前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[svnserve配置文件详解 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Superset
...t允许用户自由创建和配置个性化仪表盘,每个组件(如各种图表)都可以拖拽调整大小和位置,如同拼图一样灵活构建数据故事。以下是一个创建新仪表盘的例子: python 伪代码示例,实际操作是通过UI完成 create_new_dashboard('My Custom Dashboard') add_chart_to_dashboard(chart_id='sales_trend', position={'x': 0, 'y': 0, 'width': 12, 'height': 6}) 通过这种方式,用户可以根据自己的需求和喜好对仪表盘进行深度定制,使数据更加贴近业务场景,提高了数据理解和决策效率。 3. 强大的交互元素 (1) 动态过滤器:Superset支持全局过滤器,用户在一个地方设定筛选条件后,整个仪表盘上的所有关联图表都会实时响应变化。例如: javascript // 伪代码,仅表达逻辑 apply_global_filter(field='date', operator='>', value='2022-01-01') (2) 联动交互:点击图表中的某一数据点,关联图表会自动聚焦于该点所代表的数据范围,这种联动效果能有效引导用户深入挖掘数据细节,增强数据探索的趣味性和有效性。 4. 易用性与可访问性 Superset在色彩搭配、字体选择、图标设计等方面注重易读性和一致性,降低用户认知负担。同时呢,我们也有考虑到无障碍设计这一点,就比如说,为了让视力不同的用户都能舒舒服服地使用,我们会提供足够丰富的对比度设置选项,让大家可以根据自身需求来调整,真正做到贴心实用。 总结来说,Superset通过直观清晰的界面布局、高度自由的定制化设计、丰富的交互元素以及关注易用性和可访问性的细节处理,成功地优化了用户体验,使其成为一款既专业又友好的数据分析工具。在此过程中,我们不断思考和探索如何更好地平衡功能与形式,让冰冷的数据在人性化的设计中焕发出生动的活力。
2023-09-02 09:45:15
150
蝶舞花间
Kylin
...= ...; // 配置分段和维度度量 cube.setSegments(segments); kylinServer.createCube(cube); 2.2 查询优化(3.2) 用户在执行查询时,Kylin会将查询条件映射到预计算好的立方体上,直接返回结果,避免了实时扫描大量原始数据的过程。 java // 示例:使用Kylin进行查询 KylinQuery query = new KylinQuery(); query.setCubeName("sales_cube"); Map dimensions = ...; // 设置维度条件 Map metrics = ...; // 设置度量条件 query.setDimensions(dimensions); query.setMetrics(metrics); Result result = kylinServer.execute(query); 三、Kylin的应用价值探讨(4) 3.1 性能提升(4.1) 通过上述代码示例我们可以直观地感受到,Kylin通过预计算策略极大程度地提高了查询性能,使得企业能够迅速洞察业务趋势,做出决策。 3.2 资源优化(4.2) 此外,Kylin还能有效降低大数据环境下硬件资源的消耗,帮助企业节省成本。这种通过时间换空间的方式,符合很多企业对于大数据分析的实际需求。 结语(5) Apache Kylin在大数据分析领域的成功,正是源自于对现实挑战的深度洞察和技术层面的创新实践。每一个代码片段都蕴含着开发者们对于优化数据处理效能的执着追求和深刻思考。现如今,Kylin已经成功进化为全球众多企业和开发者心头好,他们把它视为处理大数据的超级神器。它持续不断地帮助企业,在浩瀚的数据海洋里淘金,挖出那些深藏不露的价值宝藏。 以上只是Kylin的一小部分故事,更多关于Kylin如何改变大数据处理格局的故事,还有待我们在实际操作与探索中进一步发现和书写。
2023-03-26 14:19:18
77
晚秋落叶
Tornado
...,例如通过负载均衡器配置WebSocket会话黏性或者采用专门的状态共享方案。 另外,在WebSocket安全方面,除了握手阶段的Sec-WebSocket-Accept验证之外,还需关注WebSocket连接期间的数据加密、防篡改及DDoS防护等问题。例如,可以结合TLS(Transport Layer Security)协议保障数据传输的安全,并采取合理的身份认证和权限控制措施,确保只有授权用户才能建立WebSocket连接。 总之,面对WebSocket在实际应用中可能出现的各种挑战,从保持技术前沿的认知更新,到细致入微的实战技巧打磨,再到全方位的安全防护布局,都是现代Web开发者需要不断跟进和探索的方向。而Tornado作为成熟的Python Web框架,其对WebSocket的支持将随着社区的共同努力和实践经验的积累,为开发者带来更加稳定可靠的实时通信解决方案。
2024-02-03 10:48:42
132
清风徐来-t
Tornado
...待I/O操作(如读写文件或网络通信)完成时继续执行其他任务,而不需要阻塞等待。在本文的上下文中,Tornado库采用了异步I/O机制,使得即使在单线程环境下也能高效并发处理多个网络请求,极大地提升了Web应用的服务能力和响应速度。 TCP连接 , Transmission Control Protocol(传输控制协议)是一种面向连接、可靠的基于字节流的传输层通信协议。在网络编程中,TCP连接是两个网络节点之间建立的一种稳定、双向的数据交换通道。当网络连接不稳定或中断时,TCP连接可能会因超时、丢包等问题断开。文中提到,Tornado通过自动重连机制来应对TCP连接可能遇到的问题,确保在连接断开后能够尝试重新建立连接,提高网络服务的可用性和可靠性。 WebSocket , WebSocket是一种在单个TCP连接上进行全双工通信的协议,允许客户端和服务器之间进行实时、双向的数据传输。与HTTP等传统请求-响应模型不同,WebSocket能够在同一个连接上持久保持打开状态,并且支持实时推送数据。在Tornado库中,开发人员可以利用WebSocket功能构建实时Web应用,实现聊天室、实时股票报价、在线游戏等场景,即使在网络环境波动时,也能够更好地维持连接稳定性,提供流畅的用户体验。
2023-05-20 17:30:58
168
半夏微凉-t
RocketMQ
本文针对Apache RocketMQ在实际应用中遇到的JVM内存溢出和GC频繁问题,进行了深度分析与探讨。通过实例代码揭示了不合理内存管理可能导致的性能瓶颈,并提出了四项针对性优化策略:利用RocketMQ的消息批量发送功能减少对象创建;合理配置JVM参数以适应业务负载并选择高效GC算法;借助监控工具实时监控JVM内存状态及GC频率以实现预警与调优;设计高效的消息消费逻辑避免消息堆积引发的内存持续增长。通过这些具体措施,能有效预防RocketMQ系统中的内存溢出、降低GC频率,从而保障分布式消息中间件服务的稳定、高效运行。
2023-05-31 21:40:26
91
半夏微凉
Beego
...何优化数据库连接池的配置? 在配置数据库连接池时,我们需要注意以下几个方面: 1. 设置合适的最大开放连接数和最大空闲连接数。如果最大允许的开放连接数太多了,就好比是一个接待员同时应付太多的客人,不仅会让整个系统的资源被胡乱消耗掉,变得大手大脚;而另一方面,要是最大空闲连接数设置得不够多,那就像是在高峰期,排队等待服务的顾客太少,结果就是数据库不得不频繁地忙前忙后,响应速度自然也就慢下来了。因此,这两个参数需要根据实际的业务需求来进行调整。 2. 避免频繁地关闭数据库连接。虽然数据库连接池确实是个好东西,能帮咱们有效解决频繁创建和销毁数据库连接这个大麻烦,但你要是总把它当成回收站,频繁地把连接丢回去,那这好经也可能被念歪了,会导致数据库连接资源白白浪费掉。因此,我们应该尽可能地减少数据库连接的释放次数。 3. 定期检查数据库连接池的状态。为了确保数据库连接池运转得顺顺畅畅,我们得定期给它做个全面体检,摸摸底儿,瞅瞅像当前有多少个连接在用啊,又有多少闲着没事儿干的空闲连接等等这些关键指标。这样一来,一旦有啥小毛小病的,咱们就能立马发现并及时处理掉,保证一切正常运行。 五、总结 总的来说,在Beego框架下使用数据库连接池是一个非常有效的方法,可以帮助我们提高数据库的性能。不过呢,咱们也得不断地摸索和捣鼓,才能找到那个最适合自家数据库的连接池配置。就像是找鞋子一样,不试穿几双,怎么能知道哪一双穿起来最合脚、最舒服呢?所以,对于数据库连接池的配置,咱也得慢慢尝试、逐步调整,才能找到最佳的那个“黄金比例”。同时,我们也应该注意保持良好的编程习惯,避免产生无谓的资源浪费。希望这篇内容能实实在在帮到你,让你更溜地掌握和运用Beego框架下的数据库连接池,让数据操作变得更顺手、更高效。
2023-12-11 18:28:55
528
岁月静好-t
Kafka
...网络延迟。 3.2 配置不当 Kafka客户端配置不恰当也可能造成网络延迟升高,例如fetch.min.bytes和fetch.max.bytes参数设置不合理,使得消费者在获取消息时等待时间过长。 3.3 数据量过大 如果Kafka Topic中的消息数据量过大,导致网络带宽饱和,也会引起网络延迟上升。 4. 解决策略 4.1 优化网络架构 尽量减少数据传输的物理距离,合理规划网络拓扑,使用高速稳定的网络设备,并确保带宽充足。 4.2 调整Kafka客户端配置 根据实际业务需求,调整fetch.min.bytes和fetch.max.bytes等参数,以平衡网络利用率和消费速度。 java // 示例:调整fetch.min.bytes参数 props.put("fetch.min.bytes", "1048576"); // 设置为1MB,避免频繁的小批量请求 4.3 数据压缩与分片 对发送至Kafka的消息进行压缩处理,减少网络传输的数据量;同时考虑适当增加Topic分区数,分散网络负载。 4.4 监控与报警 建立完善的监控体系,实时关注网络延迟指标,一旦发现异常情况,立即触发报警机制,便于及时排查和解决。 5. 结语 面对Kafka服务器与外部系统间的网络延迟问题,我们需要从多个维度进行全面审视和分析,结合具体应用场景采取针对性措施。明白并能切实搞定网络延迟这个问题,那可不仅仅是对咱Kafka集群的稳定性和性能有大大的提升作用,更关键的是,它能像超级能量饮料一样,给整个数据处理流程注入活力,确保其高效顺畅地运作起来。在整个寻找答案、搞定问题的过程中,我们不停地动脑筋、动手尝试、不断改进,这正是技术进步带来的挑战与乐趣所在,让我们的每一次攻关都充满新鲜感和成就感。
2023-10-14 15:41:53
466
寂静森林
ActiveMQ
...消息堆积。 (4) 配置调优:针对上述可能的问题,可以尝试调整ActiveMQ的相关配置参数,比如增大内存缓冲区大小、优化线程池配置、启用零拷贝技术等,以提升高并发下的性能表现。 4. 结论与思考 排查ActiveMQ在高并发环境下的性能瓶颈是一项既具挑战又充满乐趣的任务。每一个环节,咱们都得把它的工作原理摸得门儿清,然后结合实际情况,像对症下药那样来点实实在在的优化措施。对开发者来说,碰到高并发场景时,咱们可以适时地把分布式消息中间件集群、负载均衡策略这些神器用起来,这样一来,ActiveMQ就能更溜地服务于我们的业务需求啦。在整个这个过程中,始终坚持不懈地学习新知识,保持一颗对未知世界积极探索的心,敢于大胆实践、勇于尝试,这种精神头儿,绝对是咱们突破瓶颈、提升表现的关键所在。 以上内容仅是初步探讨,具体问题需要根据实际应用场景细致分析,不断挖掘ActiveMQ在高并发下的潜力,使其真正成为支撑复杂分布式系统稳定运行的强大后盾。
2023-03-30 22:36:37
601
春暖花开
Netty
...的一份安全报告,由于配置不当或缺乏有效的监控措施,许多企业的消息队列系统容易遭受攻击。因此,除了性能监控外,还需要加强对消息队列安全性的重视,确保数据传输的安全可靠。 值得一提的是,国内一些企业也在积极探索适合本地化需求的消息队列监控解决方案。阿里巴巴的云平台推出了基于Netty的消息队列产品,结合阿里云的监控系统,提供了更为灵活和高效的监控方案。此外,华为云也在其消息队列服务中集成了智能监控和告警功能,帮助企业快速发现并解决潜在问题。 总之,随着技术的发展和应用场景的多样化,消息队列的监控和管理将成为未来一段时间内的重要议题。无论是采用开源工具还是商业解决方案,都需要企业投入更多资源和精力,以确保系统的稳定运行和数据的安全。
2024-11-04 16:34:13
316
青春印记
RabbitMQ
...控制分为三类: - 配置权限:允许用户对vhost内的资源进行创建、修改和删除操作。 - 写入权限:允许用户向vhost内的队列发送消息。 - 读取权限:允许用户从vhost内的队列接收消息。 2.3 权限规则 权限控制通过正则表达式来定义,这意味着你可以非常灵活地控制哪些用户能做什么,不能做什么。比如说,你可以设定某个用户只能看到名字以特定字母开头的队列,或者干脆不让某些用户碰特定的交换机。 3. 实战演练 动手配置权限控制 理论讲完了,接下来就让我们一起动手,看看如何在RabbitMQ中配置权限控制吧! 3.1 创建用户 首先,我们需要创建一些用户。假设我们有两个用户:alice 和 bob。打开命令行工具,输入以下命令: bash rabbitmqctl add_user alice password rabbitmqctl set_user_tags alice administrator rabbitmqctl add_user bob password 这里,alice 被设置为管理员,而 bob 则是普通用户。注意,这里的密码都设为 password,实际使用时可要改得复杂一点哦! 3.2 设置vhost 接着,我们需要创建一个虚拟主机,并分配给这两个用户: bash rabbitmqctl add_vhost my-vhost rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "." "." 这里,我们给 alice 和 bob 都设置了通配符权限,也就是说他们可以在 my-vhost 中做任何事情。当然,这只是个示例,实际应用中你肯定不会这么宽松。 3.3 精细调整权限 现在,我们来试试更精细的权限控制。假设我们只想让 alice 能够管理队列,但不让 bob 做这件事。我们可以这样设置: bash rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "^bob-queue-" "^bob-queue-" 在这个例子中,alice 可以对所有资源进行操作,而 bob 只能对以 bob-queue- 开头的队列进行读写操作。 3.4 使用API进行权限控制 除了命令行工具外,RabbitMQ还提供了HTTP API来管理权限。例如,要获取特定用户的权限信息,可以发送如下请求: bash curl -u admin:admin-password http://localhost:15672/api/permissions/my-vhost/alice 这里的 admin:admin-password 是你的管理员账号和密码,my-vhost 和 alice 分别是你想要查询的虚拟主机名和用户名。 4. 总结与反思 通过上面的操作,相信你已经对RabbitMQ的权限控制有了一个基本的认识。不过,值得注意的是,权限控制并不是一劳永逸的事情。随着业务的发展,你可能需要不断调整权限设置,以适应新的需求。所以,在设计权限策略的时候,咱们得想远一点,留有余地,这样系统才能长久稳定地运转下去。 最后,别忘了,安全永远是第一位的。就算是再简单的消息队列系统,我们也得弄个靠谱的权限管理,不然咱们的数据安全可就悬了。希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎留言交流! --- 这就是今天的分享了,希望大家能够从中获得灵感,并在自己的项目中运用起来。记住啊,不管多复杂的系统,到最后不就是为了让人用起来更方便,生活过得更舒心嘛!加油,程序员朋友们!
2024-12-18 15:31:50
102
梦幻星空
Go Iris
... // 假设我们已经配置好了数据库连接 db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/testdb") if err != nil { panic(err.Error()) // 此处处理数据库连接错误 } defer db.Close() // 定义一个HTTP路由处理函数,其中包含SQL查询 app.Get("/users/{id}", func(ctx iris.Context) { id := ctx.Params().Get("id") var user User err = db.QueryRow("SELECT FROM users WHERE id=?", id).Scan(&user.ID, &user.Name, &user.Email) if err != nil { if errors.Is(err, sql.ErrNoRows) { // 处理查询结果为空的情况 ctx.StatusCode(iris.StatusNotFound) ctx.WriteString("User not found.") } else if mysqlErr, ok := err.(mysql.MySQLError); ok { // 对特定的MySQL错误进行判断和处理 ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString(fmt.Sprintf("MySQL Error: %d - %s", mysqlErr.Number, mysqlErr.Message)) } else { // 其他未知错误,记录日志并返回500状态码 log.Printf("Unexpected error: %v", err) ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Internal Server Error.") } return } // 查询成功,继续处理业务逻辑... // ... }) app.Listen(":8080") } 4. 深入思考与讨论 面对SQL查询错误,我们应该首先确保它被正确捕获并分类处理。就像刚刚提到的例子那样,面对各种不同的错误类型,我们完全能够灵活应对。比如说,可以选择扔出合适的HTTP状态码,让用户一眼就明白是哪里出了岔子;还可以提供一些既友好又贴心的错误提示信息,让人一看就懂;甚至可以细致地记录下每一次错误的详细日志,方便咱们后续顺藤摸瓜,找出问题所在。 在实际项目中,我们不仅要关注错误的处理方式,还要注重设计良好的错误处理策略,例如使用中间件统一处理数据库操作异常,或者在ORM层封装通用的错误处理逻辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
458
月下独酌
c++
... 第二部分:配置与启动调试器 假设你已经安装了支持 C++ 的调试器,如 GDB(GNU Debugger)。哎呀,小伙伴们!在咱们动手调bug之前,得先确保咱们的项目已经乖乖地被编译了,对吧?而且呢,咱们的调试神器得能认出这个项目才行!这样子,咱们才能顺利地找到那些藏在代码里的小秘密,对不对?别忘了,准备工作做好了,调试起来才更顺畅嘛! cpp include int main() { int x = 5; if (x > 10) { std::cout << "x is greater than 10" << std::endl; } else { std::cout << "x is not greater than 10" << std::endl; } return 0; } 第三部分:设置断点并执行调试 打开你的调试器,加载项目。哎呀,兄弟,找找看,在编辑器里,你得瞄准那个 if 语句的起始位置,记得要轻轻点一下左边。瞧见没?那边有个小红点,对,就是它!这就说明你成功地设了个断点,可以慢慢享受代码跳动的乐趣啦。 现在,启动调试器,程序将在断点处暂停。通过单步执行功能,你可以逐行检查代码的执行情况。在 if 语句执行前暂停,你可以观察到变量 x 的值为 5,从而理解程序的执行逻辑。 第四部分:利用条件断点进行深入分析 假设你怀疑某个条件分支的执行路径存在问题。可以设置条件断点,仅在特定条件下触发: cpp include int main() { int x = 5; if (x > 10) { std::cout << "x is greater than 10" << std::endl; } else { std::cout << "x is not greater than 10" << std::endl; } return 0; } 设置条件断点时,在断点上右击选择“设置条件”,输入 x > 10。现在,程序只有在 x 大于 10 时才会到达这个断点。 第五部分:调试多线程程序 对于 C++ 中的多线程应用,调试变得更加复杂。GDB 提供了 thread 命令来管理线程: cpp include include void thread_function() { std::cout << "Thread executing" << std::endl; } int main() { std::thread t(thread_function); t.join(); return 0; } 在调试时,你可以使用 thread 命令查看当前活跃的线程,或者使用 bt(backtrace)命令获取调用堆栈信息。 第六部分:调试异常处理 C++ 异常处理是调试的重点之一。通过设置断点在 try 块的开始,你可以检查异常是否被正确捕获,并分析异常信息。 cpp include include void throw_exception() { throw std::runtime_error("An error occurred"); } int main() { try { throw_exception(); } catch (const std::exception& e) { std::cerr << "Caught exception: " << e.what() << std::endl; } return 0; } 结语 调试是编程旅程中不可或缺的部分,它不仅帮助我们发现并解决问题,还促进了对代码更深入的理解。随着经验的积累,你将能够更高效地使用调试器,解决更复杂的程序问题。嘿,兄弟!记住啊,每次你去调试程序的时候,那都是你提升技能、长见识的绝佳时机。别怕犯错,知道为啥吗?因为每次你摔个大跟头,其实就是在为成功铺路呢!所以啊,大胆地去试错吧,失败了就当是交学费了,下回就能做得更好!加油,程序员!
2024-10-06 15:36:27
112
雪域高原
Apache Atlas
...这段伪代码展示了如何配置一个具有重试机制的HTTP客户端,以便在网络状况不佳时仍能尽力获取所需数据。 (b) 缓存策略 在短暂的网络中断期间,可以利用本地缓存存储近期获取的元数据信息,以此降低对实时连接的依赖。一旦网络恢复,再进行必要的数据同步更新。 (c) 心跳检测与故障转移 针对集群环境,可以通过定期心跳检测判断与Atlas服务器的连接状态,及时切换至备份服务器,确保服务的连续性。 4. 结论与思考 面对Apache Atlas客户端与服务器间网络连接不稳定或中断的情况,我们需要从系统设计层面出发,采用合适的容错策略和技术手段提高系统的鲁棒性。同时呢,咱们得摸清楚底层通信机制那些个特性,再结合实际的使用场景,不断打磨、优化咱们的解决方案。这样一来,才能真正让基于Apache Atlas搭建的大数据平台坚如磐石,稳定运行起来。 以上讨论并未给出Apache Atlas本身的代码实现,而是围绕其使用场景和策略给出了建议。实际上,每个项目都有其独特性,具体策略需要根据实际情况灵活调整和实施。
2024-01-10 17:08:06
410
冬日暖阳
DorisDB
.... 优化策略三 系统配置调优 DorisDB提供了丰富的系统参数供用户调整以适应不同场景下的性能需求。比方说,你可以通过调节max_scan_range_length这个参数,来决定每次查询时最多能扫描多少数据范围,就像控制扫地机器人的清扫范围那样。再者,通过巧妙调整那些和内存相关的设置,就能让服务器资源得到充分且高效的利用,就像精心安排储物空间,让每个角落都物尽其用。 6. 结语 优化DorisDB的SQL查询性能是一个综合且持续的过程,需要结合业务特点和数据特征,从表结构设计、查询语句编写到系统配置调整等多个维度着手。每个环节都需细心打磨,才能使DorisDB在大数据洪流中游刃有余,提供更为出色的服务。每一次对DorisDB的优化,都是我们携手这位好伙伴,一起摸爬滚打、不断解锁新技能、共同进步的重要印记。这样一来,咱的数据分析之路也能走得更顺溜,效率嗖嗖往上涨,就像坐上了火箭一样快呢!
2023-05-07 10:47:25
500
繁华落尽
Apache Atlas
... 三、设置基础环境与配置 首先,我们需要在Apache Atlas环境中设置好数据脱敏规则。登录到Atlas的管理界面,找到数据资产管理模块,创建一个新的数据实体(例如,用户表User)。在这里,你可以为每个字段指定脱敏策略。 java // 示例代码片段 DataEntity userEntity = new DataEntity(); userEntity.setName("User"); userEntity.setSchema(new DataSchema.Builder() .addField("userId", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.PARTIAL) .setMaskCharacter('') .setLength(5) // 显示前5位 .build()) .addField("email", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.FULL) .build()) .build()); 四、编写脱敏策略 在上述代码中,DataMaskingPolicy类定义了具体的脱敏策略。MaskType枚举允许我们选择全遮盖(FULL)、部分遮盖(PARTIAL)或其他方式。setMaskCharacter()定义了替换字符,setLength(5)则设置了显示的长度。当你想要在某些字段中保留部分真实的细节时,咱们就可以灵活地给这些字段设定一个合适的长度,并选择相应的掩码方式,这样一来,既保护了隐私,又不失实用性,就像是给信息穿上了“马赛克”外套一样。 五、关联数据脱敏策略到实际操作 接下来,我们需要确保在执行SQL查询时能应用这些策略。这通常涉及到配置数据访问层(如JDBC、Spark SQL等),让它们在查询时自动调用Atlas的策略。以下是一个使用Hive SQL的示例: sql -- 原始SQL SELECT userId, email FROM users; -- 添加脱敏处理 SELECT userId.substring(0, 5) as 'maskedUserId', email from users; 六、监控与调整 实施数据脱敏策略后,我们需要监控其效果,确保数据脱敏在实际使用中没有意外影响业务。根据反馈,可能需要调整策略的参数,比如掩码长度或替换字符,以达到最佳的保护效果。 七、总结与最佳实践 Apache Atlas的数据脱敏功能并非一蹴而就,它需要时间和持续的关注。要知道,要想既确保数据安然无恙又不拖慢工作效率,就得先摸清楚你的数据情况,然后量身定制适合的保护策略,并且在实际操作中灵活调整、持续改进这个策略!就像是守护自家宝贝一样,既要看好门,又要让生活照常进行,那就得好好研究怎么把门锁弄得既安全又方便,对吧!记住了啊,数据脱敏可不是一劳永逸的事儿,它更像是个持久战,需要随着业务发展需求的不断演变,还有那些法规要求的时常更新,我们得时刻保持警惕,持续地对它进行改进和调整。 通过这篇文章,你已经掌握了在Apache Atlas中实施数据脱敏策略的基本步骤。但在实际动手干的时候,你可能得瞅瞅具体项目的独特性跟需求,量身打造出你的解决方案才行。听好了,对一家企业来说,数据安全可是它的命根子,而做好数据脱敏这步棋,那就是走向合规这条大道的关键一步阶梯!祝你在数据治理的旅程中顺利!
2024-03-26 11:34:39
469
桃李春风一杯酒-t
转载文章
...储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
257
转载
MyBatis
...愈发广泛,其中,通过配置 HikariCP、Druid 等高性能连接池实现自动管理数据库连接成为最佳实践。这些连接池能有效管理数据库连接的生命周期,减少创建和关闭连接的开销,并通过合理的连接回收和分配策略,极大地提升了系统在高并发情况下的性能表现和稳定性。 此外,随着云原生架构的发展,服务网格(Service Mesh)等技术逐渐应用于微服务架构中,数据库连接管理也面临着新的挑战与机遇。例如,Istio 等服务网格产品提供了对数据库流量控制的支持,使得在大规模分布式系统中对数据库连接进行细粒度治理成为可能,这为 MyBatis 等持久层框架在云端环境下的应用提供了更为丰富且强大的扩展能力。 同时,对于安全问题的关注也不容忽视,虽然 MyBatis 提倡使用 PreparedStatement 避免 SQL 注入攻击,但在实际项目中,采用参数化查询、预编译语句结合最新的 ORM 安全规范,以及结合防火墙、审计等手段,形成多维度的安全防护体系,是保障企业级应用数据库安全的关键举措。 综上所述,在持续关注 MyBatis 数据库连接管理机制的同时,与时俱进地了解并运用新型的数据源管理方案、云原生技术及数据库安全策略,将有助于我们在日常开发工作中更好地驾驭这一强大框架,构建出更高效、稳定且安全的应用系统。
2023-01-11 12:49:37
97
冬日暖阳_t
Docker
...用network配置选项启用VLAN网络模式。下面是一个创建带VLAN标签的Docker网络的示例: bash docker network create --driver=vlan \ --subnet=172.16.80.0/24 --gateway=172.16.80.1 \ --opt parent=eth0.10 my_vlan_network 上述命令创建了一个名为my_vlan_network的网络,其基于宿主机的VLAN 10 (parent=eth0.10)划分子网172.16.80.0/24并设置了默认网关。 三、IP地址与Docker容器 1. IP地址基础概念 IP地址(Internet Protocol Address)是互联网协议的核心组成部分,用于唯一标识网络中的设备。根据IPv4协议,IP地址由32位二进制组成,通常被表示为四个十进制数,如192.168.1.1。在Docker这个大家庭里,每个小容器都会被赋予一个独一无二的IP地址,这样一来,它们之间就可以像好朋友一样自由地聊天交流,不仅限于此,它们还能轻松地和它们所在的主机大哥,甚至更远的外部网络世界进行沟通联络。 2. Docker容器IP地址分配 在Docker默认的桥接网络(bridge)模式中,每个容器会获取一个属于172.17.0.0/16范围的私有IP地址。另外,你还可以选择自己动手配置一些个性化的网络设置,像是“host”啦、“overlay”啦,或者之前我们提到的那个“vlan”,这样就能给容器分配特定的一段IP地址,让它们各用各的,互不干扰。 四、VLAN与IP地址在Docker网络中的关系 1. IP地址在VLAN网络中的角色 当Docker容器运行在一个包含VLAN网络中时,它们会继承VLAN网络的IP地址配置,从而在同一VLAN内相互通信。比如,想象一下容器A和容器B这两个家伙,他们都住在VLAN 10这个小区里面,虽然住在不同的单元格,但都能通过各自专属的“门牌号”(也就是VLAN标签)和“电话号码”(IP地址)互相串门聊天,完全不需要经过小区管理员——宿主机的同意或者帮忙。 2. 跨VLAN通信 若想让VLAN网络内的容器能够与宿主机或其他VLAN网络内的容器通信,就需要配置多层路由或者使用VXLAN等隧道技术,使得数据包穿越不同的VLAN标签并在相应的IP地址空间内正确路由。 五、结论 综上所述,VLAN与IP地址在Docker网络场景中各有其核心作用。VLAN这个小家伙,就像是咱们物理网络里的隐形隔离墙和保安队长,它在幕后默默地进行逻辑分割和安全管理工作。而IP地址呢,更像是虚拟化网络环境中的邮差和导航员,主要负责在各个容器间传递信息,同时还能带领外部的访问者找到正确的路径,实现内外的互联互通。当这两者联手一起用的时候,就像是给网络装上了灵动的隔断墙,既能灵活分区,又能巧妙地避开那些可能引发“打架”的冲突风险。这样一来,咱们微服务架构下的网络环境就能稳稳当当地高效运转了,就像一台精密调校过的机器一样。在咱们实际做项目开发这事儿的时候,要想把Docker网络策略设计得合理、实施得妥当,就得真正理解并牢牢掌握这两者之间的关系,这可是相当关键的一环。
2024-02-12 10:50:11
479
追梦人_t
转载文章
...2、设置签名 3.将文件/目录从工作区追加到暂存区 4.查看状态 5.把暂存区的文件移除 6.把文件从暂存区上传到本地库 7.将文件变为未暂存状态 8.创建远程仓库并推送 9.删除远程仓库 10.拉取远程仓库 三、其他命令 1.查看命令信息指令 2.查看版本的提交记录 3.进入不同版本 4.分支操作 5.比较文件 四、遇到的错误 一、下载 用于 Windows 安装程序的 32 位 Git。 用于 Windows 安装程序的 64 位 Git。 二、基本命令 git命令和linux的命令基本相同,大部分linux命令在git中都可以使用。 1.初始化本地库 a.首先新建一个文件夹,进入文件夹,点击鼠标右键,找到菜单中的 Git Bash Here,点击进入命令界面。 b.输入命令 git init 初始化本地仓库 你会发现你的文件夹内多出一个 .git文件证明你的本地仓库初始化成功。 有的电脑可能会隐藏后缀名的文件,无法看到 .git文件,你需要去电脑设置可查看隐藏文件。方法:进入此电脑,点击上方查看,勾选隐藏的项目即可查看被隐藏的文件。 2、设置签名 签名主要是设置用户名和email地址,有两种级别:一种是项目级别 git config user.name 用户名, git config user.email邮箱地址;另一种是系统用户级别 git config --global user.name 用户名, git config --global user.email 邮箱地址。项目级别是优先于系统级别的,但二者至少设置一个。一般只用项目级别就行。 用 cat .git/config可以查看设置的项目签名。 3.将文件/目录从工作区追加到暂存区 命令 :git add 文件/目录 4.查看状态 命令:git status。 第一行信息告诉我们,目前正处于master分支; 第二行信息告诉我们,本地库还没有上传任何文件; 第三、四、五行信息告诉我们,可以用以下命令把暂存区的文件(绿色文件)上传到本地库。 5.把暂存区的文件移除 代码:git rm --cached 文件名。注意文件只是从暂存区中移除,并没有在目录中被删除。 未追加在暂存区的文件显示红色。 6.把文件从暂存区上传到本地库 命令:git commit -m "注释内容" 文件名。 这是查看状态可以看到暂存区已经没有文件可以上传到本地库,说明你上传成功。 7.将文件变为未暂存状态 命令:git rest HEAD 文件名。对在暂存区的文件进行操作。 8.创建远程仓库并推送 a.首先我们要有一个github或gitee账号: github官网:https://github.com/ gitee官网:https://gitee.com/ b.然后在里面创建一个远程仓库(以gihub为例): 登录进入主页面,找到并点击右上角的加号,点击 New repository,然后填写仓库信息。或者找到点击左方的 New选项。进入创建界面,填入信息。 下面三个选项可根据需要勾选。点击 Create...就创建号一个仓库了。 c.复制仓库地址 找到左上方导航Code选项,点击进入该选项 有两个地址:HTTP地址和SSH地址。我一般用HTTP地址(简单)。 如果你创建远程仓库时选择了下面的三个选项,可能你的Code界面会有所差别,点击右方的 Code即可查看仓库地址。 然后进入git命令界面:输入命令 git remote add origin(别名) 地址为你复制的地址创建别名并储存。命令 git remote -v查看你设置过的地址。 d.最后进行推送操作,将本地仓库推送到远程仓库。 命令 git push -u origin(你要推送到的远程仓库地址) master(你要推送的分支).在第一次推送是用上 -u选项,之后就可以不用。 该界面为成功推送,你再刷新你的github或gitee仓库,这是你上传的文件将出现在远程仓库表明推送成功。 注意:1.如果创建远程仓库时勾选了下面的三个选项,则可能你刷新时没发现有新文件推送到仓库,这是先找到红色划线位置,查看当前分支是否自己推送的分支,找到正确分支再看是否正确推送。 2.如果你是第n次推送,必须要在和远程仓库版本一样的条件下进行修改后推送,否则无法推送(不能跨多个版本推送)。 3.如果推送不成功,可能是你修改前的版本和远程库的版本不一致造成,先进行拉取,在修改推送。 9.删除远程仓库 首先进入要删除的远程仓库,点击上方导航条中的 Settings选项 然后找到进入左边菜单栏中的 Options选项,鼠标划到最下面找到 点击Delete this repository选项 最后按指示输入github用户名和密码进行删除即可。 10.拉取远程仓库 命令:git pull origin master。 在打算更新远程库时,先拉取远程库然后修改或添加,否则可能报错。 表明拉取成功。 注意:若你的本地仓库进行了修该导致无法拉去成功,则尝试用 git pull --rebase命令进行拉取。 三、其他命令 1.查看命令信息指令 命令:git help 2.查看版本的提交记录 命令:git log 以每条版本日志显示一行:git log --pretty=oneline 简写哈希值的方式:git log --oneline 可以看到前进后退步数:git reflog 3.进入不同版本 先用 git reflog命令查看哈希值 a.命令:git reset --hard 哈希值(索引) b.命令:git reset --hard HEAD^,该命令只能后退(查看当前版本之前的版本),后面几个 ^ 则后退几步。 c.命令:git reset --hard~,该命令只能后退(查看当前版本之前的版本),后退 (数值) 步; 4.分支操作 命令:git branch -v,查看所有分支 命令:git branch 分支名,创建分支 命令:git checkout 分支名,切换分支 5.比较文件 命令:git diff 文件名,工作区和暂存区比较 命令:git diff HEAD 文件名,当前版本比较 命令:git diff HEAD^ 文件名,历史版本比较 四、遇到的错误 git config --global http.sslVerify false 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_56180999/article/details/117634968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-18 13:38:15
75
转载
SpringBoot
...应用后,这个任务会在配置的间隔内自动运行。 三、单节点到多节点的挑战与解决方案 当我们需要将此服务扩展到多节点时,面临的主要问题是任务的同步和一致性。为了实现这一点,我们可以考虑以下几种策略: 1. 使用消息队列 使用如RabbitMQ、Kafka等消息队列,将定时任务的执行请求封装成消息发送到队列。在每个节点上,创建一个消费者来订阅并处理这些消息。 java import org.springframework.amqp.core.Queue; import org.springframework.amqp.rabbit.annotation.RabbitListener; @RabbitListener(queues = "task-queue") public void processTask(String taskData) { // 解析任务数据并执行 executeTask(); } 2. 分布式锁 如果任务执行过程中有互斥操作,可以使用分布式锁如Redis的SETNX命令来保证只有一个节点执行任务。任务完成后释放锁,其他节点检查是否获取到锁再决定是否执行。 3. Zookeeper协调 使用Zookeeper或其他协调服务来管理任务执行状态,确保任务只在一个节点上执行,其他节点等待。 4. ConsistentHashing 如果任务负载均衡且没有互斥操作,可以考虑使用一致性哈希算法将任务分配给不同的节点,这样当增加或减少节点时,任务分布会自动调整。 四、代码示例 使用Consul作为服务发现 为了实现多节点的部署,我们还可以利用Consul这样的服务发现工具。首先,配置Spring Boot应用连接Consul,并在启动时注册自身服务。然后,使用Consul的健康检查来确保任务节点是活跃的。 java import com.ecwid.consul.v1.ConsulClient; import com.ecwid.consul.v1.agent.model.ServiceRegisterRequest; @Configuration public class ConsulConfig { private final ConsulClient consulClient; public ConsulConfig(ConsulClient consulClient) { this.consulClient = consulClient; } @PostConstruct public void registerWithConsul() { ServiceRegisterRequest request = new ServiceRegisterRequest() .withId("my-task-service") .withService("task-service") .withAddress("localhost") .withPort(port) .withTags(Collections.singletonList("scheduled-task")); consulClient.agent().service().register(request); } @PreDestroy public void deregisterFromConsul() { consulClient.agent().service().deregister("my-task-service"); } } 五、总结与未来展望 将SpringBoot的定时任务服务从单节点迁移到多节点并非易事,但通过合理选择合适的技术栈(如消息队列、分布式锁或服务发现),我们可以确保任务的可靠执行和扩展性。当然,这需要根据实际业务场景和需求来定制解决方案。干活儿的时候,咱们得眼观六路,耳听八方,随时盯着,不断测验,这样才能保证咱这多站点的大工程既稳如老狗,又跑得飞快,对吧? 记住,无论你选择哪种路径,理解其背后的原理和潜在问题总是有益的。随着科技日新月异,各种酷炫的工具和编程神器层出不穷,身为现代开发者,你得像海绵吸水一样不断学习,随时准备好迎接那些惊喜的变化,这可是咱们吃饭的家伙!
2024-06-03 15:47:34
46
梦幻星空_
转载文章
... patent下载的文件是以公开号命名的,所以对照要下载的和已下载的公开号就能看出哪些专利没有下载成功。 我这里写了一个python小脚本。 import pandas as pdimport os读取待下载专利的公开号,地址修改成你自己存放的位置df = pd.read_excel("target.xlsx",header= 0, usecols= "B").drop_duplicates()取前11位作为对比(以中国专利作为参考)PublicNumber_tgt = list(map(lambda x: x[0:11],df["公开(公告)号"].to_list()))读取已下载专利的公开号,地址修改成你自己存放的位置filelist=os.listdir(r'C:\Users\mornthx\Desktop\专利全文')取前11位作为对比PublicNumber_dl = list(map(lambda x: x[0:11],filelist))比较两者差值diff = set(PublicNumber_tgt).difference(set(PublicNumber_dl))print(diff) 没下载的专利具体问题具体解决就好了。 希望能帮到大家! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_38688347/article/details/124000919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-21 12:55:28
274
转载
Flink
...程操作,但你可以通过配置参数来影响它的生成。例如: java env.setParallelism(4); // 设置并行度为4 这条语句会影响ExecutionPlan中任务的并行执行方式。更高的并行度通常能让吞吐量变得更好,但同时也可能会让网络通信变得更复杂,增加不少额外的工作量。 3. 探索背后的秘密 JobGraph与ExecutionPlan的互动 现在,让我们思考一下JobGraph和ExecutionPlan之间的关系。可以说,JobGraph是ExecutionPlan的基础,没有一个清晰的JobGraph,就无法生成有效的ExecutionPlan。ExecutionPlan就是JobGraph的具体操作指南,它告诉你怎么把这些抽象的想法变成实实在在的计算任务。 思考与探讨: - 在设计你的Flink应用程序时,是否考虑过JobGraph的结构对最终性能的影响? - 你有没有尝试过调整ExecutionPlan的某些参数来提升应用程序的效率? 4. 实践中的挑战与解决方案 最后,我想分享一些我在使用Flink过程中遇到的实际问题及解决方案。 问题1:数据倾斜导致性能瓶颈 - 原因分析:数据分布不均匀可能导致某些算子处理的数据量远大于其他算子,从而形成性能瓶颈。 - 解决办法:可以通过重新设计JobGraph,比如引入更多的分区策略或调整算子的并行度来缓解这个问题。 问题2:内存溢出 - 原因分析:长时间运行的任务可能会消耗大量内存,尤其是在处理大数据集时。 - 解决办法:合理设置Flink的内存管理策略,比如增加JVM堆内存或利用Flink的内存管理API来控制内存使用。 --- 好了,朋友们,这就是我对Flink中的JobGraph和ExecutionPlan的理解和分享。希望这篇文章能让你深深体会到它们的价值,然后在你的项目里大展身手,随意挥洒!如果你有任何疑问或者想要进一步讨论的话题,欢迎随时留言交流! 记住,学习技术就像一场旅行,重要的是享受过程,不断探索未知的领域。希望我们在数据流的世界里都能成为勇敢的探险家!
2024-11-05 16:08:03
111
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
getent passwd username
- 从passwd数据库获取用户信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"