前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Material UI Swipeabl...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Beego
...从而在实际应用场景中实现更高的性能和资源利用率。 此外,各大云服务商如阿里云、AWS等也相继推出针对Go语言的云数据库服务,这些服务底层已深度整合了高性能的连接池机制,让开发者无需过多关注连接管理细节,就能享受到高效的数据库访问体验。 综上所述,在Beego框架下合理配置和运用数据库连接池的同时,紧跟业界最新研究成果和技术动态,结合实际业务场景灵活调整策略,将有助于我们更好地提升数据库性能,为构建高效稳定的大型分布式系统打下坚实基础。
2023-12-11 18:28:55
528
岁月静好-t
Mahout
...接口允许Mahout实现在线协同过滤算法,实时更新用户偏好,提高推荐的准确性和时效性。 4. 数据流上的机器学习 Mahout的Flink接口支持在数据流上执行机器学习任务,如实时异常检测、预测模型更新等。 三、代码示例 构建实时推荐系统 为了更好地理解Mahout的Flink接口如何工作,下面我们将构建一个简单的实时推荐系统。哎呀,这个玩意儿啊,它能根据你过去咋用它的样子,比如你点过啥,买过啥,然后啊,它就能实时给你推东西。就像是个超级贴心的朋友,老记着你的喜好,时不时给你点惊喜! java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class RealtimeRecommendationSystem { public static void main(String[] args) throws Exception { // 创建流处理环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 假设我们有一个实时事件流,包含用户ID和商品ID DataStream> eventStream = env.fromElements( Tuple2.of("user1", "itemA"), Tuple2.of("user2", "itemB"), Tuple2.of("user1", "itemC") ); // 使用Mahout的协同过滤算法进行实时推荐 DataStream> recommendations = eventStream.map(new MapFunction, Tuple2>() { @Override public Tuple2 map(Tuple2 value) { // 这里只是一个示例,实际应用中需要调用具体的协同过滤算法 return new Tuple2<>(value.f0, "recommendedItem"); } }); // 打印输出 recommendations.print(); // 执行任务 env.execute("Realtime Recommendation System"); } } 四、结论 开启数据驱动的未来 通过整合Mahout的机器学习能力和Flink的实时计算能力,开发者能够构建出响应迅速、高效精准的数据分析系统。无论是实时推荐、大规模聚类还是在线协同过滤,这些功能都为数据分析带来了新的可能。哎呀,随着科技这玩意儿越变越厉害,咱们能见到的新鲜事儿也是一波接一波。就像是魔法一样,数据这东西,现在能帮咱们推动业务发展,搞出不少新花样,让咱们的生意越来越红火,创意源源不断。简直就像开了挂一样!
2024-09-01 16:22:51
60
海阔天空
Kafka
...e Kafka)服务实现跨可用区的高效数据传输和网络延迟优化。AWS强调了合理配置Kafka集群、利用Elastic Network Adapter提升网络性能以及结合CloudWatch监控指标进行实时警报的重要性。 此外,随着云原生技术的发展,Kubernetes等容器编排平台也开始被用于部署和管理Kafka集群。CNCF社区的一些项目如Strimzi,提供了在Kubernetes上运行Kafka的无缝体验,并针对网络延迟问题进行了深度优化,例如通过Pod亲和性与反亲和性策略调整节点间的网络拓扑结构。 近期,LinkedIn工程团队也在其技术博客中分享了他们如何降低大规模Kafka部署中的网络延迟经验。他们通过实施消息压缩、调整生产者和消费者配置、以及改进数据存储和传输策略,成功降低了数据中心间的数据传输延迟,从而提升了整体系统的响应速度和吞吐量。 总之,在解决Kafka服务器与外部系统间网络延迟问题的实际操作中,不断的技术创新和最佳实践共享正为业界提供源源不断的解决方案。紧跟最新技术动态,结合实际场景灵活运用并持续优化,是确保Kafka集群在网络层面保持高性能的关键所在。
2023-10-14 15:41:53
466
寂静森林
Netty
... 如何在Netty中实现消息队列的可监控性? 1. 引言 大家好!今天我们要聊的是一个既有趣又实用的话题——如何在Netty中实现消息队列的可监控性。首先,让我们简单回顾一下Netty是什么。Netty这家伙可厉害了,是个超级能打的网络应用框架,用它来开发那种异步又事件驱动的应用简直不要太轻松,分分钟让你的程序飞起来!说到消息队列,其实就是怎么高效地处理和盯紧那些在各个网络间跑来跑去的信息啦。 为什么我们需要监控消息队列呢?想象一下,当你正在处理大量数据或者需要确保通信的可靠性时,消息队列的健康状态直接关系到系统的稳定性和性能。因此,了解如何监控它们是至关重要的。 2. Netty中的消息队列基础 在深入探讨之前,让我们先了解一下Netty中的消息队列是如何工作的。Netty通过ChannelPipeline来处理网络数据流,而ChannelHandler则是Pipeline中的处理单元。当数据到达或从Channel发出时,会依次通过这些处理器进行处理。你可以把消息队列想象成一个大大的“数据篮子”,放在这些处理器之间。当处理器忙不过来或者还没准备好处理新数据时,就可以先把数据暂存在这个“篮子”里,等它们空闲了再拿出来处理。这样就能让整个流程更顺畅啦! 例如,假设我们有一个简单的EchoServer,在这个服务器中,客户端发送一条消息,服务器接收并返回同样的消息给客户端。在这个过程中,消息队列充当了存储待处理消息的角色。 java public class EchoServerInitializer extends ChannelInitializer { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 添加编码器和解码器 pipeline.addLast(new StringEncoder()); pipeline.addLast(new StringDecoder()); // 添加业务处理器 pipeline.addLast(new EchoServerHandler()); } } 在这个例子中,虽然没有直接展示消息队列,但通过ChannelPipeline和ChannelHandler,我们可以间接地理解消息是如何被处理的。 3. 实现消息队列的监控 现在,让我们进入正题,看看如何实现对Netty消息队列的监控。要达到这个目的,我们可以用一些现成的东西,比如说自己定义的ChannelInboundHandler和ChannelOutboundHandler,再加上Netty自带的一些监控工具,比如Metrics。这样操作起来会方便很多。 3.1 自定义Handler 首先,我们需要创建自定义的ChannelHandler来记录消息的入队和出队情况。你可以试试在处理方法里加点日志记录,这样就能随时掌握每条消息的动态啦。 java public class MonitorHandler extends SimpleChannelInboundHandler { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); // 记录消息入队时间 long enqueueTime = System.currentTimeMillis(); // 处理消息... // 记录消息出队时间 long dequeueTime = System.currentTimeMillis(); System.out.println("Message processed in " + (dequeueTime - enqueueTime) + " ms"); } } 3.2 使用Metrics Netty本身并不直接提供监控功能,但我们可以通过集成第三方库(如Micrometer)来实现这一目标。Micrometer让我们能轻松把应用的性能数据秀出来,这样后面分析和监控就方便多了。 java import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.Timer; // 初始化MeterRegistry MeterRegistry registry = new SimpleMeterRegistry(); // 在自定义Handler中使用Micrometer public class MicrometerMonitorHandler extends SimpleChannelInboundHandler { private final Timer timer; public MicrometerMonitorHandler() { this.timer = Timer.builder("message.processing") .description("Time taken to process messages") .register(registry); } @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { Timer.Sample sample = Timer.start(registry); // 处理消息 sample.stop(timer); } } 4. 总结与反思 通过上述步骤,我们已经成功地为Netty中的消息队列添加了基本的监控能力。然而,这只是一个起点。在实际操作中,你可能会遇到更多需要处理的事情,比如说怎么应对错误,怎么监控那些不正常的状况之类的。另外,随着系统变得越来越复杂,你可能得找一些更高级的工具来解决问题,比如说用分布式追踪系统(比如Jaeger或者Zipkin),这样你才能更好地了解整个系统的运行状况和性能表现。 最后,我想说的是,技术总是在不断进步的,保持学习的心态是非常重要的。希望这篇文章能够激发你对Netty和消息队列监控的兴趣,并鼓励你在实践中探索更多可能性! --- 这就是我们的文章,希望你喜欢这种更有人情味的叙述方式。如果你有任何疑问或想要了解更多细节,请随时提问!
2024-11-04 16:34:13
316
青春印记
RabbitMQ
...拥有不同的权限,从而实现了权限的分层管理。 2.2 权限类型 RabbitMQ的权限控制分为三类: - 配置权限:允许用户对vhost内的资源进行创建、修改和删除操作。 - 写入权限:允许用户向vhost内的队列发送消息。 - 读取权限:允许用户从vhost内的队列接收消息。 2.3 权限规则 权限控制通过正则表达式来定义,这意味着你可以非常灵活地控制哪些用户能做什么,不能做什么。比如说,你可以设定某个用户只能看到名字以特定字母开头的队列,或者干脆不让某些用户碰特定的交换机。 3. 实战演练 动手配置权限控制 理论讲完了,接下来就让我们一起动手,看看如何在RabbitMQ中配置权限控制吧! 3.1 创建用户 首先,我们需要创建一些用户。假设我们有两个用户:alice 和 bob。打开命令行工具,输入以下命令: bash rabbitmqctl add_user alice password rabbitmqctl set_user_tags alice administrator rabbitmqctl add_user bob password 这里,alice 被设置为管理员,而 bob 则是普通用户。注意,这里的密码都设为 password,实际使用时可要改得复杂一点哦! 3.2 设置vhost 接着,我们需要创建一个虚拟主机,并分配给这两个用户: bash rabbitmqctl add_vhost my-vhost rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "." "." 这里,我们给 alice 和 bob 都设置了通配符权限,也就是说他们可以在 my-vhost 中做任何事情。当然,这只是个示例,实际应用中你肯定不会这么宽松。 3.3 精细调整权限 现在,我们来试试更精细的权限控制。假设我们只想让 alice 能够管理队列,但不让 bob 做这件事。我们可以这样设置: bash rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "^bob-queue-" "^bob-queue-" 在这个例子中,alice 可以对所有资源进行操作,而 bob 只能对以 bob-queue- 开头的队列进行读写操作。 3.4 使用API进行权限控制 除了命令行工具外,RabbitMQ还提供了HTTP API来管理权限。例如,要获取特定用户的权限信息,可以发送如下请求: bash curl -u admin:admin-password http://localhost:15672/api/permissions/my-vhost/alice 这里的 admin:admin-password 是你的管理员账号和密码,my-vhost 和 alice 分别是你想要查询的虚拟主机名和用户名。 4. 总结与反思 通过上面的操作,相信你已经对RabbitMQ的权限控制有了一个基本的认识。不过,值得注意的是,权限控制并不是一劳永逸的事情。随着业务的发展,你可能需要不断调整权限设置,以适应新的需求。所以,在设计权限策略的时候,咱们得想远一点,留有余地,这样系统才能长久稳定地运转下去。 最后,别忘了,安全永远是第一位的。就算是再简单的消息队列系统,我们也得弄个靠谱的权限管理,不然咱们的数据安全可就悬了。希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎留言交流! --- 这就是今天的分享了,希望大家能够从中获得灵感,并在自己的项目中运用起来。记住啊,不管多复杂的系统,到最后不就是为了让人用起来更方便,生活过得更舒心嘛!加油,程序员朋友们!
2024-12-18 15:31:50
102
梦幻星空
Kotlin
...直接编译为原生应用,实现高性能的同时保持代码的一致性。 趋势二:社区活跃度与生态建设 随着Kotlin社区的不断壮大,各种开源项目层出不穷,从基础库到高级框架,从工具到文档,形成了一个完善的生态系统。这不仅降低了新开发者的学习门槛,也为现有开发者提供了丰富的资源和技术支持。活跃的社区氛围鼓励了知识分享和问题解决,促进了技术的快速迭代和创新。 挑战一:迁移成本与学习曲线 对于已有大量Java代码的项目,迁移至Kotlin可能会面临较高的成本,包括代码转换、团队培训以及适应新语言特性的过程。此外,Kotlin的一些新特性,如函数式编程支持和协程,对于习惯于传统编程范式的开发者来说,可能需要一定时间去理解和掌握。 挑战二:生态系统成熟度 尽管Kotlin的生态系统正在迅速发展,但与成熟的Java生态相比,某些高级库和工具可能仍处于起步阶段。这可能会影响大型项目的开发效率,尤其是对于依赖于特定框架或库的项目而言。 解决方案与展望 针对上述挑战,开发者可以从多个角度寻找解决方案。首先,利用现有的迁移工具和服务,逐步将现有代码迁移到Kotlin,同时进行团队培训,提升整体技能水平。其次,积极利用社区资源,参与开源项目,既可以获得技术支持,也能加深对Kotlin的理解。最后,随着Kotlin生态的不断完善,预期未来会有更多高质量的库和工具出现,为开发者提供更强大的支持。 总之,Kotlin作为一门功能强大、易于学习的编程语言,正以其独特的魅力和强大的生态系统,引领着现代软件开发的趋势。面对挑战,通过持续学习、优化工作流程和利用社区资源,开发者能够最大化地发挥Kotlin的优势,推动项目和自身技术能力的共同成长。
2024-08-23 15:40:12
94
幽谷听泉
Netty
...的进展。例如,随着QUIC(Quick UDP Internet Connections)协议的发展和逐渐普及,其作为HTTP/3的核心传输层协议,因其拥有的快速连接恢复特性,能够在网络中断时迅速重新建立连接,大大降低了丢包率和延迟时间,从而增强了服务端在网络不稳定情况下的健壮性。 同时,业界对于高可用性和容错性的追求也推动了更先进网络故障检测与恢复机制的研究。例如,一些云服务商如AWS在其Elastic Load Balancing (ELB) 和Application Load Balancer (ALB) 中引入了智能重试策略以及主动健康检查机制,这些技术思路同样可以启发我们在使用Netty搭建系统时如何优化网络中断处理逻辑。 此外,在实际应用中,结合监控告警、日志分析等手段,能实时发现并定位网络故障,进而触发自动化的故障转移或自愈流程,也是提升系统稳定性和用户体验的重要一环。开发者可以通过学习Kubernetes等容器编排工具中的网络策略以及服务发现机制,将这些理念融入到基于Netty构建的服务架构设计之中,以应对更为复杂的网络环境挑战。 综上所述,理解并有效处理Netty服务器的网络中断问题只是实现高可靠网络服务的第一步,关注前沿网络协议和技术趋势,结合实际业务场景进行技术创新和实践,才能在瞬息万变的互联网环境下持续提供优质的网络服务。
2023-02-27 09:57:28
137
梦幻星空-t
SeaTunnel
...泛应用,取得了显著的效果。 与此同时,开源社区也在不断推进相关技术的发展。例如,Apache SeaTunnel作为一个强大的数据集成平台,不仅可以用于数据库容量预警,还可以应用于复杂的数据处理和ETL流程。最近,SeaTunnel社区发布了多个新版本,增加了许多实用的功能和优化,使得它在实际应用中更加灵活和高效。 综上所述,随着技术的进步和应用场景的多样化,数据库容量预警机制的建设变得越来越重要。无论是通过商业产品还是开源工具,企业都应该重视并积极采用先进的技术和解决方案,以确保数据库系统的稳定运行。
2025-01-29 16:02:06
73
月下独酌
Nginx
...mbda函数结合,以实现更灵活的服务端渲染。这种做法不仅提升了用户体验,还大幅降低了带宽成本。 与此同时,国内也有不少公司在探索类似的解决方案。阿里巴巴旗下的云服务平台阿里云最近推出了一款名为“云缓存”的新产品,专门针对大规模分布式系统设计。这款产品借鉴了开源项目如Varnish和Nginx的经验,并在此基础上增加了智能化调度算法,使得缓存命中率提高了约30%。此外,华为云也在积极布局边缘计算领域,推出了基于Kubernetes的边缘节点服务,允许用户轻松部署和管理分布在不同地理位置的应用程序实例。 从技术角度来看,这类创新背后离不开近年来机器学习的进步。例如,通过引入深度强化学习模型,系统可以自动调整缓存策略,确保在高并发场景下依然保持稳定的响应时间。这不仅解决了传统缓存面临的冷启动问题,还有效缓解了热点资源争夺带来的性能瓶颈。 当然,这一切并非没有挑战。隐私保护法规日益严格,企业在采用新的缓存技术时必须确保符合GDPR等相关法律法规的要求。特别是在处理跨境数据传输时,如何平衡效率与合规成为了一个亟待解决的问题。 总之,无论是国际巨头还是本土企业,都在努力寻找适合自身业务发展的最佳实践。未来几年内,随着5G网络普及以及物联网设备数量激增,缓存技术将迎来更多发展机遇。而像Nginx这样的经典工具,无疑将继续扮演重要角色,在这场数字化转型浪潮中发挥不可替代的作用。
2025-04-18 16:26:46
97
春暖花开
c++
...直接的底层控制,能够实现更高的效率和性能优化,这对于需要处理大量数据和计算密集型任务的应用尤为重要。 时效性与案例 近年来,C++在新兴领域的应用也日益增多。例如,在人工智能和机器学习领域,C++凭借其强大的数值计算能力和快速的执行速度,成为构建高性能算法和模型的理想选择。特别是在深度学习框架中,如TensorFlow和PyTorch的底层实现,C++的高效性发挥了关键作用。此外,C++在区块链技术、物联网(IoT)和安全软件开发中的应用也逐渐增加,展示了其在不同技术领域的广泛适应性。 未来展望 展望未来,C++将继续在高性能计算、嵌入式系统、游戏开发以及需要高安全性应用的开发中发挥重要作用。随着开源社区的持续发展和标准组织如ISO/IEC JTC1/SC22/WG21(C++标准委员会)的不断努力,C++标准将持续演进,引入新的特性,提高语言的可读性、可维护性和跨平台兼容性。同时,C++的社区将不断探索与新兴技术的结合,如与云计算、大数据分析、虚拟现实(VR)和增强现实(AR)等领域的融合,以推动更多创新应用的诞生。 总之,C++作为一门经典而又充满活力的语言,其在现代软件开发中的地位不容忽视。随着技术的不断进步和应用场景的拓展,C++有望在未来的软件生态系统中扮演更加多元化和重要的角色。 --- 以上内容基于C++在当前技术环境下的现状和未来发展趋势进行撰写,旨在提供关于C++在现代软件开发中角色的全面视角及对其未来的展望。
2024-10-06 15:36:27
112
雪域高原
NodeJS
...用 Node.js 实现微服务,并通过具体的代码示例来帮助您理解并掌握这一过程。 2. Node.js 与微服务架构的契合点 Node.js 的轻量级和高性能使其成为实现微服务的理想选择。它的设计采用了单线程和事件循环模式,这意味着每个服务能够超级高效地同时应对大批量的请求,就像是一个技艺高超的小哥在忙碌的餐厅里轻松处理众多点单一样。这种机制特别适合搭建那种独立部署、只专心干一件事的微服务模块,让它们各司其职,把单一业务功能发挥到极致。此外,Node.js 生态系统中的大量库和框架(如Express、Koa等)也为快速搭建微服务提供了便利。 3. 利用 Node.js 创建微服务实例 下面我们将通过一个简单的 Node.js 微服务创建示例来演示其实现过程: javascript // 引入 express 框架 const express = require('express'); const app = express(); // 定义一个用户服务接口 app.get('/users', (req, res) => { // 假设我们从数据库获取用户列表 const users = [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ]; res.json(users); }); // 启动微服务并监听指定端口 app.listen(3000, () => { console.log('User service is running on port 3000...'); }); 上述代码中,我们创建了一个简单的基于 Express 的微服务,它提供了一个获取用户列表的接口。这个啊,其实就是个入门级的小栗子。在真实的项目场景里,这个服务可能会跟数据库或者其他服务“打交道”,从它们那里拿到需要的数据。然后,它会通过API Gateway这位“中间人”,对外提供一个统一的服务接口,让其他应用可以方便地和它互动交流。 4. 微服务间通信 使用gRPC或HTTP 在微服务架构下,各个服务间的通信至关重要。Node.js 支持多种通信方式,例如 gRPC 和 HTTP。以下是一个使用 HTTP 进行微服务间通信的例子: javascript // 在另一个服务中调用上述用户服务 const axios = require('axios'); app.get('/orders/:userId', async (req, res) => { try { const response = await axios.get(http://user-service:3000/users/${req.params.userId}); const user = response.data; // 假设我们从订单服务获取用户的订单信息 const orders = getOrdersFromDatabase(user.id); res.json(orders); } catch (error) { res.status(500).json({ error: 'Failed to fetch user data' }); } }); 在这个例子中,我们的“订单服务”通过HTTP客户端向“用户服务”发起请求,获取特定用户的详细信息,然后根据用户ID查询订单数据。 5. 总结与思考 利用 Node.js 构建微服务架构,我们可以享受到其带来的快速响应、高并发处理能力以及丰富的生态系统支持。不过呢,每种技术都有它最适合施展拳脚的地方和需要面对的挑战。比如说,当碰到那些特别消耗CPU的任务时,Node.js可能就不是最理想的解决方案了。所以在实际操作中,咱们得瞅准具体的业务需求和技术特性,小心翼翼地掂量一下,看怎样才能恰到好处地用 Node.js 来构建一个既结实又高效的微服务架构。就像是做菜一样,要根据食材和口味来精心调配,才能炒出一盘色香味俱全的好菜。同时,随着我们提供的服务越来越多,咱们不得不面对一些额外的挑战,比如怎么管理好这些服务、如何进行有效的监控、出错了怎么快速恢复这类问题。这些问题就像是我们搭建积木过程中的隐藏关卡,需要我们在构建和完善服务体系的过程中,不断去摸索、去改进、去优化,让整个系统更健壮、更稳定。
2023-02-11 11:17:08
127
风轻云淡
转载文章
...ialVersionUID = -1877265551599483740L;private static final int SIZE = 3;private final A val0;private final B val1;private final C val2;public static <A,B,C> Triplet<A,B,C> with(final A value0, final B value1, final C value2) {return new Triplet<A,B,C>(value0,value1,value2);} 我们一般调用静态方法with,传入元组数据,创建一个元组。当然了,也可以通过有参构造、数组Array、集合Collection、迭代器Iterator来创建一个元组,直接调用相应方法即可。 但是,我们可能记不住各元组对象的名称(Unit、Pair、Triplet、Quartet、Quintet、Sextet、Septet、Octet、Ennead、Decade),还要背下单词…因此,我们可以自定义一个工具类,提供公共方法,根据传入的参数个数,返回不同的元组对象。 2.2.2 自定义工具类 package com.superchen.demo.utils;import org.javatuples.Decade;import org.javatuples.Ennead;import org.javatuples.Octet;import org.javatuples.Pair;import org.javatuples.Quartet;import org.javatuples.Quintet;import org.javatuples.Septet;import org.javatuples.Sextet;import org.javatuples.Triplet;import org.javatuples.Unit;/ ClassName: TupleUtils Function: <p> Tuple helper to create numerous items of tuple. the maximum is 10. if you want to create tuple which elements count more than 10, a new class would be a better choice. if you don't want to new a class, just extends the class {@link org.javatuples.Tuple} and do your own implemention. </p> date: 2019/9/2 16:16 @version 1.0.0 @author Chavaer @since JDK 1.8/public class TupleUtils{/ <p>Create a tuple of one element.</p> @param value0 @param <A> @return a tuple of one element/public static <A> Unit<A> with(final A value0) {return Unit.with(value0);}/ <p>Create a tuple of two elements.</p> @param value0 @param value1 @param <A> @param <B> @return a tuple of two elements/public static <A, B> Pair<A, B> with(final A value0, final B value1) {return Pair.with(value0, value1);}/ <p>Create a tuple of three elements.</p> @param value0 @param value1 @param value2 @param <A> @param <B> @param <C> @return a tuple of three elements/public static <A, B, C> Triplet<A, B, C> with(final A value0, final B value1, final C value2) {return Triplet.with(value0, value1, value2);} } 以上的TupleUtils中提供了with的重载方法,调用时根据传入的参数值个数,返回对应的元组对象。 2.2.3 示例代码 若有需求: 现有pojo类Student、Teacher、Programmer,需要存储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
257
转载
Kylin
...引入Kylin,成功实现了对海量用户行为数据的实时分析,大幅提升了用户体验和运营效率。此外,Kylin在金融行业也有广泛应用,特别是在风险控制和反欺诈领域,通过构建复杂的多维数据模型和Cube,金融机构能够快速响应市场变化,及时做出决策。值得注意的是,尽管Kylin具备诸多优势,但在实际部署过程中仍需考虑其对硬件资源的需求,尤其是在构建大规模Cube时,合理规划存储和计算资源显得尤为重要。此外,Kylin社区活跃,持续更新版本,最新版本已支持更多高级功能,如动态调整Cube构建策略、增强的SQL兼容性等,为企业提供了更加灵活和强大的数据分析工具。最后,值得一提的是,Kylin不仅限于传统的大数据环境,近年来其在云原生架构中的应用也越来越广泛,例如阿里云AnalyticDB for Apache Kylin即为云上Kylin服务的一个实例,为企业提供了更便捷、更高效的云原生数据分析解决方案。这些案例和趋势表明,Kylin作为数据集成与管理的重要工具,将在未来的数字化转型中扮演越来越重要的角色。
2024-12-12 16:22:02
88
追梦人
Mongo
...WiredTiger实现了行级锁,这意味着它可以在同一时间对多个文档进行读写操作,极大地提高了并发性能,特别是在多用户环境和高并发场景下。 - 数据压缩:WiredTiger支持数据压缩功能,能够有效减少磁盘空间占用,这对于大规模数据存储和传输极为重要。 - 检查点与恢复机制:定期创建检查点以确保数据持久化,即使在系统崩溃的情况下也能快速恢复到一个一致的状态。 2. 如何查看MongoDB的存储引擎? 要确定您的MongoDB实例当前使用的存储引擎类型,可以通过运行Mongo Shell并执行以下命令: javascript db.serverStatus().storageEngine 这将返回一个对象,其中包含了存储引擎的名称和其他详细信息,如引擎类型是否为wiredTiger。 3. 指定MongoDB存储引擎 在启动MongoDB服务时,可以通过mongod服务的命令行参数来指定存储引擎。例如,若要明确指定使用WiredTiger引擎启动MongoDB服务器,可以这样做: bash mongod --storageEngine wiredTiger --dbpath /path/to/your/data/directory 这里,--storageEngine 参数用于设置存储引擎类型,而--dbpath 参数则指定了数据库文件存放的位置。 请注意,虽然InMemory存储引擎也存在,但它主要适用于纯内存计算场景,即所有数据仅存储在内存中且不持久化,因此不适合常规数据存储需求。 4. 探讨与思考 选择合适的存储引擎对于任何数据库架构设计都是至关重要的。随着MongoDB的不断成长和进步,核心团队慧眼识珠,挑中了WiredTiger作为默认配置。这背后的原因呢,可不光是因为这家伙在性能上表现得超级给力,更因为它对现代应用程序的各种需求“拿捏”得恰到好处。比如咱们常见的实时分析呀、移动应用开发这些热门领域,它都能妥妥地满足,提供强大支持。不过呢,每个项目都有自己独特的一套规矩和限制,摸清楚不同存储引擎是怎么运转的、适合用在哪些场合,能帮我们更聪明地做出选择,让整个系统的性能表现更上一层楼。 总结来说,MongoDB如今已经将WiredTiger作为其默认且推荐的存储引擎,但这并不妨碍我们在深入研究和评估后根据实际业务场景选择或切换存储引擎。就像一个经验老道的手艺人,面对各种不同的原料和工具,咱们得瞅准具体要干的活儿和环境条件,然后灵活使上最趁手的那个“秘密武器”,才能真正鼓捣出既快又稳、超好用的数据库系统来。
2024-01-29 11:05:49
202
岁月如歌
Mongo
...tring, required: true}, "password": {type: String, required: true, min: 6}, "createdAt": Date, "updatedAt": Date } 2. 查询构建与执行 - 当我们需要从 new_users 集合中查找特定条件的记录时,MongoDB Studio的Query Builder功能大显身手。在 "Query Builder" 区域,选择 "Find" 操作,键入查询条件,例如找到邮箱地址包含 "@example.com" 的用户: db.new_users.find({"email": {$regex: /@example\.com$/} }) 3. 数据操作与管理 - 对于数据的增删改查操作,MongoDB Studio同样提供了便捷的操作界面。例如,在 "Data Editor" 中选择需要更新的文档,点击 "Update" 按钮,并设置新的属性值,如将用户名 "Alice" 更新为 "Alicia": db.new_users.updateOne( {"username": "Alice"}, {"$set": {"username": "Alicia"} } ) 4. 性能监控与调试 - 而对于数据库的整体性能指标,MongoDB Studio还集成了实时监控模块,包括CPU、内存、磁盘I/O、网络流量等各项指标,便于管理员快速发现潜在瓶颈,并针对性地进行优化调整。 四、结论与展望 MongoDB Studio作为一个集数据建模、查询构建、数据操作于一体的全面管理工具,极大地提升了用户在MongoDB环境下的工作效率。而且你知道吗,MongoDB这个大家庭正在日益壮大和成熟,那些聚合管道、索引优化、事务处理等高大上的功能,都将一步步被融入到MongoDB Studio里头去。这样一来,咱们管理数据库就能变得更聪明、更自动化,就像有个小助手在背后默默打理一切,轻松又省力!嘿,伙计们,咱们一起热血沸腾地站在技术革命的浪尖上,满怀期待地瞅瞅MongoDB Studio能给我们带来什么惊艳的新玩意儿吧!这货绝对会让广大的开发者小伙伴们更溜地驾驭MongoDB,让企业的数据战略发展如虎添翼,一路飙升!
2024-02-25 11:28:38
70
幽谷听泉-t
Datax
...更丰富的数据源接入,实现了分钟级数据入湖,并增强了实时数据处理性能,为用户带来了全新的数据整合体验。 2. DataX在金融业数据迁移中的实战案例分析:某知名金融机构最近分享了利用DataX进行跨系统、跨数据中心大规模数据迁移的成功经验,深入剖析了如何结合DataX特性优化迁移策略以确保数据一致性与迁移效率,为业界提供了宝贵的操作指南。 3. 开源社区对DataX生态发展的讨论:随着开源技术的快速发展,国内外开发者们围绕DataX在GitHub等平台展开了热烈讨论,不仅对DataX的功能扩展提出了新的设想,还针对不同场景下的问题给出了针对性解决方案。例如,有开发者正在研究如何将DataX与Kafka、Flink等流处理框架更好地融合,实现准实时的数据迁移与处理。 4. 基于DataX的企业级数据治理最佳实践:在企业数字化转型的过程中,DataX在数据治理体系中扮演着重要角色。一篇由业内专家撰写的深度解读文章,探讨了如何通过定制化DataX任务以及与其他数据治理工具如Apache Atlas、Hue等配合,构建起符合企业需求的数据生命周期管理方案。 5. DataX新版本特性解析及未来展望:DataX项目团队持续更新产品功能,新发布的版本中包含了诸多改进与新特性,如增强对云数据库的支持、优化分布式作业调度算法等。关注这些新特性的解读文章,有助于用户紧跟技术潮流,充分利用DataX提升数据处理效能,降低运维成本。
2024-02-07 11:23:10
361
心灵驿站-t
Tomcat
...开发者更简洁、高效地实现并发控制。例如,ExecutorService提供了一种灵活的任务执行框架,支持线程池、任务提交、任务取消等功能,极大地简化了并发编程的实现过程。理解这些工具的工作原理和适用场景,是构建并发系统的第一步。 实践应用:案例分析与最佳实践 实践是检验理论的唯一标准。通过分析经典的并发编程案例,如生产者-消费者模型、银行账户余额更新等,可以深入了解并发控制的难点和解决方案。例如,在生产者-消费者模型中,通过合理使用信号量、锁等机制,可以避免资源竞争和死锁的发生。此外,遵循一些最佳实践,如使用原子变量、避免过早同步、合理设计线程间的通信方式等,可以在实践中有效减少并发编程的复杂性。 时效性与实时更新:并发编程的新趋势 随着云计算、大数据、人工智能等领域的快速发展,多线程编程的应用场景不断扩展,同时也带来了新的挑战。例如,异步编程、非阻塞算法、无锁编程等新兴技术正在逐步改变传统的并发编程范式。同时,JDK的不断迭代也引入了诸如NIO、Stream API、CompletableFuture等新特性,为并发编程提供了更多便利。因此,持续关注并发编程领域的最新研究动态和技术发展,对于提升系统性能、增强软件鲁棒性具有重要意义。 结语:从理论到实践的桥梁 Java并发编程是一门深奥且实用的技术,它既考验着开发者对语言特性的深刻理解,又要求具备良好的工程实践能力。通过理论学习与实践探索相结合的方式,可以逐步掌握并发编程的核心技巧,构建出既高效又稳定的多线程系统。在这个过程中,不断积累经验、反思错误、优化方案,是通往高手之路的必经之路。 通过本文的探讨,希望能激发读者对Java并发编程的兴趣,鼓励他们在实践中不断探索,最终成为精通并发编程的高手。
2024-08-07 16:07:16
53
岁月如歌
CSS
...应用于特定元素,从而实现对网页内容美工设计的灵活控制。 作用域(Scope) , 在编程中,特别是JavaScript中,作用域是指程序中的变量、函数等标识符的有效范围。一个作用域可以看作是代码块内的独立环境,在这个环境中声明的变量和函数只能在这个作用域内或者其嵌套的作用域内被访问到。超出该作用域的其他区域将无法识别和调用这些变量和函数,这便是导致“js函数未定义”错误的一个常见原因。 驼峰式命名法(CamelCase) , 驼峰式命名法是一种编程和书写代码时采用的命名约定,主要用于标识符(如变量名、函数名等)的命名。按照这种命名规则,每个单词首字母大写(除了首个单词),形成类似骆驼峰的形状。例如,“helloWorld”就是一个驼峰式命名的例子。采用驼峰式命名可以使代码更具可读性,有助于团队成员更好地理解并记忆各个标识符的含义,从而降低因拼写错误导致的函数未定义等问题的发生概率。
2023-08-12 12:30:02
429
岁月静好_t
转载文章
...构建规则,开发者能够实现从源代码到最终可执行文件或部署包的自动化编译和打包,极大地提高了工作效率和代码质量。 此外,对于大型项目如Linux内核的构建,其Kbuild系统就是一种高度复杂且高效的Makefile集,它利用类似的模式替换函数处理成千上万的源文件,并实现了模块化编译,这对于深入理解Makefile的应用场景具有很高的参考价值。 进一步了解,可以关注以下资源: 1. "GitHub Actions: Extending Workflows with Custom Runners and Functions" - 这篇文章详细解读了如何在GitHub Actions中创建自定义工作流并利用其功能实现复杂的构建逻辑。 2. "An In-depth Look at the Linux Kernel Build System (Kbuild)" - 这篇深度分析文章揭示了Linux内核编译系统的设计理念和实现细节,包括其对Makefile强大特性的运用。 3. "Modern C++ Project Automation with Makefiles" - 该教程结合现代C++项目实践,展示了如何与时俱进地使用Makefile进行项目自动化构建,同时探讨了与其他构建工具如CMake、Meson等的对比和融合。 通过延伸阅读以上内容,您可以更好地将理论知识应用于实际项目开发,优化构建过程,提高项目的可维护性和迭代速度。
2023-03-28 09:49:23
282
转载
转载文章
...例。 4.2.1代码实现 1.首先我们创建一人新文件夹db-count-starter在项目根目录下。 2.在文件夹db-count-starter下创建一份settings.grale文件,添加以下内容。 include 'db-count-starter' 3.在db-count-starter文件夹下创建build.gradle的文件,然后添加如下的代码。 apply plugin: 'java' repositories { mavenCentral() maven { url "https://repo.spring.io/snapshot" } maven { url "https://repo.spring.io/milestone" } } d ependencies { compile("org.springframework.boot:spring-boot:1.2.3.RELEASE") compile("org.springframework.data:spring-data-commons:1.9.2.RELEASE") } 4.接着,我们在fb-count-starter下创建这个目录结构src/main/java/org/test/bookpubstarter/dbcount 5.在新创建的文件下面,让我们添加实现接口CommandLineRunner文件,名称叫做DbCountRunner.java. public class DbCountRunner implements CommandLineRunner { protected final Log logger = LogFactory.getLog(getClass()); private Collection<CrudRepository> repositories; public DbCountRunner(Collection<CrudRepository> repositories) { this.repositories = repositories; } @Override public void run(String... args) throws Exception { repositories.forEach(crudRepository -> logger.info(String.format( "%s has %s entries", getRepositoryName(crudRepository.getClass()), crudRepository.count()))); } private static String getRepositoryName(Class crudRepositoryClass) { for (Class repositoryInterface : crudRepositoryClass.getInterfaces()) { if (repositoryInterface.getName().startsWith( "org.test.bookpub.repository")) { return repositoryInterface.getSimpleName(); } } return "UnknownRepository"; } } 6.我们创建一个DbCountAutoConfiguration.java来实现DbCountRunner。 @Configuration public class DbCountAutoConfiguration { @Bean public DbCountRunner dbCountRunner(Collection<CrudRepository> repositories) { return new DbCountRunner(repositories); } } 7.我们需要告诉Spring Boot我们新创建的JAR包含自动装配的类。我们需要在db-count-starter/src/main下创建resources/META-INF文件夹。 8.在resources/META-INF下创建spring.factories文件,添加如下内容。 org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.test .bookpubstarter.dbcount.DbCountAutoConfiguration 9.在主项目的build.gradle下添加如下代码 compile project(':db-count-starter') 10.启动项目,你将会看到控制台的信息下: 2020-04-05 INFO org.test.bookpub.StartupRunner : Welcome to the Book Catalog System! 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : AuthorRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : PublisherRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : BookRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner :ReviewerRepository has 0 entries 2020-04-05 INFO org.test.bookpub.BookPubApplication : Started BookPubApplication in 8.528 seconds (JVM running for 9.002) 2020-04-05 INFO org.test.bookpub.StartupRunner : Number of books: 1 4.2.2代码说明 因为Spring Boot的starter是分隔的,独立的包,仅仅是添加更多的类到我们已经存在的项目资源中,而不会控制更多。为了独立技术,我们的选择很少,创建分开的配置在我们项目中或创建完全分开的项目。更好的方法是通过创建项目文件夹去转换们的项目到Gradel Multi-Project Build和子项目依赖于根目录到build.gradle。Gradle实际是创建JAR的包,但是我们不需要放入到任何地方,仅仅通过compile project(‘:db-count-starter’)来包含。 Spring Boot Auto-Configuration Starter并没有做什么,而是Spring Java Configuration类注释了@Configuration和代表性的spring.factories文件在META-INF的文件夹下。 当应用启动时,Spring Boot使用SpringFactoriesLoader,这个类是Spring Core中的,目的是为了获得Spring Java Configuration,这些配置给了org.springframework.boot.autoconfigure.EnableAutoConfiguration。这样之下,这些调用会收集spring.factories文件下的所有jar包或其它调用的路径和成分到应用的上下文的配置中。除此之了EnableAutoConfiguration,我们可以定义其它的关键接口使用,这些可以自动初始化在启动期间与如下的调用相似: org.springframework.context.ApplicationContextInitializer org.springframework.context.ApplicationListener org.springframework.boot.SpringApplicationRunListener org.springframework.boot.env.PropertySourceLoader org.springframework.boot.autoconfigure.template.TemplateAvailabilityProvider org.springframework.test.contex.TestExecutionListener 具有讽刺的是,Spring Boot Starter并不需要依赖Spring Boot的包,因为它编译时间上的依赖。如果我们看DbCountAutoConfiguation类,我们不会看到任何来自org.springframework.book的包。这仅仅的原因是我们的DbCountRunner实现了接口org.sprigframework.boot.CommandLineRunner. 本篇文章为转载内容。原文链接:https://blog.csdn.net/owen_william/article/details/107867328。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 20:49:04
269
转载
Dubbo
...通过集成第三方工具来实现这一目标。比如说Zipkin吧,这是Twitter推出的一个开源工具,专门用来追踪应用程序在分布式环境中的各种请求路径和数据流动情况。用它就像是给你的系统搭建了一个超级详细的导航地图,让你能一眼看清楚每个请求走过了哪些地方。接下来,我们将通过几个步骤来演示如何在Dubbo项目中集成Zipkin。 2.1 添加依赖 首先,我们需要向项目的pom.xml文件中添加Zipkin客户端的依赖。这步超级重要,因为得靠它让我们的Dubbo服务乖乖地把追踪信息发给Zipkin服务器,不然出了问题我们可找不到北啊。 xml io.zipkin.java zipkin-reporter-brave 2.7.5 2.2 配置Dubbo服务端 然后,在Dubbo服务端配置文件(如application.properties)中加入必要的配置项,让其知道如何连接到Zipkin服务器。 properties dubbo.application.qos-enable=false dubbo.registry.address=multicast://224.5.6.7:1234 指定Zipkin服务器地址 spring.zipkin.base-url=http://localhost:9411/ 使用Brave作为追踪库 brave.sampler.probability=1.0 这里,spring.zipkin.base-url指定了Zipkin服务器的URL,而brave.sampler.probability=1.0则表示所有请求都会被追踪。 2.3 编写服务接口与实现 假设我们有一个简单的服务接口,用于处理用户订单: java public interface OrderService { String placeOrder(String userId); } 服务实现类如下: java @Service("orderService") public class OrderServiceImpl implements OrderService { @Override public String placeOrder(String userId) { // 模拟业务逻辑 System.out.println("Order placed for user: " + userId); return "Your order has been successfully placed!"; } } 2.4 启动服务并测试 完成上述配置后,启动Dubbo服务端。你可以试试调用placeOrder这个方法,然后看看在Zipkin的界面上有没有出现相应的追踪记录。 3. 深入探讨 从Dubbo到Jaeger的转变 虽然Zipkin是一个优秀的解决方案,但在某些场景下,你可能会发现它无法满足你的需求。例如,如果你需要更高级别的数据采样策略或是对追踪数据有更高的控制权。这时,Jaeger就成为一个不错的选择。Jaeger是Uber开源的分布式追踪系统,它提供了更多的定制选项和更好的性能表现。 将Dubbo与Jaeger集成的过程与Zipkin类似,主要区别在于依赖库的选择和一些配置细节。这里就不详细展开,但你可以按照类似的思路去尝试。 4. 结语 持续优化与未来展望 集成分布式追踪系统无疑为我们的Dubbo服务增添了一双“慧眼”,使我们能够在复杂多变的分布式环境中更加从容不迫。然而,这只是一个开始。随着技术日新月异,咱们得不停地充电,学些新工具新技能,才能跟上这变化的脚步嘛。别忘了时不时地检查和调整你的追踪方法,确保它们跟得上你生意的发展步伐。 希望这篇文章能为你提供一些有价值的启示,让你在Dubbo与分布式追踪系统的世界里游刃有余。记住,每一次挑战都是成长的机会,勇敢地迎接它们吧!
2024-11-16 16:11:57
54
山涧溪流
转载文章
...uditing" Guid="{54849625-5478-4994-A5BA-3E3B0328C30D}" /><EventID>4663</EventID><Version>0</Version><Level>0</Level><Task>12800</Task><Opcode>0</Opcode><Keywords>0x8020000000000000</Keywords><TimeCreated SystemTime="2018-05-22T01:03:11.876720000Z" /><EventRecordID>1514</EventRecordID><Correlation /><Execution ProcessID="4" ThreadID="72" /><Channel>Security</Channel><Computer>IDX-ST-05</Computer><Security /></System><EventData><Data Name="SubjectUserSid">S-1-5-21-1815651738-4066643265-3072818021-1004</Data><Data Name="SubjectUserName">lxy</Data><Data Name="SubjectDomainName">IDX-ST-05</Data><Data Name="SubjectLogonId">0x2ed3b8</Data><Data Name="ObjectServer">Security</Data><Data Name="ObjectType">File</Data><Data Name="ObjectName">C:\Data\net.txt</Data><Data Name="HandleId">0x444</Data><Data Name="AccessList">%%1537</Data><Data Name="AccessMask">0x10000</Data><Data Name="ProcessId">0x4</Data><Data Name="ProcessName"></Data></EventData></Event> 文件操作码表 File ReadAccesses: ReadData (or ListDirectory)AccessMask: 0x1File WriteAccesses: WriteData (or AddFile)AccessMask: 0x2File DeleteAccesses: DELETEAccessMask: 0x10000File RenameAccesses: DELETEAccessMask: 0x10000File CopyAccesses: ReadData (or ListDirectory)AccessMask: 0x1File Permissions ChangeAccesses: WRITE_DACAccessMask: 0x40000File Ownership ChangeAccesses: WRITE_OWNERAccessMask: 0x80000 转载于:https://blog.51cto.com/linxy/2119150 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34112900/article/details/92532120。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-12 11:51:46
151
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cat <(command1) <(command2) > output.txt
- 将两个命令的输出合并到一个文件中。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"