前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MD5签名算法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tesseract
...)的新型模糊图像处理算法,该算法能够显著提升模糊图像的识别准确率。研究人员通过大量的训练数据,使得模型能够在保持图像真实感的同时,增强图像的清晰度和细节表现力。这一技术的应用范围广泛,不仅限于文本识别,还包括人脸识别、物体检测等多个领域。 此外,另一项值得关注的研究来自加州大学伯克利分校,研究团队开发了一种名为“DeepZoom”的深度学习框架,专门用于处理模糊图像。该框架利用多尺度卷积神经网络(CNN)来捕捉图像中的细微特征,从而在不损失图像质量的情况下,大幅提升模糊图像的识别效果。这一技术已经在医疗影像诊断中得到了初步应用,特别是在处理X光片和MRI图像时,显示出了巨大的潜力。 除了学术研究,商业界也在积极投入资源,开发适用于模糊图像处理的软件和工具。例如,Adobe公司近期推出了一款名为“Deblur AI”的插件,专门用于提升模糊图像的质量。这款插件采用了先进的机器学习算法,能够在几秒钟内自动修复模糊图像,使得图像恢复到接近原始状态的清晰度。这对于摄影师和设计师来说,无疑是一个巨大的福音。 这些最新的研究成果和技术进展,不仅展示了模糊图像识别领域的巨大潜力,也为相关行业的应用提供了更多可能性。未来,随着技术的不断成熟,我们有理由相信模糊图像识别将变得更加精准和高效。
2024-10-23 15:44:16
137
草原牧歌
Oracle
...息收集任务的智能调度算法,以更精准地适应业务负载变化,还提供了更为详尽的数据分布可视化工具,使得管理员能直观了解表、索引等对象的统计信息特性。 在实际运维场景中,阿里云数据库团队最近分享了一篇关于如何利用Oracle最新统计信息功能优化OLTP系统性能的深度实践文章。文中通过实际案例揭示了,在高并发交易场景下,实时且准确的数据统计信息对于降低查询响应时间、提升存储资源利用率的重要性,并结合Oracle 19c的新特性,展示了如何制定合理的统计信息维护策略,有效解决了因统计信息过时导致的SQL执行计划不优问题。 此外,业界专家也提醒,尽管现代数据库管理系统在智能化方面取得了显著进展,但理解并掌握数据统计信息的核心原理仍然至关重要。深入研读《Oracle Database 12c SQL Tuning》等专业书籍,不仅可以帮助我们更好地运用统计信息进行SQL优化,还能为应对未来可能出现的各种复杂业务挑战做好充分准备。在这个大数据时代,持续关注并紧跟Oracle数据统计信息领域的最新动态和技术趋势,无疑将助力企业和个人不断提升数据库管理水平,实现业务效能的最大化。
2023-04-01 10:26:02
132
寂静森林
DorisDB
...合AI驱动的智能优化算法,有望进一步突破现有技术瓶颈,实现按需分配资源,从而更好地满足大规模实时分析的需求。 综上所述,深入理解和掌握DorisDB的分布式集群管理与配置优化是应对当前及未来大数据挑战的关键所在,而持续关注行业发展趋势和技术革新将有助于我们与时俱进地挖掘DorisDB及其他数据库系统的更大潜力。
2024-01-16 18:23:21
395
春暖花开
RocketMQ
...特定规则(如Hash算法)将消息均匀地分布到不同的Broker节点上,确保消息处理能力和存储容量随着集群规模的扩大而线性增长,避免单点成为性能瓶颈。
2023-03-04 09:40:48
112
林中小径
转载文章
...ID生成策略,如雪花算法(Snowflake),能够在分布式环境下实现高效且有序的ID生成,从而避免因单点故障或并发写入导致的自增主键断层。 值得注意的是,无论采取何种解决方案,都需要根据实际应用场景、数据量大小、并发访问量及性能需求等因素综合考虑。同时,理解并遵循数据库设计范式,合理规划表结构,也有助于从根本上减少此类问题的发生。总之,面对MySQL或其他数据库系统中的自增主键连续性挑战,持续关注最新的数据库技术和最佳实践,结合自身项目特点选择最优方案,才能确保系统的稳定、高效运行。
2023-08-26 08:19:54
92
转载
Shell
...这项功能利用机器学习算法自动识别和分类代码变更,生成详细的变更日志,极大地简化了维护过程。 此外,近期有报道指出,由于缺乏有效的版本控制,许多企业在软件开发过程中遇到了严重的安全漏洞和数据丢失问题。例如,某知名科技公司在一次代码更新中不慎引入了一个关键的安全漏洞,导致大量用户数据泄露。这一事件再次提醒我们,版本控制不仅仅是技术问题,更是企业管理和安全防护的重要环节。 从另一个角度来看,版本控制系统的普及也推动了软件开发的全球化趋势。越来越多的企业和个人开发者参与到全球化的开源项目中,共同推动技术创新。以Linux操作系统为例,其成功离不开全球开发者社区的贡献和协作。通过版本控制系统,开发者们能够高效地共享代码、解决问题,并持续改进产品。 综上所述,版本控制系统的应用不仅限于技术层面,更关系到企业的安全管理和全球化协作。因此,无论是个人开发者还是企业团队,都应该重视并掌握这一关键技能。
2025-01-26 15:38:32
50
半夏微凉
Gradle
...件库。这些库通常包含算法和功能模块,用于实时数据分析、机器学习模型推理以及其他高性能计算任务。在文章中,作者提到由于使用了不支持的边缘计算库,导致了Gradle构建脚本的失败。这类库的应用可以显著提升数据处理速度和效率,但同时也需要考虑与现有开发环境的兼容性问题。 Gradle , Gradle 是一种基于Apache Ant和Maven概念的项目自动化构建工具。它提供了一种以编程方式定义构建逻辑的方法,使得构建脚本更加灵活和可扩展。在文章中,作者通过修改Gradle版本和依赖关系解决了构建失败的问题。Gradle常用于Java、Kotlin和其他语言项目的构建,支持多种构建任务,如编译源代码、运行测试、打包应用程序等。 版本兼容性 , 版本兼容性指的是软件的不同版本之间能否相互协作且保持功能的一致性。在软件开发中,不同的库、框架或工具可能会有不同的版本,这些版本之间可能存在不兼容的情况,导致软件无法正常运行。在文章中,作者遇到的问题就是由于使用的边缘计算库版本过高,不被当前的Gradle版本所支持,从而引发了构建失败。因此,在引入新的依赖库之前,必须仔细检查其版本与现有环境的兼容性。
2025-03-07 16:26:30
74
山涧溪流
Apache Solr
...果我们想要使用SVM算法对数据进行分类,我们可以使用如下的Solr脚本: python 五、结论 Solr作为一款强大的全文搜索引擎,在大数据分析、机器学习和人工智能应用中有着广泛的应用。通过上述的例子,我们可以看到Solr的强大功能和灵活性,无论是数据导入和索引构建,还是数据查询和分析,或者是数据预处理和模型训练,都可以使用Solr轻松实现。所以,在这个大数据横行霸道的时代,不论是公司还是个人,如果你们真心想要在这场竞争中脱颖而出,那么掌握Solr技术绝对是你们必须要跨出的关键一步。就像是拿到通往成功大门的秘密钥匙,可不能小觑!
2023-10-17 18:03:11
536
雪落无痕-t
HessianRPC
...不达标,比如说,方法签名跟我期待的样子对不上号。这篇东西会手把手地,用详尽的步骤解析和实实在在的例子演示,让大家都能更接地气地理解,更能轻松上手解决这个问题。 1. HessianRPC简介 首先,让我们回顾一下HessianRPC的基本概念。Hessian是一种高效、紧凑的二进制RPC协议,由Caucho公司开发,特别适合于互联网传输。这个东西超级实用,它能够让Java和其他一些好兄弟语言(比如.NET、Python这些)毫无障碍地远程互相调用对方的方法,就跟在本地调用一样方便。你只需要稍微捣鼓一下配置,写点简单的代码,就能轻松实现服务端和客户端的顺畅交流啦! 2. 方法签名的重要性 在HessianRPC中,每个远程方法都有其独特的“方法签名”,它包括方法名以及参数类型列表。当客户端调用服务器端的方法时,Hessian会根据这个签名来匹配和校验参数。如果客户端传过来的参数“不按套路出牌”,跟服务器端方法要求的参数类型或数量对不上号,那可就得闹脾气了,会直接抛出一个“IllegalArgumentException”异常。 java // 服务器端接口示例 public interface MyService { String process(String input, int num); } // 客户端错误调用示例 MyService service = (MyService) hessianProxyFactory.create(MyService.class, serverUrl); String result = service.process("Hello", "World"); // 这里第二个参数应该是int类型,而非String类型,会导致IllegalArgumentException 3. “IllegalArgumentException:传入参数不合法”问题解析 上述代码中的客户端尝试以一个字符串参数代替整型参数去调用process方法,这就导致了"IllegalArgumentException"。在进行序列化和反序列化的时候,Hessian这家伙发现传过来的参数类型跟预先给定的方法签名对不上号儿,于是它就毫不客气地抛出了一个异常。 4. 解决方案及预防措施 面对这种问题,我们需要从以下几个方面着手: 4.1 检查并确保参数类型正确 在编写客户端调用代码时,应仔细核对每个参数是否符合服务端方法签名的要求。比如上例中,我们需要将第二个参数修改为整型数值: java String result = service.process("Hello", 123); // 正确的调用方式 4.2 强化代码审查与测试 在项目开发过程中,建议采用自动化测试工具和单元测试,覆盖所有RPC方法调用,确保参数类型的准确无误。同时,代码审查也是防止此类问题的有效手段。 4.3 提供清晰的API文档 对于对外提供的服务接口,应该编写详尽且易于理解的API文档,明确指出每个方法的签名,包括方法名、参数类型和返回值类型,以便开发者在调用时有据可依。 4.4 利用IDE的智能提示 现代集成开发环境(IDE)如IntelliJ IDEA或Eclipse都具有强大的智能提示功能,能自动识别和匹配方法签名,利用好这些特性也能有效避免参数类型不匹配的问题。 总结起来,遭遇HessianRPC的“IllegalArgumentException:传入参数不合法”异常,本质上是对方法签名的理解和使用不到位的结果。在编程实战中,只要我们足够细心、步步为营,像侦探破案那样运用各种工具和策略,完全可以把这些潜在问题扼杀在摇篮里,让系统的运行稳如磐石。记住了啊,解决任何技术难题都得像咱们看侦探小说那样,得瞪大眼睛仔仔细细地观察,用脑子冷静地分析推理,动手实践去验证猜想,最后才能拨开层层迷雾,看到那片晴朗的蓝天。
2024-01-16 09:18:32
542
风轻云淡
Apache Pig
...析,或者应用某种特定算法进行数值计算,此时就可以编写相应的UDF来完成这些任务。
2023-04-05 17:49:39
643
翡翠梦境
Hadoop
...ahout提供了一套算法库,支持数据挖掘和预测分析任务,如协同过滤推荐系统、聚类分析、分类算法等。在Hadoop环境中,Mahout能够利用MapReduce模型并行处理大量数据,实现快速而准确的数据挖掘与分析。
2023-03-31 21:13:12
469
海阔天空-t
DorisDB
...一方面,优化数据处理算法和硬件资源配置,提高数据处理速度和效率。此外,随着人工智能和机器学习技术的发展,DorisDB有望与这些技术深度融合,实现更加智能的数据分析和决策支持。 总之,DorisDB在金融行业的应用前景广阔,但同时也面临着诸多挑战。未来,通过持续的技术创新和优化,DorisDB有望在金融大数据处理领域发挥更大的作用,推动金融行业的数字化转型和创新发展。 --- 通过这段文字,我们深入探讨了DorisDB在金融行业的应用现状、面临的挑战以及未来的发展趋势,为读者提供了全面而深入的视角,帮助理解DorisDB在金融大数据处理领域的角色与价值。
2024-08-25 16:21:04
108
落叶归根
Tesseract
...esseract_cmd = 'path_to_your_tesseract_executable' config = '--oem 3 --psm 6 -c tessedit_timeout=60' text = pytesseract.image_to_string(img, config=config) print(text) 在这个例子中,我们通过修改tessedit_timeout配置项,将识别超时时间从默认的5秒增加到了60秒,以适应更复杂的识别场景。 (b) 示例二:优化图像预处理 有时,即使延长超时时间也无法解决问题,这时我们需要关注图像本身的优化。以下是一个简单的预处理步骤示例: python import cv2 import pytesseract 加载图像并灰度化 img = cv2.imread('complex_image.png', cv2.IMREAD_GRAYSCALE) 使用阈值进行二值化处理 _, img = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY_INV) 再次尝试识别 text = pytesseract.image_to_string(img) print(text) 通过图像预处理(如灰度化、二值化等),可以显著提高Tesseract的识别效率和准确性,从而避免超时问题。 5. 思考与讨论 虽然调整超时时间和优化图像预处理可以在一定程度上缓解“RecognitionTimeoutExceeded”问题,但我们也要意识到,这并非万能良药。对于某些极其复杂的图像识别难题,我们可能还需要更进一步,捣鼓出更高阶的算法优化手段,或者考虑给硬件设备升个级,甚至可以试试分布式计算这种“大招”,来搞定它。 总之,面对Tesseract的“RecognitionTimeoutExceeded”,我们需要保持耐心与探究精神,通过不断调试和优化,才能让这款强大的OCR工具发挥出最大的效能。 结语 在技术的海洋里航行,难免会遭遇风浪,而像Tesseract这样强大的工具也不例外。当你真正摸清了“RecognitionTimeoutExceeded”这个小妖精的来龙去脉,以及应对它的各种妙招,就能把Tesseract这员大将驯得服服帖帖,在咱们的项目里发挥核心作用,推着我们在OCR的世界里一路狂奔,不断刷新成绩,取得更大的突破。
2023-09-16 16:53:34
55
春暖花开
Spark
...。该公司利用机器学习算法预测任务运行时间和资源需求,动态调整资源分配策略,从而大幅减少了任务失败的概率。这一案例表明,将AI技术与Spark结合,可以有效提升大数据处理的性能和稳定性。 其次,近期发布的一项研究报告指出,随着云服务的普及,越来越多的企业选择将Spark部署在云端。然而,云环境下的安全性和成本控制成为新的关注点。报告建议,在选择云服务商时,应重点关注其安全防护措施和服务水平协议(SLA),以确保数据的安全性和业务的连续性。同时,合理规划存储和计算资源,避免不必要的浪费,降低总体拥有成本(TCO)。 此外,针对Spark任务失败的具体问题,业界专家也提出了新的见解。他们认为,除了传统的内存配置、代码优化和外部依赖管理外,还需要重视任务的容错机制设计。通过合理的重试策略和状态管理,可以在一定程度上减轻任务失败带来的影响,提高系统的整体可靠性。 综上所述,无论是引入AI技术优化调度,还是加强云环境下的安全管理,亦或是完善任务的容错机制,都是当前Spark用户值得关注的方向。希望这些信息能够为你的大数据处理工作提供有益的参考。
2025-03-02 15:38:28
95
林中小径
Cassandra
...,通过调整一致性哈希算法参数以及优化分区键选择,成功实现了数据在集群内的均匀分布,从而避免了热点问题,保证了系统的高可用性和稳定性。 此外,随着Apache Cassandra 4.0版本的发布,官方对其分区策略机制进行了更多优化,例如增强对超大表的支持,改进元数据管理等,使得Cassandra在处理大规模分布式数据场景时表现更为出色。深入研究这些最新特性并结合实际业务需求灵活运用,是充分发挥Cassandra优势的关键所在。 综上所述,在真实世界的应用中,Cassandra的分区策略不仅是一种理论指导,更需要根据实时业务发展、数据增长趋势以及技术更新迭代进行适时调整和优化,以实现最优的数据管理和访问性能。
2023-11-17 22:46:52
578
春暖花开
Spark
...存管理策略和任务调度算法,进一步突破了Spark的数据处理瓶颈。 此外,随着Apache Spark 3.x版本的迭代更新,Tungsten相关的优化工作仍在持续进行。例如,引入动态编译优化,根据运行时数据特征生成最优执行计划,以及改进内存占用预测模型,有效提升了资源利用率和作业执行效率。 综上所述,Tungsten作为Apache Spark性能优化的核心部分,其设计理念和技术实现对于理解和应对当前及未来大数据挑战具有重要意义,值得我们持续关注其在业界的最新应用实践与研究成果。
2023-03-05 12:17:18
103
彩虹之上-t
Element-UI
...中对虚拟DOM的更新算法进行了显著优化,特别是对于响应式属性变更后视图渲染的性能提升,这将直接影响到诸如Element-UI这类基于Vue.js构建的组件库中动态更新组件状态时的渲染效率。 在“Vue.js 3.2中的Next-Gen Reactivity系统”一文中,官方详细介绍了如何通过更精确地追踪依赖关系和使用新的调度器机制来减少不必要的DOM操作,从而提高页面渲染速度。这意味着在使用Vue.js 3.2及更高版本开发项目时,即使是面对ElSteps这样复杂组件的状态变化,也能实现更为流畅、即时的样式更新。 此外,针对CSS渲染延迟问题,现代浏览器也开始提供一些原生API以改善渲染性能,如requestAnimationFrame用于控制动画帧刷新,以及布局与绘制相关的MutationObserver API等。开发者可以结合这些技术手段,配合Vue.js的新特性,在处理类似ElSteps动态步骤更新时的样式滞后问题上,达到更优的效果。 综上所述,无论是Vue.js框架底层的持续优化还是对浏览器原生API的深入利用,都在为解决前端组件库动态更新样式滞后问题提供更多可能性和策略选择,让开发者能够创造出更为顺畅、高效的用户体验。
2024-02-22 10:43:30
425
岁月如歌-t
Hadoop
...速度,尤其对于迭代型算法如深度学习等有显著效果。 此外,近年来兴起的Kubernetes容器编排技术也在大数据生态中发挥着重要作用,它可以更好地管理运行在Hadoop集群上的分布式机器学习任务,确保资源的有效分配与动态调度。例如,借助Kubernetes,可以轻松部署和管理TensorFlow-on-Hadoop等项目,从而在Hadoop平台上无缝进行大规模深度学习训练。 深入探究,我们发现,尽管新的技术和框架层出不穷,但Hadoop的核心地位并未动摇,反而在与其他先进技术融合的过程中,不断展现出更强的生命力和更广泛的应用场景。未来,Hadoop将继续在大规模机器学习训练及其他复杂数据处理任务中扮演关键角色,并通过集成更多创新技术,赋能数据科学家高效挖掘出更多隐藏在海量数据中的宝贵信息。
2023-01-11 08:17:27
461
翡翠梦境-t
转载文章
...最小公倍数的一种变换算法 2011-07-21 10:39:49| 分类: C++|举报|字号 订阅 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数。对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算。但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积。例如:[2,3,4]并不等于24/(2,3,4)。即两个数的最大公约数和最小公倍数之间的关系不能简单扩展为n个数的情况。 本文对多个数最小公倍数和多个数最大公约数之间的关系进行了探讨。将两个数最大公约数和最小公倍数之间的关系扩展到n个数的情况。在此基础上,利用求n个数最大公约数的向量变换算法计算多个数的最小公倍数。 1. 多个数最小公倍数和多个数最大公约数之间的关系 令p为a1,a2,..,an中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。 对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。 对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。 定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。 例如:对于4,6,8,10,有[4,6,8,10]=120,而M=46810=1920,M/(M/a1,M/a2,..,M/an) =1920/(6810,4810,4610,468)=1920/16=120。 证明: M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为 (1) M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。 (2) 对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。 或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。 因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。 上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。 得证。 定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。 2.多个数最大公约数的算法实现 根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即 (1) 用辗转相除法[2]计算a1和a2的最大公约数(a1,a2) (2) 用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3) (3) 用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4) (4) 依此重复,直到求得(a1,a2,..,an) 上述方法需要n-1次辗转相除运算。 本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。 定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。 例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。 证明: 根据最大公约数的交换律和结合率,有 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。 而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。 因此只需证明(ai,aj)=( ai, aj-ai)即可。 由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。 得证。 定理2类似于矩阵的初等变换,即 令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。 求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为: (1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4) (3) 转到(3) (4) a1,a2,..,an的最大公约数为aj 例如:对于5个数34, 56, 78, 24, 85,有 (34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1, 对于6个数12, 24, 30, 32, 36, 42,有 (12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。 3. 多个数最小共倍数的算法实现 求多个数最小共倍数的算法为: (1) 计算m=a1a2..an (2) 把a1,a2,..,an中的所有项ai用m/ai代换 (3) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (4) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6) (5) 转到(3) (6) 最小公倍数为m/aj 上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。 5.结论 计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。 本篇文章为转载内容。原文链接:https://blog.csdn.net/u012349696/article/details/21233457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-04 16:29:43
39
转载
PostgreSQL
...,该系统利用机器学习算法动态分析SQL查询模式,并据此自适应地调整索引结构与数量,从而有效解决了传统方法中因索引过多导致性能瓶颈的问题。 同时,业界也正积极研究并推广分区表和分片技术在现代分布式数据库环境中的应用。例如,开源数据库项目“CockroachDB”通过创新的全局索引与多级分区策略,实现了跨节点的数据高效检索,大大提升了海量数据场景下的查询速度。 此外,学术界对于索引优化的研究也在不断深化。有学者提出了一种新型的混合索引结构,结合B树与哈希索引的优势,在保证查询效率的同时,降低了存储开销,为未来数据库索引设计提供了新的思路。 总之,随着大数据时代的发展,数据库索引的管理和优化愈发关键,而与时俱进的技术革新与深入研究将继续推动这一领域的发展,助力企业与开发者更好地应对复杂、高并发的数据库应用场景。
2023-06-12 18:34:17
502
青山绿水-t
ReactJS
...API,结合物理模拟算法,为开发者提供了丰富且自然的动态效果,使得创建平滑、可配置的动画变得更加简单高效。 与此同时,业内专家也在深入探讨如何将React Concurrent Mode与Suspense特性应用于动画场景中,以实现更高级别的并行渲染与动画管理。一篇由知名前端博主撰写的深度解析文章指出,通过利用这些新特性,不仅可以提升动画性能,还能有效解决加载过程中动画与数据状态同步的问题,从而提供更为流畅的用户体验。 此外,对于设计原则和最佳实践,React官方文档也进行了更新,强调了在构建可复用动画组件时,应遵循声明式编程理念,以及如何整合现代CSS-in-JS方案(如styled-components或emotion),来更好地封装和复用动画逻辑,同时保持代码的简洁性和易维护性。 综上所述,React动画库与组件的复用不仅是一个技术问题,更是推动前端开发领域不断进步的重要驱动力,值得广大开发者密切关注和深入学习。
2023-03-14 20:38:59
105
草原牧歌-t
转载文章
...rPos)); } 算法还是比较简单的,就是根据基数radix不断对这个整数取余数,根据余数找到从digits数组中找到对应字符。这里需要注意的是, 为什么正数要取反使用负数而不是反过来呢,用正数不是更好处理么?其实,这涉及到是否溢出的问题,对于最小的整数integer,取反就会出现移除,还是一个负数,这样就有问题了。 还有一个功能是把整数换成16进制(toHexString)、8进制(toOctalString)或2进制的字符串(toBinaryString),它最终是调用toUnsignedString实现的。 / Convert the integer to an unsigned number. / private static String toUnsignedString(int i, int shift) { char[] buf = new char[32]; int charPos = 32; int radix = 1 << shift; int mask = radix - 1; do { buf[--charPos] = digits[i & mask]; i >>>= shift; } while (i != 0); return new String(buf, charPos, (32 - charPos)); } 以16进制为例子,shift就是4,得到的mark就是1111,i和mask做与运算后就可以得到在16进制中字符数组的位置,从而得到这4位对应的16进制字符,最后通过右移就抹掉这低4位。 Integer类中有许多方法是和位操作相关的。待后续详解。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33130645/article/details/114425171。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 21:27:37
102
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
jobs
- 查看后台运行的任务列表。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"