前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[动态管理服务节点的Go-Spring实践...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Bootstrap
...系统展开了深入探讨与实践,比如采用CSS Grid布局结合Bootstrap进行响应式设计,或者研发专门针对新兴设备形态的自定义框架。 此外,对于用户体验的极致追求也促使设计师们更加关注内容优先、性能优化以及无障碍访问等方面。因此,在自定义Bootstrap响应式布局算法时,不仅要关注断点调整,还要考虑不同设备上的加载速度、交互体验及视觉一致性等问题,确保在满足个性化需求的同时,能够提供优质的跨平台、跨设备用户体验。 总之,紧跟前端技术发展步伐,了解并掌握最新的设计理念与实践方法,将有助于我们更好地利用Bootstrap进行响应式布局定制,创造出更具前瞻性和包容性的网页界面。
2023-06-28 11:25:46
499
青山绿水
Ruby
...调试技巧:深入探索与实践 Ruby,作为一门充满魅力的开源脚本语言,以其简洁优雅的语法和强大的元编程特性赢得了全球开发者的青睐。在咱们平常编写代码的时候,甭管你是刚入门的小白,还是身经百战的老司机,都逃不过要和调试代码打交道的时刻。这篇文章会手牵手带你畅游Ruby的奇妙天地,通过一些超级实用且充满智慧的调试秘籍,让你在解决bug和定位问题时,效率嗖嗖往上涨,轻松又愉快! 1. 使用puts或pp: 最基础的调试手段 在Ruby中,最简单直接的调试方式就是使用内置的puts方法输出变量值。例如: ruby def calculate_sum(a, b) puts "Values are: a={a}, b={b}" result = a + b puts "The sum is: {result}" result end calculate_sum(3, 5) 输出 Values are: a=3, b=5 和 The sum is: 8 不过,当处理复杂的数据结构(如Hash、Array)时,pp(pretty print)方法能提供更美观易读的输出格式: ruby require 'pp' complex_data = { user: { name: 'Alice', age: 25 }, hobbies: ['reading', 'coding'] } pp complex_data 2. 利用byebug进行断点调试 byebug是Ruby社区广泛使用的源码级调试器,可以让你在代码任意位置设置断点并逐行执行代码以观察运行状态。 首先确保已经安装了byebug gem: bash gem install byebug 然后在你的代码中插入byebug语句: ruby def calculate_average(array) total = array.reduce(:+) size = array.size byebug 设置断点 average = total / size.to_f average end numbers = [1, 2, 3, 4, 5] calculate_average(numbers) 运行到byebug处,程序会暂停并在控制台启动一个交互式调试环境,你可以查看当前上下文中的变量值,执行单步调试,甚至修改变量值等。 3. 使用IRB(Interactive Ruby Shell) IRB是一个强大的工具,允许你在命令行环境中实时编写和测试Ruby代码片段。在排查问题时,可以直接在IRB中模拟相关场景,快速验证假设。 比如,对于某个方法有疑问,可以在IRB中加载环境并尝试调用: ruby require './your_script.rb' 加载你的脚本文件 some_object = MyClass.new some_object.method_in_question('test_input') 4. 利用Ruby的异常处理机制 Ruby异常处理机制也是调试过程中的重要工具。通过begin-rescue-end块捕获和打印异常信息,有助于我们快速定位错误源头: ruby begin risky_operation() rescue => e puts "An error occurred: {e.message}" puts "Backtrace: {e.backtrace.join("\n")}" end 总结 调试Ruby代码的过程实际上是一场与代码逻辑的对话,是一种抽丝剥茧般探求真理的过程。从最基础的用puts一句句敲出结果,到高端大气上档次的拿byebug设置断点一步步调试,再到在IRB这个互动环境中实现实时尝试和探索,甚至巧妙借助异常处理机制来捕获并解读错误信息,这一系列手段相辅相成,就像是Ruby开发者手中的多功能工具箱,帮助他们应对各种编程挑战,无往不利。只有真正把这些调试技巧学得透彻,像老朋友一样熟练运用,才能让你在Ruby开发这条路上走得顺溜儿,轻轻松松解决各种问题,达到事半功倍的效果。
2023-08-22 23:37:07
126
昨夜星辰昨夜风
JQuery
...的滑动条组件。例如,Google的Material Design库推出的Slider组件,其设计遵循现代UI/UX规范,提供了平滑滚动效果及动画过渡,使用户体验得到显著提升。 此外,关于如何优化滑动条在播放器等特定场景下的使用,一篇名为《深入剖析:音频播放器设计与实现》的技术文章,从实战角度出发,详细解读了利用现代前端框架(如React、Vue)结合HTML5 Audio API进行滑动条播放器高级功能开发的策略与技巧,值得对此感兴趣的读者进一步研读学习。 综上所述,在紧跟技术潮流的同时,深入理解和掌握滑动条这一基础而又关键的UI元素,无疑将助力开发者打造出更加高效、易用且富有吸引力的网页应用。
2023-01-20 22:28:12
352
山涧溪流-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 手机都是有震动的效果的,前天飞刀从手机里拆了一个振动器,然后让我下周把这个调一下,昨天来公司小试了一把,就搞定了。下面把过程讲一下吧。 其实android中已经做好了底层的驱动,那便是timed_gpio,就是把定时功能和gpio的功能结合在一起了,振动就是一个小直流电机了,当gpio口是高电平的时候,电机就转动了,当gpio口为低电平的时候,电机就不转了,而time是控制转的时间,也就是gpio口处于高电平的时间。 具体的代码就在/drivers/staging/android/timed_gpio.c 在相关平台的platform.c中加入platform device就可以了。 static struct timed_gpio vibrator = {.name = “vibrator”,.gpio = 61, //对应自己平台的gpio号.max_timeout = 100000,.active_low = 0;};static struct timed_gpio_platform_data timed_gpio_data = {.num_gpios = 1,.gpios = &vibrator,};static struct platform_device my_timed_gpio = {.name = “timed-gpio”,.id = -1,.dev = {.platform_data = &timed_gpio_data,},}; 然后在make menuconfig中选上device下的staging下的android中的相关选项 然后就可以跑一下内核来了,当内核跑起来后,就可以测试了。 因为timed gpio驱动程序为每个设备在/sys/class/timed_output/目录下建立一个子 录,设备子目录的enable文件就是控制设备的时间的。因为在platform中名称为vibrator, 所以,用以下命令可以测试: echo 10000 > /sys/class/timed_output/vibrator/enable 然后可以看下振动器在转了,也可以用示波器或者万用表来验证 接着可以 cat /sys/class/timed_output/vibrator/enable 发现enable的值一直在变小,直到为0的时候停止了转动了。 OK,底层驱动好了,那么android上层就好办多了,因为android上层几乎和平台关系不大,要改的东西很少很少。 至于android硬件抽象层,在hardware/libhardware_legacy/include/hardware_legacy/ vibrator目录下。 include <hardware_legacy/vibrator.h>include "qemu.h"include <stdio.h>include <unistd.h>include <fcntl.h>include <errno.h>define THE_DEVICE "/sys/class/timed_output/vibrator/enable"int vibrator_exists(){int fd;ifdef QEMU_HARDWAREif (qemu_check()) {return 1;}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return 0;close(fd);return 1;}static int sendit(int timeout_ms){int nwr, ret, fd;char value[20];ifdef QEMU_HARDWAREif (qemu_check()) {return qemu_control_command( "vibrator:%d", timeout_ms );}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return errno;nwr = sprintf(value, "%d\n", timeout_ms);ret = write(fd, value, nwr);close(fd);return (ret == nwr) ? 0 : -1;}int vibrator_on(int timeout_ms){/ constant on, up to maximum allowed time /return sendit(timeout_ms);}int vibrator_off(){return sendit(0);} 看到了吧 define THE_DEVICE "/sys/class/timed_output/vibrator/enable" 就是我们要操作的底层驱动的地方,只要这个和驱动配上,那么剩下的事情就木有了,直接搞定了。 其实她也是往这里写数据,android的java层就不关心她了。好了,然后可以在android启动后设置一个闹钟来测试下了,发现可以,至此android的vibrator移植成功。 突然发现了,其实以前觉得很难得东西,很不好理解的东西,在过一段时间后再回过头去看的时候才会恍然大悟。学习是个漫长的过程,是一个知识慢慢积累的过程,一口气是吃不成胖子的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/eastmoon502136/article/details/7909688。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-17 14:30:45
82
转载
Apache Pig
...关注大数据领域的发展动态和技术演进是十分必要的。近期,Apache社区持续对Pig项目进行优化升级,发布了新版本以增强其JOIN性能和扩展性。例如,Apache Pig 0.17版本引入了对Tez执行引擎的支持,使得JOIN等复杂操作的执行效率显著提升,并能更好地适应YARN环境下资源调度的需求。 此外,随着大数据技术的不断进步,诸如Apache Spark等新型计算框架因其内存计算和DAG执行模式,在处理大规模数据联接问题时也展现出了强大的竞争力。Spark SQL提供了DataFrame API和DataSet API,能够无缝对接多种数据源并实现高效的JOIN操作,这为用户在选择合适的大数据处理工具时提供了更多可能。 同时,对于深入理解和优化JOIN性能,业界专家和学者也在不断地探索和研究。一篇发表于《VLDB Journal》的研究论文探讨了基于排序、索引和其他策略在分布式环境下的JOIN算法优化,这对于希望深入挖掘大数据处理潜力的数据工程师具有极高的参考价值。 综上所述,Apache Pig在多表联接领域的优秀表现以及大数据技术生态系统的持续发展与创新,都在不断推动着大数据处理能力的进步。掌握并适时更新相关知识,将有助于应对日益复杂的数据挑战,提高数据分析及决策的效率与准确性。
2023-06-14 14:13:41
456
风中飘零
Tesseract
...的图像输入。 同时,Google于2021年对其开源的Tesseract OCR引擎进行了重要升级,新增了对更多语言的支持,并优化了对模糊、低分辨率图像的识别能力。实际应用中,如在档案数字化、车牌识别、历史文献复原等领域,这些技术进步都极大地提高了工作效率和数据准确性。 此外,针对特定场景下的OCR问题,学术界和工业界也正积极研发定制化解决方案。例如,有研究团队成功开发出一种专门用于医疗影像报告自动识别与结构化的OCR系统,有助于医生快速获取关键信息,提高医疗服务效率。 综上所述,OCR技术的发展日新月异,其在改善图像识别性能、解决现实世界问题方面的价值日益凸显,值得广大开发者和技术爱好者持续关注与深入探讨。
2023-02-06 17:45:52
66
诗和远方-t
Element-UI
...当我们想耍个小聪明,动态切换当前的步骤时,却发现这小家伙有点儿迟钝,样式更新总跟不上趟,存在那么点延迟现象。这不仅影响了页面的交互流畅度,也可能给用户带来不愉快的体验。本篇文章将详细解析这个问题,并提供解决方案。 二、问题描述与复现 在Element-UI中,ElSteps组件用于展示一系列步骤流程,其包含一个active属性用于表示当前显示的步骤编号。当你尝试用编程的方式来捣鼓这个active值,比如通过v-model绑定数据或者自定义事件触发来让它动起来,你会发现这小家伙(组件样式)并不那么听话,不会马上涨价立马就变。它需要点时间,像喝杯茶缓缓神儿那样,等一会儿才能真正展现出新的状态。以下是一个简单的代码示例: html 在这个例子中,即使我们在handleChange方法中直接改变了currentStep的值并手动触发视图刷新,样式仍然会在一段时间后才被正确地应用到相应的步骤条上。 三、问题原因分析 深入探究ElSteps组件内部源码发现,当current属性发生变化时,组件并没有立即执行样式重置操作,而是依赖于浏览器的CSS渲染机制。你知道吗,浏览器在显示网页内容时,其实有点小“拖延症”,就像个排队等候的“画师”。我们把这称作“渲染队列”。也就是说,有时候你对网页做的改动,并不会马!上!就!呈现在页面上,就像是样式更新还在慢悠悠地等队伍排到自己呢,这就可能会造成样式更新的滞后现象。 此外,ElSteps组件在每次current属性变化时都会主动重新计算并设置CSS类名,但是在过渡动画还未结束之前,新旧类名之间的切换操作并未完全完成,因此样式未能及时生效。 四、解决方案 为了解决上述问题,我们可以采取以下两种策略: 1. 启用平滑过渡动画 ElSteps组件支持transition和animation属性来配置步进条的过渡效果,这可以在一定程度上改善样式更新的感知。将这两项属性设置为相同名称(如el-transfer)即可启用默认的平滑过渡动画,如下所示: html ... 此时,当current属性发生改变时,组件将会在现有状态和目标状态之间添加平滑过渡效果,减少了样式更新的滞后感。 2. 利用$forceUpdate()强制更新视图 尽管利用$nextTick()可以一定程度上优化视图渲染的顺序,但在某些情况下,我们还可以采用更激进的方式——强制更新视图。Vue有个很酷的功能,它有一个叫做$forceUpdate()的“刷新神器”,一旦你调用这个方法,就相当于给整个Vue实例来了个大扫除,所有响应式属性都会被更新到最新状态,同时,视图部分也会立马刷新重绘,就像变魔术一样。在handleChange方法中调用此方法可以帮助解决样式更新滞后问题: javascript handleChange(index) { this.currentStep = index; this.$forceUpdate(); } 这样虽然无法彻底避免浏览器渲染延迟带来的样式更新滞后,但在大多数场景下能显著提升视觉反馈的即时性。 总结来说,通过合理地结合平滑过渡动画和强制更新视图策略,我们可以有效地解决ElSteps步骤条在动态改变当前步骤时样式更新滞后的困扰。当然啦,在特定场景下让效果更上一层楼,就得根据实际情况和所在的具体环境对优化方案进行接地气的微调和完善,让它更适合咱们的需求。
2024-02-22 10:43:30
426
岁月如歌-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 求多个数最小公倍数的一种变换算法 2011-07-21 10:39:49| 分类: C++|举报|字号 订阅 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数。对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算。但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积。例如:[2,3,4]并不等于24/(2,3,4)。即两个数的最大公约数和最小公倍数之间的关系不能简单扩展为n个数的情况。 本文对多个数最小公倍数和多个数最大公约数之间的关系进行了探讨。将两个数最大公约数和最小公倍数之间的关系扩展到n个数的情况。在此基础上,利用求n个数最大公约数的向量变换算法计算多个数的最小公倍数。 1. 多个数最小公倍数和多个数最大公约数之间的关系 令p为a1,a2,..,an中一个或多个数的素因子,a1,a2,..,an关于p的次数分别为r1,r2,..,rn,在r1,r2,..,rn中最大值为rc1=rc2=..=rcm=rmax,最小值为rd1=rd2=..=rdt=rmin,即r1,r2,..,rn中有m个数所含p的次数为最大值,有t个数所含p的次数为最小值。例如:4,12,16中关于素因子2的次数分别为2,2,4,有1个数所含2的次数为最大值,有2个数所含2的次数为最小值;关于素因子3的次数分别为0,1,0,有1个数所含3的次数为最大值,有2个数所含3的次数为最小值。 对最大公约数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最低次数,最低次数为0表示不包含[1]。 对最小公倍数有,只包含a1,a2,..,an中含有的素因子,且每个素因子次数为a1,a2,..,an中该素因子的最高次数[1]。 定理1:[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an),其中M为a1,a2,..,an的乘积,a1,a2,..,an为正整数。 例如:对于4,6,8,10,有[4,6,8,10]=120,而M=46810=1920,M/(M/a1,M/a2,..,M/an) =1920/(6810,4810,4610,468)=1920/16=120。 证明: M/a1,M/a2,..,M/an中p的次数都大于等于r1+r2+..+rn-rmax,且有p的次数等于r1+r2+..+rn-rmax的。这是因为 (1) M/ai中p的次数为r1+r2+..+rn-ri,因而M/a1,M/a2,..,M/an中p的次数最小为r1+r2+..+rn-rmax。 (2) 对于a1,a2,..,an中p的次数最大的项aj(1项或多项),M/aj中p的次数为r1+r2+..+rn-rmax。 或者对于a1,a2,..,an中p的次数最大的项aj,M/aj中p的次数小于等于M/ak,其中ak为a1,a2,..,an中除aj外其他的n-1个项之一,而M/aj中p的次数为r1+r2+..+rn-rmax。 因此,(M/a1,M/a2,..,M/an)中p的次数为r1+r2+..+rn-rmax,从而M/(M/a1,M/a2,..,M/an)中p的次数为rmax。 上述的p并没有做任何限制。由于a1,a2,..,an中包含的所有素因子在M/(M/a1,M/a2,..,M/an)中都为a1,a2,..,an中的最高次数,故有[a1,a2,..,an]=M/(M/a1,M/a2,..,M/an)成立。 得证。 定理1对于2个数的情况为[a,b]=ab/(ab/a,ab/b)=ab/(b,a)=ab/(a,b),即[a,b]=ab/(a,b)。因此,定理1为2个数最小公倍数公式[a,b]=ab/(a,b)的扩展。利用定理1能够把求多个数的最小公倍数转化为求多个数的最大公约数。 2.多个数最大公约数的算法实现 根据定理1,求多个数最小公倍数可以转化为求多个数的最大公约数。求多个数的最大公约数(a1,a2,..,an)的传统方法是多次求两个数的最大公约数,即 (1) 用辗转相除法[2]计算a1和a2的最大公约数(a1,a2) (2) 用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3) (3) 用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4) (4) 依此重复,直到求得(a1,a2,..,an) 上述方法需要n-1次辗转相除运算。 本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。 定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。 例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。 证明: 根据最大公约数的交换律和结合率,有 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。 而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。 因此只需证明(ai,aj)=( ai, aj-ai)即可。 由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。 得证。 定理2类似于矩阵的初等变换,即 令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。 求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为: (1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4) (3) 转到(3) (4) a1,a2,..,an的最大公约数为aj 例如:对于5个数34, 56, 78, 24, 85,有 (34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1, 对于6个数12, 24, 30, 32, 36, 42,有 (12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。 3. 多个数最小共倍数的算法实现 求多个数最小共倍数的算法为: (1) 计算m=a1a2..an (2) 把a1,a2,..,an中的所有项ai用m/ai代换 (3) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (4) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6) (5) 转到(3) (6) 最小公倍数为m/aj 上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。 5.结论 计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。 本篇文章为转载内容。原文链接:https://blog.csdn.net/u012349696/article/details/21233457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-04 16:29:43
39
转载
Apache Lucene
...然语言处理领域的最新动态,也为解决分词过程中的常见问题提供了新的视角和方法。未来,随着更多创新技术和理论的涌现,我们有理由相信,分词技术将会变得更加高效和智能,从而进一步提升搜索引擎和智能系统的用户体验。
2025-01-09 15:36:22
87
星河万里
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Html5简单描述(优点与缺点) 什么是HTML5 HTML5指的是包括HTML、CSS和JavaScript在内的一套技术组合。它希望能够减少网页浏览器对于需要插件的丰富性网络应用服务(Plug-in-Based Rich Internet Application,RIA),例如:AdobeFlash、Microsoft Silverlight与Oracle JavaFX的需求,并且提供更多能有效加强网络应用的标准集。HTML5是HTML最新版本,2014年10月由万维网联盟(W3C)完成标准制定。目标是替换1999年所制定的HTML 4.01和XHTML 1.0标准,以期能在互联网应用迅速发展的时候,使网络标准达到匹配当代的网络需求 HTML5现状及浏览器支持 大部分主流浏览器已经支持HTML5,但是各个浏览器支持的方式以及语法有所差异性。支持Html5的浏览器包括Firefox(火狐浏览器),IE9 及其更高版本,Chrome(谷歌浏览器),Safari,Opera等现代浏览器。 HTML5优点与缺点 优点 1、网络标准统一、HTML5本身是由W3C推荐出来的。 2、多设备、跨平台 3、即时更新。 4、提高可用性和改进用户的友好体验; 5、有几个新的标签,这将有助于开发人员定义重要的内容; 6、可以给站点带来更多的多媒体元素(视频和音频); 7、可以很好的替代Flash和Silverlight; 8、涉及到网站的抓取和索引的时候,对于SEO很友好; 9、被大量应用于移动应用程序和游戏。 缺点 a)、安全:像之前Firefox4的web socket和透明代理的实现存在严重的安全问题,同时web storage、web socket 这样的功能很容易被黑客利用,来盗取用户的信息和资料。 b)、完善性:许多特性各浏览器的支持程度也不一样。 c)、技术门槛:HTML5简化开发者工作的同时代表了有许多新的属性和API需要开发者学习,像web worker、web socket、web storage 等新特性,后台甚至浏览器原理的知识,机遇的同时也是巨大的挑战 d)、性能:某些平台上的引擎问题导致HTML5性能低下。 e)、浏览器兼容性:最大缺点,IE9以下浏览器几乎全军覆没。 详细了解HTML5概要与新增标签地址(大神果哥):https://www.cnblogs.com/best/p/6096476.html posted @ 2018-08-12 12:45 韦邦杠 阅读(...) 评论(...) 编辑 收藏 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42981419/article/details/86162058。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 16:22:34
272
转载
Python
...音乐人进行新颖的艺术实践,也为人工智能在文化创意产业的应用开辟了新路径。 同时,在音频处理领域,一款名为“Music Transformer”的开源模型正引发广泛关注。该模型基于Python环境开发,能够理解和生成高质量的长序列音乐,使得通过AI创作完整曲目成为现实。相关开发者社区也积极举办各类编程马拉松和挑战赛,鼓励更多程序员利用Python探索音乐数据挖掘、音乐推荐系统以及音乐治疗等前沿交叉领域。 此外,Python也在音乐教育中发挥着独特作用,如MIT的“听觉计算实验室”正在研发一套基于Python的互动式音乐教学工具,旨在帮助学生通过可视化和实时分析音频数据来更直观地理解音乐理论及结构。 总的来说,Python在音乐世界的编程艺术远未止步,它正在持续推动音乐创作、教育和欣赏方式的革新,为全球音乐爱好者和专业人士提供了一个前所未有的科技视角与平台。未来,我们期待更多由Python驱动的音乐科技创新成果涌现,共同构建更加丰富多彩的音乐未来。
2023-08-07 14:07:02
221
风轻云淡
Superset
...技术,结合实时的科研动态与行业发展趋势,将有助于我们在实际工作中更好地运用数据可视化工具,揭示隐藏在庞大数据背后的深层次信息,从而驱动决策优化和业务增长。
2023-09-13 11:26:54
100
清风徐来-t
Impala
...表可以帮助我们更好地管理和优化大型数据集。把数据按时间戳之类的东西分个区,查询起来会快很多,特别是当你 dealing with 时间序列数据的时候。 示例代码: sql CREATE TABLE sales ( year INT, month INT, day INT, amount DECIMAL(10,2) ) PARTITION BY (year, month); 在这个例子中,我们将 sales 表按年份和月份进行了分区,这样查询某个特定时间段的数据就会变得非常高效。 4.3 使用索引 合理利用索引可以大大提高查询速度。不过,在建索引的时候得好好想想,毕竟索引会吃掉一部分存储空间,而且在往里面添加或修改数据时,还得额外花工夫去维护。 示例代码: sql CREATE INDEX idx_user_email ON users(email); 通过在 email 字段上创建索引,我们可以快速查找特定邮箱的用户记录。 5. 结论 通过本文的学习,我们了解了如何在Impala中选择合适的数据类型以及如何通过这些选择来优化查询性能。希望这些知识能够帮助你在实际工作中做出更好的决策。记住啊,选数据类型和搞性能优化这事儿,就跟学骑自行车一样,得不停地练。别害怕摔跤,每次跌倒都是长经验的好机会!祝你在这个过程中找到乐趣,享受数据带来的无限可能!
2025-01-15 15:57:58
36
夜色朦胧
Python
...拓宽并深化。 近期,Google发布了TensorFlow 2.6版本,这一深度学习框架全面支持Python,进一步巩固了Python在AI领域的地位。开发者可以利用Python便捷地构建复杂的神经网络模型,推动人工智能技术的发展与落地应用。 此外,Python生态系统的完善也是其备受欢迎的原因之一。例如,FastAPI作为一款基于Python的现代Web框架,因其高性能、易用性和对异步编程的良好支持,在今年Stack Overflow开发者调查中被评为“最受开发者喜爱”的Web框架之一。 同时,Python社区活跃,各类教程、开源项目和在线课程丰富多样,为初学者提供了良好的入门资源,也为资深开发者提供了持续进阶的平台。例如,由Guido van Rossum等大牛主推的《流畅的Python》一书,深入解读Python特性和最佳实践,帮助开发者更好地理解和运用Python进行高效开发。 综上所述,无论是在最新技术趋势下的人工智能领域,还是在成熟稳定的Web后端开发,Python都展现出了强大的生命力和发展潜力,值得广大开发者关注与投入。通过持续学习和实战,开发者能够借助Python解决更多实际问题,实现从理论到实战的跨越。
2023-09-07 13:41:24
323
晚秋落叶_
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 昨天看了这部片子,感觉一般,但还是一部可看的片子,不闷。 女杀手失忆之前挺酷的,之后感觉太柔弱了。 三个男主角都不错,不过方中信的形象应该更强悍一些才好,而千叶真一象极了邻居家的老大伯。 《孙子兵法》第六计 虚实计 …… 攻而必取者,攻其所不守也。 守而必固者,守其所必攻也。 故善攻者,敌不知其所守; 善守者,敌不知其所攻。 …… 进而不可御者,冲其虚也; 退而不可追者,速而不可及也。 故我欲战,敌虽高垒深沟,不得不与我战者,攻其所必救也; 我不欲战,虽画地而守之,敌不得与我战者,乖其所之也。 故形人而我无形,则我专而敌分。 …… 附录: 中文名称:第六计 英文名称:Explosive City 资源类型:DVDScr 发行时间:2004年11月04日 电影导演:梁德森 电影演员: 任达华 方中信 千叶真一 白田久子 彭敬慈 萧正楠 地区:香港 语言:普通话 简介: 转自TLF论坛 片名:Explosive City 译名:第六计(又名爆裂都市) 导演:梁德森 主演:任达华 方中信 千叶真一 白田久子 彭敬慈 萧正楠 时间:90分钟 类型:动作 上映日期:2004-11-4 官方网站:http://www.bakuretsu.jp/ 语言:国语 字幕:外挂中/英 剧情: (转自世纪环球在线) 某国际机场,来参加国际会议的邻埠高级官员容大刚正在与众多记者畅谈参会感 想,突然,一个神情冷漠的美貌女子从人群中闪出,只见她拔出手枪,对准容大刚连 开三枪,场内一片大乱。 机场刺杀案引起了警方极大的震惊,派来高级警务人员姚天明(方中信饰)协助 特警队张志诚(任达华饰)警司侦破此案。经过排查,行刺者是某国际恐怖组织的成员, 名叫北条真理(白田久子饰)。材料显示:北条真理生于日本的一个幸福的家庭,三 岁时被某国际恐怖组织首领“奥多桑”(千叶真一饰)看中,把她掳走,通过洗脑、 训练,使她成为恐怖组织的高级杀手。这次行动,她以记者身份潜入机场,射伤了目 标,自己也因此受伤被俘。 就在警方全力破案的同时,某国际恐怖组织的首领“奥多桑”带领部下悄悄潜入 该城,显然,他对上一次行的刺杀行动很不满意,准备亲自上阵了。在他的指挥下, 恐怖分子残忍的杀死了姚天明的太太,并绑架了他的儿子,借此要挟姚天明杀死北条 真理,姚天明在万般无奈中,执行了“奥多桑”的命令,“击毙”、劫持了北条真理, 一步步走进“奥多桑”精心设下的圈套,并因此被警方通缉。 姚天明一边躲避着警方的追捕,一边苦苦寻找“奥多桑”的足迹,寻机解救被绑 架的儿子;幸免于难的北条真理与姚天明从对立变成唇齿相依;在追击中渐渐恢复了 记忆,认出了“奥多桑”安插在警务队伍中的亲信——张志诚警司;令他们百思不得 其解的是,张警司本身就是负责保护容大刚的警卫人员,由他执行刺杀活动,不是更 稳妥吗?为什麼还要派遣北条真理进行明目张胆的刺杀活动?随着事态的发展,无意 中,姚天明在“奥多桑”钟爱的《孙子兵法》一书中发现了更大的秘密——可怕的第 六计…… 转载于:https://www.cnblogs.com/Silence/archive/2004/11/08/61332.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30240349/article/details/98266532。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 09:20:27
618
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 AI垃圾分类 产品描述 垃圾分类-数据分析和预处理 代码结构 resnext101网络架构 垃圾分类-训练 垃圾分类-评估 垃圾分类-在线预测 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 AI垃圾分类 产品描述 如何进行垃圾分类已经成为居民生活的灵魂拷问,然而AI在垃圾分类的应用可以成为居民的得力助手。 针对目前业务需求,我们设计一款APP,来支撑我们的业务需求,主要提供文本,语音,图片分类功能。AI智能垃圾分类主要通过构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别重点处理图片分类问题。 采用深圳市垃圾分类标准,输出该物品属于可回收物、厨余垃圾、有害垃圾和其他垃圾分类。 垃圾分类-数据分析和预处理 整体数据探测 分析数据不同类别分布 分析图片长宽比例分布 切分数据集和验证集 数据可视化展示(可视化工具 pyecharts,seaborn,matplotlib) 代码结构 ├── data│ ├── garbage-classify-for-pytorch│ │ ├── train│ │ ├── train.txt│ │ ├── val│ │ └── val.txt│ └── garbage_label.txt├── analyzer│ ├── 01 垃圾分类_一级分类 数据分布.ipynb│ ├── 02 垃圾分类_二级分类 数据分析.ipynb│ ├── 03 数据加载以及可视化.ipynb│ ├── 03 数据预处理-缩放&裁剪&标准化.ipynb│ ├── garbage_label_40 标签生成.ipynb├── models│ ├── alexnet.py│ ├── densenet.py│ ├── inception.py│ ├── resnet.py│ ├── squeezenet.py│ └── vgg.py├── facebook│ ├── app_resnext101_WSL.py│ ├── facebookresearch_WSL-Images_resnext.ipynb│ ├── ResNeXt101_pre_trained_model.ipynb├── checkpoint│ ├── checkpoint.pth.tar│ ├── garbage_resnext101_model_9_9547_9588.pth├── utils│ ├── eval.py│ ├── json_utils.py│ ├── logger.py│ ├── misc.py│ └── utils.py├── args.py├── model.py├── transform.py├── garbage-classification-using-pytorch.py├── app_garbage.py data: 训练数据和验证数据、标签数据 checkpoint: 日志数据、模型文件、训练过程checkpoint中间数据 app_garbage.py:在线预测服务 garbage-classification-using-pytorch.py:训练模型 models:提供各种pre_trained_model ,例如:alexlet、densenet、resnet,resnext等 utils:提供各种工具类,例如;重新flask json 格式,日志工具类、效果评估 facebook: 提供facebook 分类器神奇的分类预测和数据预处理 analyzer: 数据分析和数据预处理模块 transform.py:通过pytorch 进行数据预处理 model.py: resnext101 模型集成以及调整、模型训练和验证函数封装 resnext101网络架构 pre_trained_model resnext101 网络架构原理 基于pytorch 数据处理、resnext101 模型分类预测 在线服务API 接口 垃圾分类-训练 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--lr 0.001 \--optimizer adam \--start_epoch 1 \--epochs 10 \--num_classes 40 model_name 模型名称 lr 学习率 optimizer 优化器 start_epoch 训练过程断点重新训练 num_classes 分类个数 垃圾分类-评估 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--evaluate \--resume checkpoint/checkpoint.pth.tar \--num_classes 40 model_name 模型名称 evaluate 模型评估 resume 指定checkpoint 文件路径,保存模型以及训练过程参数 垃圾分类-在线预测 python app_garbage.py \--model_name resnext101_32x16d \--resume checkpoint/garbage_resnext101_model_2_1111_4211.pth model_name 模型名称 resume 训练模型文件路径 模型预测 命令行验证和postman 方式验证 举例说明:命令行模式下预测 curl -X POST -F file=@cat.jpg http://ip:port/predict 最后,我们从0到1教大家掌握如何进行垃圾分类。通过本学习,让你彻底掌握AI图像分类技术在我们实际工作中的应用。 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 本篇文章为转载内容。原文链接:https://blog.csdn.net/shenfuli/article/details/103008003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 23:48:11
517
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 金融经济数据方面应用Python非常广泛,也可以算是用Python进行数据分析的一个实际应用。 数据规整化方面的应用 时间序列与截面对齐 在处理金融数据时,最费神的一个问题就是所谓的“数据对齐” (data alignment)问题。两个相关的时间序列的索引可能没有很好的对齐,或两个DataFrame对象可能含有不匹配的列或行。 Pandas可以在算术运算中自动对齐数据。在实际工作中,这不仅能为你带来极大自由度,而且还能提升工作效率。如下,看这个两个DataFrame分别含有股票价格和成交量的时间序列: 假设你想要用所有有效数据计算一个成交量加权平均价格(为了简单起见,假设成交量数据是价格数据的子集)。由于pandas会在算术运算过程中自动将数据对齐,并在sum这样的函数中排除缺失数据,所以我们只需编写下面这条简洁的表达式即可: 由于SPX在volume中找不到,所以你随时可以显式地将其丢弃。如果希望手工进行对齐,可以使用DataFrame的align方法,它返回的是一个元组,含有两个对象的重索引版本: 另一个不可或缺的功能是,通过一组索引可能不同的Series构建一个DataFrame。 跟前面一样,这里也可以显式定义结果的索引(丢弃其余的数据): 时间和“最当前”数据选取 假设你有一个很长的盘中市场数据时间序列,现在希望抽取其中每天特定时间的价格数据。如果数据不规整(观测值没有精确地落在期望的时间点上),该怎么办?在实际工作当中,如果不够小心仔细的话,很容易导致错误的数据规整化。看看下面这个例子: 利用Python的datetime.time对象进行索引即可抽取出这些时间点上的值: 实际上,该操作用到了实例方法at_time(各时间序列以及类似的DataFrame对象都有): 还有一个between_time方法,它用于选取两个Time对象之间的值: 正如之前提到的那样,可能刚好就没有任何数据落在某个具体的时间上(比如上午10点)。这时,你可能会希望得到上午10点之前最后出现的那个值: 如果将一组Timestamp传入asof方法,就能得到这些时间点处(或其之前最近)的有效值(非NA)。例如,我们构造一个日期范围(每天上午10点),然后将其传入asof: 拼接多个数据源 在金融或经济领域中,还有几个经常出现的合并两个相关数据集的情况: ·在一个特定的时间点上,从一个数据源切换到另一个数据源。 ·用另一个时间序列对当前时间序列中的缺失值“打补丁”。 ·将数据中的符号(国家、资产代码等)替换为实际数据。 第一种情况:其实就是用pandas.concat将两个TimeSeries或DataFrame对象合并到一起: 其他:假设data1缺失了data2中存在的某个时间序列: combine_first可以引入合并点之前的数据,这样也就扩展了‘d’项的历史: DataFrame也有一个类似的方法update,它可以实现就地更新。如果只想填充空洞,则必须传入overwrite=False才行: 上面所讲的这些技术都可实现将数据中的符号替换为实际数据,但有时利用DataFrame的索引机制直接对列进行设置会更简单一些: 收益指数和累计收益 在金融领域中,收益(return)通常指的是某资产价格的百分比变化。一般计算两个时间点之间的累计百分比回报只需计算价格的百分比变化即可:对于其他那些派发股息的股票,要计算你在某只股票上赚了多少钱就比较复杂了。不过,这里所使用的已调整收盘价已经对拆分和股息做出了调整。不管什么样的情况,通常都会先算出一个收益指数,它是一个表示单位投资(比如1美元)收益的时间序列。 从收益指数中可以得出许多假设。例如,人们可以决定是否进行利润再投资。我们可以利用cumprod计算出一个简单的收益指数: 得到收益指数之后,计算指定时期内的累计收益就很简单了: 当然了,就这个简单的例子而言(没有股息也没有其他需要考虑的调整),上面的结果也能通过重采样聚合(这里聚合为时期)从日百分比变化中计算得出: 如果知道了股息的派发日和支付率,就可以将它们计入到每日总收益中,如下所示: 本篇文章为转载内容。原文链接:https://blog.csdn.net/geerniya/article/details/80534324。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 19:15:59
323
转载
Apache Atlas
...las等先进的元数据管理工具带来了更广阔的应用空间。 实际上,诸如Facebook、Google等全球科技巨头,正因其数据处理行为面临多国监管机构的严格审查,从而加大投入研发和采用类似Apache Atlas的技术来强化内部数据治理机制,以确保符合GDPR(欧洲通用数据保护条例)等国际法规要求。 同时,随着云计算、物联网技术的发展,数据来源更加多元化且流动频繁,如何实现跨系统、跨平台的数据全生命周期管理成为业界关注焦点。Apache Atlas的标签化管理和策略引擎功能恰恰能够解决这一痛点,帮助企业构建适应新时代需求的数据治理体系。 不仅如此,《哈佛商业评论》近期的一篇文章中指出,在未来的企业竞争中,数据合规性将成为核心竞争力之一。拥有强大而灵活的数据治理工具,如Apache Atlas,将有助于企业在严守合规底线的同时,最大限度地挖掘数据价值,推动业务创新与发展。 综上所述,Apache Atlas不仅是一个技术解决方案,更是企业应对复杂数据环境挑战,确保合规运营的重要战略武器。紧跟时代步伐,深入了解并有效利用此类工具,对于任何致力于长远发展的现代企业来说都具有重大意义。
2023-11-04 16:16:43
453
诗和远方
c++
...hread 命令来管理线程: cpp include include void thread_function() { std::cout << "Thread executing" << std::endl; } int main() { std::thread t(thread_function); t.join(); return 0; } 在调试时,你可以使用 thread 命令查看当前活跃的线程,或者使用 bt(backtrace)命令获取调用堆栈信息。 第六部分:调试异常处理 C++ 异常处理是调试的重点之一。通过设置断点在 try 块的开始,你可以检查异常是否被正确捕获,并分析异常信息。 cpp include include void throw_exception() { throw std::runtime_error("An error occurred"); } int main() { try { throw_exception(); } catch (const std::exception& e) { std::cerr << "Caught exception: " << e.what() << std::endl; } return 0; } 结语 调试是编程旅程中不可或缺的部分,它不仅帮助我们发现并解决问题,还促进了对代码更深入的理解。随着经验的积累,你将能够更高效地使用调试器,解决更复杂的程序问题。嘿,兄弟!记住啊,每次你去调试程序的时候,那都是你提升技能、长见识的绝佳时机。别怕犯错,知道为啥吗?因为每次你摔个大跟头,其实就是在为成功铺路呢!所以啊,大胆地去试错吧,失败了就当是交学费了,下回就能做得更好!加油,程序员!
2024-10-06 15:36:27
112
雪域高原
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 前言 本文写于2007年11月,那时候我是在Discuz!开发组为PHPChina的《PHPer》写的稿,一直也没有发到blog上了,今天偶然之间记起,顺手转发过来。 一、关于模板引擎的前言 从phplib到smarty,再到Discuz!的模板机制,本文试图通过PHP模板引擎为你讲解作者自己的PHP心得。 我清楚的记得在我刚上大学开始学习PHP的时候,曾经在phpe.net看到过一篇关于phplib Template和FastTemplate这两模板引擎性能比较的文章。让我在接下来半年的时间内持续的使用着phplib。不可否认phplib是左右了一代PHP开发人员对于PHP模板引擎的认识。或许你也会对下面的方法比较熟悉$t->set_file $t->set_var 当我对于phplib的执行效率不满意的时候,我开始寻找下一个PHP的模板引擎,于是smarty跳入我的视野范围,当我费尽心血去学会了smarty并使用开发了很多东西,而现在的我突然发现记得的也就只有下面的方法了$s->assign $s->display 究竟我们需要模板引擎来做什么呢,MVC?简单?易用?效率?请看下文的分析。 二、程序处理的分析 1.PHPLIB的程序处理过程 从phplib的处理开始讲起$t = new Template() $t->set_file $t->set_var $t->parse $t->p 看上面的代码,翻译成中文就是初始化模板类$t 设置模板文件 设置模板变量 分析模板文件中的模板变量 输出内容 通过了最少5个步骤在php程序中实现模板的处理 2.Smarty的程序处理过程 现在来看smarty的处理$s = new Smarty $s->assign $s->display 翻译成中文就是初始化模板类$s 设置模板变量 解析并输出模板 3.Discuz!模板的程序处理过程include template(tplname); 主要作用就是指定给程序需要处理的模板文件 在上述三种模板处理机制中,最容易理解和接受就是Discuz!模板的处理过程。初始化、设置变量、解析模板、输出内容,Discuz!只用了一个函数来做。对于一个开源的论坛软件,这样处理的好处是显而易见的,对于Discuz!进行二次开发的程序员的要求降低。简化模板语言,方便风格和插件的制作,这也在一定程度上促进了Discuz!的传播 三、模板源文件的语法 在phplib中处理循环嵌套的时候,使用: {it} 在smarty中处理循环嵌套的时候,引入了< {section name=loopName loop=$loopArray}>(当然还有foreach这样的) 在Discuz!中处理循环嵌套的时候, 其实真正的模板面对的可以说是不懂PHP或者懂一点PHP的美工同志们,模板的复杂就意味着美工制作页面的难度加大。在必不可少的需要模板有逻辑处理的时候,为什么不在html代码中使用原生态的PHP语法,而让美工相当于去学习另外一种语言呢?在我个人的经验中,显然是Discuz!的模板语言更为简单易学,也为我节省了更多的时间。 四、Discuz!模板处理机制 我剥离出一个简单的Discuz!模板处理函数function template($file, $templateid = 0, $tpldir = '') { $tplfile = DISCUZ_ROOT.'./'.$tpldir.'/'.$file.'.htm';//模板源文件,此处$tplfile变量的值可能是D:\discuz\templates\default\demo.htm $objfile = DISCUZ_ROOT.'./forumdata/templates/'. $templateid.'_'.$file.'.tpl.php';//模板缓存文件,此处$objfile变量的值可能是D:\discuz\forumdata\templates\1_demo.tpl.php //如果模板源文件的修改时间迟于模板缓存文件的修改时间, //就是模板源文件被修改而模板缓存没有更新的时候, //则调用parse_template函数重新生成模板缓存文件。 if(@filemtime($tplfile) > @filemtime($objfile)) { require_once DISCUZ_ROOT.'./include/template.func.php'; parse_template($file, $templateid, $tpldir); } //返回缓存文件名称 //$objfile变量内容可能为D:\discuz\forumdata\templates\1_demo.tpl.php return $objfile; } 而php页面的模板执行语句include template('demo'); 实际上在本例中就是相当于include 'D:\discuz\forumdata\templates\1_demo.tpl.php'; 这个流程就是一个demo.php文件中当数据处理完成以后include template('demo'),去显示页面。 五、总结 我也曾经看到过有列举出很多种的PHP模板引擎,但是我觉着phplib、smarty、Discuz!模板机制就足以说明问题了。 1.我们需要模板来做什么? 分离程序与界面,为程序开发以及后期维护提供方便。 2.我们还在关心什么? PHP模板引擎的效率,易用性,可维护性。 3.最后的要求什么? 简单就是美! 我的文章好像没有写完,其实已经写完了,我要说明的就是从PHP的模板引擎看Discuz!模板机制。分析已经完成,或许以后我会再写篇实际数据的测试供给大家参考! Tags: none 版权声明:原创作品,欢迎转载,转载时请务必以超链接形式标明文章原始地址、作者信息和本声明。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42557656/article/details/115159292。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-07 14:43:46
108
转载
Java
MySQL
...树形结构中,每一个小节点都有一个自己的‘老爹’节点,而这个‘老爹’呢,它还可能是其他许多小节点的‘老爹’。这样的构造方式,其实就像家谱一样,可以展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
59
星河万里_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
umount /mnt
- 卸载已挂载的目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"