整图表类型和参数,从而有效避免人为设置误差。 同时,在数据伦理与可视化准确性方面,业界专家不断强调数据质量的重要性,呼吁数据分析师遵循严谨的数据治理流程,确保数据从采集、存储到分析的全链条准确无误。全球知名咨询机构Gartner在其最新报告中指出,2023年,将有超过75%的企业投资于增强数据质量管理能力,以支撑更精确、更具洞察力的数据可视化应用。 因此,在实际工作中,除了深入理解并熟练运用Kibana等工具外,紧跟行业发展趋势,提升数据质量意识,以及适时引入智能化辅助手段,是保障数据可视化准确性的关键所在。
2023-04-16 20:30:19
292
秋水共长天一色-t
Spark
...park社区在3.2版本中对该特性进行了进一步优化,引入了更为精细的任务推测策略,使得Spark在面对大规模、不均衡负载时,能够更加智能地分配资源,降低因部分节点故障或数据倾斜带来的整体性能损失。 此外,有研究团队结合实际生产环境中的案例分析发现,在特定条件下启用推测执行可以显著减少作业完成时间,但同时也强调了过度依赖推测执行可能导致的集群资源浪费问题。因此,他们在深入探讨的基础上提出了动态调整推测阈值与资源分配比例的策略,并已在一些开源项目中得到应用验证。 与此同时,随着硬件加速技术和云原生架构的发展,如何将推测执行与新兴技术相结合,以适应未来更复杂的大数据处理场景,成为了新的研究热点。例如,有研究人员正在探索通过GPU等加速器提高推测任务执行速度的可能性,以及在Kubernetes等容器化环境中实现推测执行的自动优化配置,这些都为Spark的推测执行机制带来了更多创新空间和发展潜力。
2023-03-28 16:50:42
329
百转千回
转载文章
...-demo.yaml文件,我们定义了一个cpu的准入控制器。 其中定义了默认值、最小值和最大值等。 apiVersion: v1kind: LimitRangemetadata:name: cpu-limit-rangenamespace: mynsspec:limits:- default: 默认上限cpu: 1000mdefaultRequest:cpu: 1000mmin:cpu: 500mmax:cpu: 2000mmaxLimitRequestRatio: 定义最大值是最小值的几倍,当前为4倍cpu: 4type: Container 2)apply -f之后,我们可以通过get命令来查看LimitRange的配置详情 [root@centos-1 dingqishi] kubectl get LimitRange cpu-limit-range -n mynsNAME CREATED ATcpu-limit-range 2021-10-10T07:38:29Z[root@centos-1 dingqishi] kubectl describe LimitRange cpu-limit-range -n mynsName: cpu-limit-rangeNamespace: mynsType Resource Min Max Default Request Default Limit Max Limit/Request Ratio---- -------- --- --- --------------- ------------- -----------------------Container cpu 500m 2 1 1 4 2.ResourceQuota 1)同理,编辑配置文件resoucequota-demo.yaml,并apply; 其中,我们定义了myns名称空间下的资源配额。 apiVersion: v1kind: ResourceQuotametadata:name: quota-examplenamespace: mynsspec:hard:pods: "5"requests.cpu: "1"requests.memory: 1Gilimits.cpu: "2"limits.memory: 2Gicount/deployments.apps: "2"count/deployments.extensions: "2"persistentvolumeclaims: "2" 2)此时,也可以查看到ResourceQuota的相关配置,是否生效 [root@centos-1 dingqishi] kubectl get ResourceQuota -n mynsNAME CREATED ATquota-example 2021-10-10T08:23:54Z[root@centos-1 dingqishi] kubectl describe ResourceQuota quota-example -n mynsName: quota-exampleNamespace: mynsResource Used Hard-------- ---- ----count/deployments.apps 0 2count/deployments.extensions 0 2limits.cpu 0 2limits.memory 0 2Gipersistentvolumeclaims 0 2pods 0 5requests.cpu 0 1requests.memory 0 1Gi 大家可以将生效后的控制器,结合相关pod自行测试资源配额的申请、限制和使用的情况 本篇文章为转载内容。原文链接:https://blog.csdn.net/flq18210105507/article/details/120845744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-25 10:44:03
337
转载
RabbitMQ
..., gateway class RabbitMQGrpcHandler(service_pb2_grpc.MyServiceServicer): def UnaryCall(self, request, context): Convert gRPC request to RabbitMQ message rabbit_message = services_pb2.MyRequestToProcess(request.to_dict()) Publish the message to RabbitMQ with channel: channel.basic_publish( exchange='gRPC_Requests', routing_key=rabbit_message.routing_key, body=json.dumps(rabbit_message), properties=pika.BasicProperties(content_type='application/json') ) Return a response or acknowledge the call return services_pb2.MyResponse(status="Accepted") Start the gRPC server with the RabbitMQ handler server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) service_pb2_grpc.add_MyServiceServicer_to_server(RabbitMQGrpcHandler(), server) server.add_insecure_port('[::]:50051') server.start() 这样,gRPC客户端发出的请求经过gRPC Gateway的适配,最终被RabbitMQ处理,实现异步解耦。 5. 特点和应用场景 - 灵活性:HTTP和gRPC集成使得RabbitMQ能够适应各种服务间的通信需求,无论是API网关、微服务架构还是跨语言通信。 - 解耦:生产者和消费者不需要知道对方的存在,提高了系统的可维护性和扩展性。 - 扩展性:RabbitMQ的集群模式允许在高并发场景下轻松扩展。 - 错误处理:消息持久化和重试机制有助于处理暂时性的网络问题。 - 安全性:通过SSL/TLS可以确保消息传输的安全性。 6. 结论 RabbitMQ的强大之处在于它能跨越多种协议,提供了一种通用的消息传递平台。你知道吗,咱们可以像变魔术那样,把HTTP和gRPC这两个家伙灵活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
95
笑傲江湖-t
Apache Atlas
...的Atlas 2.3版本强化了对Kafka、Hive等大数据组件的支持,并增强了API的安全性和易用性,使得开发者能够更加便捷地处理实体创建过程中的各类问题,有力推动了企业在数字化转型过程中的元数据治理实践。 因此,对于正在使用或计划采用Apache Atlas的企业和开发者而言,紧跟官方更新动态,深入研究和掌握其REST API的使用技巧及错误排查方法,无疑将为企业的数据资产管理带来更大的价值。同时,结合业界最佳实践和实时案例分析,有助于不断提升自身的数据治理能力,确保在瞬息万变的技术浪潮中保持竞争力。
2023-06-25 23:23:07
563
彩虹之上
RabbitMQ
...器可能会产生大量日志文件,占用磁盘空间。 四、解决方案 4.1 调整队列配置 - 非持久化队列:对于不需要长期保留的消息,可以使用非持久化队列,消息会在服务器重启后丢失。 - 设置队列/交换机大小:通过rabbitmqctl set_policy命令,限制队列和交换机的最大内存和磁盘使用量。 4.2 定期清理 - 清理过期消息:使用rabbitmqadmin工具删除过期消息。 - 清理日志:定期清理旧的日志文件,或者配置RabbitMQ的日志滚动策略。 5. 示例代码 bash rabbitmqadmin purge queue my_queue rabbitmqadmin delete log my_log_file.log 五、预防措施 5.1 监控与预警 - 使用第三方监控工具,如Prometheus或Grafana,实时监控RabbitMQ的磁盘使用情况。 - 设置告警阈值,当磁盘空间低于某个值时触发报警。 六、结语 面对RabbitMQ服务器磁盘空间不足的问题,我们需要深入了解其背后的原因并采取相应的解决策略。只要我们把RabbitMQ好好调教一番,合理分配资源、定期给它来个大扫除,再配上一双雪亮的眼睛时刻盯着,就能保证它稳稳当当地运转起来,不会因为磁盘空间不够用而闹出什么幺蛾子,给我们带来不必要的麻烦。记住,预防总是优于治疗,合理管理我们的资源是关键。
2024-03-17 10:39:10
171
繁华落尽-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
find /path/to/search -name "filename"
- 在指定目录下递归查找文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"