前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[PHP实现用户推荐人数统计功能 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MyBatis
...,以提供更精准的商品推荐和搜索结果。淘宝网通过引入机器学习算法,不仅提升了搜索结果的相关性,还增强了对用户行为的理解,从而实现了个性化的搜索体验。此外,淘宝网还采用了分布式索引和查询技术,以应对海量数据带来的性能挑战,确保搜索服务的稳定性和响应速度。 另一方面,国外的电商平台也在积极跟进这一趋势。亚马逊公司近期宣布对其搜索引擎进行了重大升级,引入了新的自然语言处理技术,使得用户可以通过更自然的语言进行搜索,从而获得更符合预期的结果。亚马逊的技术团队表示,此次升级旨在提升用户体验,使用户能够更快地找到所需商品,同时减少搜索结果中的误匹配现象。 除了商业领域的应用外,全文搜索技术在学术研究和公共服务领域也发挥着重要作用。例如,欧洲专利局(EPO)利用全文搜索技术,提高了专利文献的检索效率,使得研究人员能够更快地找到相关的专利信息。此外,美国国家航空航天局(NASA)也运用全文搜索技术,加速了科研文献的查阅过程,促进了跨学科合作和创新。 这些案例不仅展示了全文搜索技术在不同领域的广泛应用,也为MyBatis框架下的全文搜索配置提供了更多的参考和启示。通过借鉴这些成功经验,开发者可以更好地优化自己的全文搜索功能,提升用户体验和系统的整体性能。
2024-11-06 15:45:32
135
岁月如歌
转载文章
...69。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Vue选项 什么是选项? 使用选项式 API,我们可以用包含多个选项的对象来描述组件的逻辑,例如 data、methods 和 mounted。选项所定义的属性都会暴露在函数内部的 this 上,它会指向当前的组件实例。 以上是官网对于选项的概念,简单的说,选项是一组由Vue定义好的对象,你可以将你的代码写在指定的选项中,从而获得一些 “特异功能” 。 注:由于选项是Vue规定好的,因此在使用中我们不能更改其名称,也不可以重复定义 常用选项 1. data选项 必须是一个函数,将组件需要使用的变量定义在此函数的返回值对象中,定义的变量将会获得一个“特异功能” ---- 响应式 <template><div><!-- 在这里使用插值表达式将name渲染到页面 -->{ { name } }</div></template><script>export default {// data选项data(){return{// name是响应式的name:"Jay",} },}</script> 上面例子中的name就是一个响应式数据,在值发生改变时,视图(页面)上的name也会发生变化,那我们便可以通过操作name的变化去使视图发生变化,而不用进行繁琐的DOM操作,这也体现着Vue框架的 数据驱动 这一核心思想。 为什么数据要定义在data函数的返回值中,而不是定义在一个对象中? 将数据定义在函数返回值中,可以确保每产生一个组件实例,都会调用一次函数,并返回一个新的对象,开辟一块新的空间。 如果将数据定义在对象中,可能会出现类似于浅拷贝中出现的问题,即多个组件实例指向同一块空间,一个组件实例修改数据,则全部数据发生变化。 2. methods选项 此选项是一个对象,其中存放着该组件要使用的函数,比如事件的回调函数… <template><div><!-- 添加点击事件,事件回调函数在methods中定义 --><button @click="add">点击加一</button> <p>{ { count } }</p></div></template><script>export default {data(){return{count:0,} },// 在methods中定义函数(方法)methods:{add(){// 在函数中要使用data中的变量,需加thisthis.count++},} }</script> 通过点击事件改变count的值,从而使页面上的值随之变化,再次体现 数据驱动 的核心思想 3. computed 计算属性 计算属性,对象形式,顾名思义,在计算属性中保存着一系列需要经过运算得出的属性 <template><p>路程:{ { distance } } km</p><p>速度:{ { speed } } km/h</p><!-- 使用计算属性,与变量的使用相同 --><p>花费的时间:{ { time } } h</p></template><script>export default {data() {return {distance: 1000,speed: 50,} },computed: {// 定义计算属性,类似于函数的定义,返回值就是该计算属性的值time() {return this.distance / this.speed} }}</script> 计算属性内部所依赖的数据发生变化时, 计算属性本身就会自动重新计算返回一个新的计算值并缓存起来。 计算属性内部所依赖的数据没有发生变化, 计算属性会直接返回上一次缓存的值。 因此上面例子中的distance(路程)与speed(速度)无论如何变化,time都会计算出正确的值。 4. directives 选项, 定义自定义指令( 局部指令 ) 在上节,我们学习了一些Vue内置指令,功能十分强大,那么我们可以自己定义一些指令吗? 当然可以!我们可以在directives选项中创建自定义指令。 <template><!-- 使用自定义指令 --><div v-myshow="1"></div><div v-myshow="0"></div></template><script>export default {// 在directives中定义一个自定义指令,来模仿v-show的功能directives: {//el:添加自定义指令的元素;binding:指令携带的参数myshow(el, binding) {if (binding.value) {el.style.display = "block";} else {el.style.display = "none";} }} }</script><style scoped>div {width: 100px;height: 100px;background-color: red;margin: 10px;}</style> 像以上这种,在组件中定义的指令是局部指令,只能在本组件中使用,全局指令需要在main.js文件中定义,全局指令在任何.vue文件中都可使用。 注意: 当局部指令和全局指令冲突时, 局部指令优先生效. var app = createApp(App)//定义全局指令 app.directive("myshow", (el, binding) => {if (binding.value) {el.style.display = "block";} else {el.style.display = "none";} })// 全局指令可在任何组件使用 5. components组件选项(注册局部组件) 在一个组件中我们可能会使用到其他组件,在将组件引入后,需要在components中进行注册,才能使用。 <template><!-- 使用组件 --><Test /></template><script>// 引入组件import Test from './Test.vue'export default {// 注册组件components: {Test},}</script> 局部组件只能在当前组件内部使用,需要在任何组件中使用,需要在main.js文件中注册为全局组件 // 引入组件import Test from './Test.vue'// 注册全局组件,可在所有.vue文件中使用app.component('Test',Test); 6. 其他 filters 选项, 定义过滤器,vue2中使用,Vue3中已经弃用 mounted 等生命周期函数选项,我们在下节进行详细讲解… 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57714647/article/details/130878069。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-25 22:28:14
65
转载
Apache Solr
...lr跨分片Facet统计不准确的探讨与解决方案 01 引言 当我们谈论大规模数据检索时,Apache Solr作为一款强大的企业级搜索平台,其在分布式环境下的高效查询和处理能力令人印象深刻。不过,在实际操作里头,特别是在处理facet(分面)统计这事儿的时候,我们可能会时不时地碰到一个棘手的问题——跨多个分片进行数据聚合时的准确性难题。这篇文章会深入地“解剖”这个现象,配上一些实实在在的代码实例和实战技巧,让你我都能轻松理解并搞定这个问题。 02 Facet统计与分布式Solr架构 Apache Solr在设计之初就考虑了分布式索引的需求,采用Shard(分片)机制将大型索引分布在网络中的不同节点上。Facet功能则允许用户对搜索结果进行分类统计,如按类别、品牌或其他字段进行频数计数。在分布式系统这个大家庭里,每个分片就像独立的小组成员,它们各自进行facet统计的工作,然后把结果一股脑儿汇总到协调节点那里。不过呢,这样操作有时就可能会让统计数据不太准,出现点儿小差错。 03 分布式环境下facet统计的问题详解 想象一下这样的场景:假设我们有一个电商网站的商品索引分布在多个Solr分片上,想要根据商品类别进行facet统计。当你发现某一类商品正好像是被均匀撒豆子或者随机抽奖似的分散在各个不同的分片上时,那么仅仅看单个分片的facet统计数据,可能就无法准确把握全局的商品总数啦。这是因为每个分片只会算它自己那部分的结果,就像各自拥有一个小算盘在敲打,没法看到全局的数据全貌。这就像是一个团队各干各的,没有形成合力,所以就出现了“跨分片facet统计不准确”的问题,就像是大家拼凑出来的报告,由于信息不完整,难免出现偏差。 java // 示例:在分布式环境下,错误的facet统计请求方式 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); // 此处默认为分布式查询,但facet统计未指定全局聚合 04 理解并解决问题 为了确保facet统计在分布式环境中的准确性,Solr提供了facet.method=enum参数来实现全局唯一计数。这种方法就像个超级小能手,它会在每个分片上麻利地生成一整套facet结果集合,然后在那个协调节点的大本营里,把所有这些结果汇拢到一起,这样一来,就能巧妙地避免了重复计算的问题啦。 java // 示例:修正后的facet统计请求,启用enum方法以保证跨分片统计准确 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.setFacetMethod(FacetParams.FACET_METHOD_ENUM); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); 不过,需要注意的是,facet.method=enum虽然能保证准确性,但会增加网络传输和内存消耗,对于大数据量的facet统计可能会造成性能瓶颈。因此,在设计系统时,需结合业务需求权衡统计精确性与响应速度之间的关系。 05 探讨与优化策略 面对facet统计的挑战,除了使用正确的配置参数外,还可以从以下几个方面进一步优化: - 预聚合:针对频繁查询的facet字段,可定期进行预计算并将统计结果存储在索引中,减轻实时统计的压力。 - 合理分片:在构建索引时,依据facet字段的分布特性调整分片策略,尽量使相同或相似facet值的商品集中在同一分片上,降低跨分片统计的需求。 - 硬件与集群扩容:提升网络带宽和服务器资源,或者适当增加Solr集群规模,分散facet统计压力。 06 结语 Apache Solr的强大之处在于其高度可定制化和扩展性,面对跨分片facet统计这类复杂问题,我们既需要深入理解原理,也要灵活运用各种工具和技术手段。只有通过持续的动手实践和不断改进优化,才能确保在数据统计绝对精准无误的同时,在分散各地的分布式环境下也能实现飞速高效的检索目标。在这个过程中,不断探索、思考与改进,正是技术人员面对技术挑战的乐趣所在。
2023-11-04 13:51:42
376
断桥残雪
Logstash
...ine Codec实现日志合并 示例1:使用input阶段的multiline codec 从Logstash的较新版本开始,推荐的做法是在input阶段配置multiline codec来直接合并多行日志: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" 或者是 "end" 以追加模式读取 codec => multiline { pattern => "^%{TIMESTAMP_ISO8601}" 自定义匹配下一行开始的正则表达式 what => "previous" 表示当前行与上一行合并 negate => true 匹配失败才合并,对于堆栈跟踪等通常第一行不匹配模式的情况有用 } } } 在这个例子中,codec会根据指定的pattern识别出新的一行日志的开始,并将之前的所有行合并为一个事件。当遇到新的时间戳时,Logstash认为一个新的事件开始了,然后重新开始合并过程。 3. 使用multiline Filter的旧版方案 在Logstash的早期版本中,multiline功能是通过filter插件实现的: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" } } filter { multiline { pattern => "^%{TIMESTAMP_ISO8601}" what => "previous" negate => true } } 尽管在最新版本中这一做法已不再推荐,但在某些场景下,你仍可能需要参考这种旧有的配置方法。 4. 解析多行日志实战思考 在实际应用中,理解并调整multiline配置参数至关重要。比如,这个pattern呐,它就像是个超级侦探,得按照你日志的“穿衣风格”准确无误地找到每一段多行日志的开头标志。再来说说这个what字段,它就相当于我们的小助手,告诉我们哪几行该凑到一块儿去,可能是上一个兄弟,也可能是下一个邻居。最后,还有个灵活的小开关negate,你可以用它来反转匹配规则,这样就能轻松应对各种千奇百怪的日志格式啦! 当你调试多行日志合并规则时,可能会经历一些曲折,因为不同的应用程序可能有着迥异的日志格式。这就需要我们化身成侦探,用敏锐的眼光去洞察,用智慧的大脑去推理,手握正则表达式的“试验田”,不断试错、不断调整优化。直到有一天,我们手中的正则表达式如同一把无比精准的钥匙,咔嚓一声,就打开了与日志结构完美匹配的那扇大门。 总结起来,在Logstash中处理多行日志合并是一个涉及对日志结构深入理解的过程,也是利用Logstash强大灵活性的一个体现。你知道吗,如果我们灵巧地使用multiline这个codec或者filter小工具,就能把那些本来七零八落的上下文信息,像拼图一样拼接起来,对齐得整整齐齐的。这样一来,后面我们再做数据分析时,不仅效率蹭蹭往上涨,而且结果也会准得没话说,简直不要太给力!
2023-08-19 08:55:43
249
春暖花开
Apache Pig
...不再是难题,而是轻松实现了! 2. 并行处理原理 Pig利用Hadoop的分布式计算框架,在底层自动将Pig Latin脚本转换为多个MapReduce任务,这些任务能够在多台机器上同时执行,大大提高了数据处理速度。换句话说,当你在捣鼓Pig Latin来设定一个数据处理流程时,其实就是在给一个并行处理的智慧路径画地图。Pig这个小机灵鬼呢,会超级聪明地把你的流程大卸八块,然后妥妥地分配到各个节点上执行起来。 3. 使用Pig Latin进行并行处理实战 示例一:数据加载与过滤 假设我们有一个大型的CSV文件存储在HDFS上,我们想找出所有年龄大于30岁的用户记录: pig -- 加载数据 data = LOAD 'hdfs://path/to/user_data.csv' USING PigStorage(',') AS (name:chararray, age:int, gender:chararray); -- 过滤出年龄大于30岁的用户 adults = FILTER data BY age > 30; -- 存储结果 STORE adults INTO 'hdfs://path/to/adults_data'; 上述代码中,LOAD操作首先将数据从HDFS加载到Pig中,接着FILTER操作会在集群内的所有节点并行执行,筛选出符合条件的记录,最后将结果保存回HDFS。 示例二:分组与聚合 现在,我们进一步对数据进行分组统计,比如按性别统计各年龄段的人数: pig -- 对数据进行分组并统计 grouped_data = GROUP adults BY gender; age_counts = FOREACH grouped_data GENERATE group, COUNT(adults), AVG(adults.age); -- 输出结果 DUMP age_counts; 这里,GROUP操作会对数据进行分组,然后在每个分组内部并行执行COUNT和AVG函数,得出每个性别的总人数以及平均年龄,整个过程充分利用了集群的并行处理能力。 4. 思考与理解 在实际操作过程中,你会发现Apache Pig不仅简化了并行编程的难度,同时也提供了丰富的内置函数和运算符,使得数据分析工作变得更加轻松。这种基于Pig Latin的声明式编程方式,让我们能够更关注于“要做什么”,而非“如何做”。每当你敲下一个Pig Latin命令,就像在指挥一个交响乐团,它会被神奇地翻译成一连串MapReduce任务。而在这个舞台背后,有个低调的“大块头”Hadoop正在卖力干活,悄无声息地扛起了并行处理的大旗。这样一来,我们开发者就能一边悠哉享受并行计算带来的飞速快感,一边又能摆脱那些繁琐复杂的并行编程细节,简直不要太爽! 总结起来,Apache Pig正是借助其强大的Pig Latin语言及背后的并行计算机制,使得大规模数据处理变得如烹小鲜般简单而高效。无论是处理基础的数据清洗、转换,还是搞定那些烧脑的统计分析,Pig这家伙都能像把刀切黄油那样轻松应对,展现出一种无人能敌的独特魅力。因此,熟练掌握Apache Pig,无疑能让你在大数据领域更加得心应手,挥洒自如。
2023-02-28 08:00:46
497
晚秋落叶
RabbitMQ
...过设置配额来控制单个用户、虚拟主机或全局级别的资源使用上限,以防止因某一队列或交换机无限制地增长而导致服务器磁盘空间耗尽。 Prometheus , Prometheus是一款开源的系统监控与警报工具,常用于实时监控分布式系统的服务状态和资源使用情况。在本文中,推荐使用Prometheus来实时监控RabbitMQ服务器的磁盘使用情况,一旦磁盘空间达到预设的告警阈值,就能够及时发出警报,从而协助运维人员提前发现并处理磁盘空间不足的问题。 Grafana , Grafana是一个开源的数据可视化与分析平台,它可以整合多种数据源,包括Prometheus,以提供丰富的图表展示和警报功能。在RabbitMQ服务器磁盘空间监控场景下,Grafana可以与Prometheus配合,将监控数据图形化展示出来,方便运维人员直观地掌握磁盘空间使用趋势,进而采取相应措施避免磁盘空间不足问题的发生。
2024-03-17 10:39:10
169
繁华落尽-t
Mahout
...多种机器学习任务,如推荐系统、分类、聚类等。在本文中,Mahout 被用来处理推荐系统的训练任务,涉及如何通过调整迭代次数和其他参数来优化模型性能。 TooManyIterationsException , 这是一个在使用 Apache Mahout 进行机器学习训练时可能出现的异常。当模型在训练过程中需要的迭代次数超过预先设定的最大值时,Mahout 就会抛出这个异常。它提示用户模型可能存在问题,如数据过于复杂、模型参数设置不当或特征选择不恰当,需要进行相应的调整。 推荐系统 , 推荐系统是一种信息过滤系统,旨在预测用户对物品的兴趣,并向用户推荐他们可能感兴趣的物品。本文中提到的推荐系统主要通过协同过滤算法实现,即基于用户的历史行为数据来预测用户对未见过的物品的偏好。文中通过设置迭代次数限制和优化模型参数等手段来改善推荐系统的性能。
2024-11-30 16:27:59
86
烟雨江南
DorisDB
...orisDB构建实时推荐系统之后,我们了解到实时分析数据库在现代互联网业务中的重要性日益凸显。实际上,实时数据分析与推荐系统的结合已成为众多企业提升用户体验、优化产品策略的关键路径。近期,某知名电商巨头就公开分享了其利用实时分析技术改造推荐系统的成功案例,通过采用先进的列式存储数据库和机器学习算法,实现了用户行为数据的秒级处理和精准推荐,显著提高了转化率和用户满意度。 此外,Apache Doris(DorisDB)社区的活跃度也反映了业界对实时分析解决方案的强烈需求。据最新报道,DorisDB正积极拥抱开源生态,不断进行功能迭代与优化,如引入流式数据处理能力以适应更广泛的实时场景,并通过与大数据生态组件如Spark、Flink等深度集成,进一步拓宽了实时推荐系统的构建途径。 值得注意的是,随着《个人信息保护法》等相关法规的出台,实时推荐系统在追求高效精准的同时,也需要严格遵守数据合规要求。这不仅关乎企业的社会责任,也是未来技术创新的重要考量因素。因此,在选用DorisDB或其他实时分析工具构建推荐系统时,确保数据安全与隐私保护同样至关重要,值得开发者与企业深入研究与实践。 综上所述,实时推荐系统的构建不仅是技术挑战,更是法律规范、商业策略和用户体验相互交织的复杂课题。通过对实时分析技术如DorisDB的持续关注与应用探索,将有助于企业在瞬息万变的市场环境中保持竞争优势,实现可持续发展。
2023-05-06 20:26:51
445
人生如戏
Impala
...准的高度兼容性,使得用户可以直接在海量数据上执行实时交互式SQL查询。跟MapReduce和Hive这些老哥不太一样,Impala这小子更机灵。它不玩儿那一套先将SQL查询变魔术般地转换成一堆Map和Reduce任务的把戏,而是直接就在数据所在的节点上并行处理查询,这一招可是大大加快了我们分析数据的速度,效率杠杠滴! 3. Impala在日志分析中的应用 3.1 日志数据加载与处理 首先,我们需要将日志数据导入到Impala可以访问的数据存储系统,例如HDFS或Hive表。以下是一个简单的Hive DDL创建日志表的例子: sql CREATE TABLE IF NOT EXISTS logs ( log_id BIGINT, timestamp TIMESTAMP, user_id STRING, event_type STRING, event_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; 然后,通过Hive或Hadoop工具将日志文件加载至该表: bash hive -e "LOAD DATA INPATH '/path/to/logs' INTO TABLE logs;" 3.2 Impala SQL查询实例 有了结构化的日志数据后,我们便可以在Impala中执行复杂的SQL查询来进行深入分析。例如,我们可以找出过去一周内活跃用户的数量: sql SELECT COUNT(DISTINCT user_id) FROM logs WHERE timestamp >= UNIX_TIMESTAMP(CURRENT_DATE) - 7246060; 或者,我们可以统计各类事件发生的频率: sql SELECT event_type, COUNT() as event_count FROM logs GROUP BY event_type ORDER BY event_count DESC; 这些查询均能在Impala中以极快的速度得到结果,满足了对大规模日志实时分析的需求。 3.3 性能优化探讨 在使用Impala进行日志分析时,性能优化同样重要。比如,对常量字段创建分区表,可以显著提高查询速度: sql CREATE TABLE logs_partitioned ( -- 同样的列定义... ) PARTITIONED BY (year INT, month INT, day INT); 随后按照日期对原始表进行分区数据迁移: sql INSERT OVERWRITE TABLE logs_partitioned PARTITION (year, month, day) SELECT log_id, timestamp, user_id, event_type, event_data, YEAR(timestamp), MONTH(timestamp), DAY(timestamp) FROM logs; 这样,在进行时间范围相关的查询时,Impala只需扫描相应分区的数据,大大提高了查询效率。 4. 结语 总之,Impala凭借其出色的性能和易用性,在大规模日志分析领域展现出了强大的实力。它让我们能够轻松应对PB级别的数据,实现实时、高效的查询分析。当然啦,每个项目都有它独特的小脾气和难关,但只要巧妙地运用Impala的各种神通广大功能,并根据实际情况灵活机动地调整作战方案,保证能稳稳驾驭那滔滔不绝的大规模日志分析大潮。这样一来,企业就能像看自家后院一样清晰洞察业务动态,优化决策也有了如虎添翼的强大力量。在这个过程中,我们就像永不停歇的探险家,不断开动脑筋思考问题,动手实践去尝试,勇敢探索未知领域。这股劲头,就像是咱们在技术道路上前进的永动机,推动着我们持续进步,一步一个脚印地向前走。
2023-07-04 23:40:26
520
月下独酌
PHP
...开始关注Web开发。PHP和Node.js是两种非常流行的Web开发语言,它们各有优缺点,也有着不同的应用场景。在这篇文章里,咱们要来好好唠唠PHP和Node.js这两者之间的亲密互动,并且我还会手把手地给大家展示几个超实用的代码实例,让大家伙儿看得明白、学得轻松。 二、PHP与Node.js的异同 1. PHP是一种解释型语言,它可以在服务器端运行,并且可以生成HTML页面。而Node.js是一种JavaScript引擎,它可以用于服务器端编程,也可以用于客户端编程。因此,PHP和Node.js的主要区别在于它们的语言类型和运行环境。 2. PHP主要应用于Web开发,它可以轻松处理数据库操作、表单提交、用户认证等任务。而Node.js这家伙,最厉害的地方就是它超级注重实时响应速度和并行处理任务的能力。拿它来开发那些需要高性能的程序,比如实时聊天室、在线游戏啥的,简直是小菜一碟! 三、如何让PHP与Node.js进行交互? 1. 使用HTTP协议 PHP和Node.js都可以通过HTTP协议进行通信。例如,我们可以使用PHP发送一个GET请求到Node.js的服务端,然后Node.js返回响应数据给PHP。以下是一个简单的示例代码: php $url = 'http://localhost:3000/api/data'; $data = file_get_contents($url); echo $data; ?> javascript const http = require('http'); const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'application/json'); res.end(JSON.stringify({ data: 'Hello from Node.js!' })); }); server.listen(3000); 在这个示例中,PHP使用file_get_contents函数从Node.js获取数据,然后输出到网页上。Node.js则是利用了http这个模块,捣鼓出了一个HTTP服务器。每当它收到一个GET请求时,就会超级贴心地回传一个JSON格式的数据对象作为回应。 2. 使用WebSocket协议 除了HTTP协议,我们还可以使用WebSocket协议来进行PHP和Node.js的交互。WebSocket,你知道吧,就像是一种神奇的双向聊天管道。它能让浏览器或者客户端和服务器两者之间,始终保持实时、流畅的对话,而且啊,还用不着像以前那样,老是反复地发送HTTP请求,多高效便捷!以下是一个简单的示例代码: php $host = 'localhost'; $port = 3000; $socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP); socket_connect($socket, $host, $port); socket_write($socket, "GET / HTTP/1.1\r\nHost: localhost\r\nConnection: close\r\n\r\n"); $response = socket_read($socket, 1024); echo $response; socket_close($socket); ?> javascript const WebSocket = require('ws'); const wss = new WebSocket.Server({ port: 3000 }); wss.on('connection', ws => { ws.send('Hello from Node.js!'); ws.on('message', message => { console.log(Received message => ${message}); }); }); 在这个示例中,PHP使用socket_create和socket_connect函数创建了一个TCP连接,并向Node.js发送了一个HTTP GET请求。Node.js借助WebSocket模块,捣鼓出一个WebSocket服务器。每当有客户端小手一挥发起连接请求时,服务器就会立马给客户端回个消息。同时,它还耳聪目明地监听着客户端发来的每一条消息事件。 四、总结 总的来说,PHP和Node.js都是优秀的Web开发工具,它们有着各自的优点和适用场景。PHP这门语言,就像是企业级应用开发的传统老将,尤其在那些需要稳定、持久运行的场景里,它发挥得游刃有余。而Node.js呢,更像是实时交互和高并发处理领域的灵活小能手,对于那些要求快速响应、大量并发请求的应用开发,Node.js的表现绝对会让你眼前一亮,就像个活力十足的小伙子,轻松应对各种挑战。无论你挑哪个工具,咱都得把它独有的特点和优势摸得门儿清,然后把这些优势发挥到极致,这样才能让开发效率蹭蹭往上涨,同时保证咱们的应用程序质量杠杠滴。此外,咱们也得摸清楚PHP和Node.js是怎么联手合作的,这样一来,咱就能更巧妙地把这两门技术的优点用到极致,给咱们的开发工作添砖加瓦,创造出更多意想不到的可能性。
2024-01-21 08:08:12
62
昨夜星辰昨夜风_t
Saiku
...aiku这款工具中,用户可通过图形化界面进行OLAP操作,无需编写代码即可对多维数据集进行切片、钻取、旋转等交互式探索,从而深入洞察业务趋势与模式。 数据透视表 , 数据透视表是一种动态的、交互式的表格,允许用户以多种角度对大量数据进行汇总、比较和分析。在Saiku的结果展示区中,用户可以根据需要调整行、列、值以及过滤条件,系统将自动重新组织并计算数据,生成能够直观反映数据内在关系和分布特点的视图。 钻取功能 , 在商业智能和数据分析领域,钻取是指用户可以从汇总数据深入到细节数据的过程,或者从一个粒度级别切换到另一个更细或更粗粒度级别的能力。在Saiku中,用户可以利用钻取功能,在查看某一层次的数据统计结果时,进一步向下挖掘至下一级别或上一级别的明细数据,以便于从不同维度深入理解数据,实现多层级的数据洞察。 商业智能(BI) , 商业智能是一套综合的方法论、应用软件和服务,用于收集、整合、分析企业内外部数据,并通过可视化的方式将这些信息呈现给决策者,以便他们做出明智、数据驱动的业务决策。在文中,Saiku被描述为顺应现代BI发展趋势的工具,它通过提供自助服务式的分析平台,助力非技术人员也能独立完成深度数据探索。
2023-10-04 11:41:45
102
初心未变
ClickHouse
...要利用它的“外部表”功能和外界的数据源打交道的时候,确实会碰到一些让人头疼的小插曲。比如说,可能会遇到文件系统权限设置得不对劲儿,或者压根儿就找不到要找的文件这些让人抓狂的问题。本文将深入探讨这些问题,并通过实例代码解析如何解决这些问题。 2. ClickHouse外部表简介 在ClickHouse中,外部表是一种特殊的表类型,它并不直接存储数据,而是指向存储在文件系统或其他数据源中的数据。这种方式让数据的导入导出变得超级灵活,不过呢,也给我们带来了些新麻烦。具体来说,就是在权限控制和文件状态追踪这两个环节上,挑战可是不小。 3. 文件系统权限不正确的处理方法 3.1 问题描述 假设我们已创建一个指向本地文件系统的外部表,但在查询时收到错误提示:“Access to file denied”,这通常意味着ClickHouse服务账户没有足够的权限访问该文件。 sql CREATE TABLE external_table (event Date, id Int64) ENGINE = File(Parquet, '/path/to/your/file.parquet'); SELECT FROM external_table; -- Access to file denied 3.2 解决方案 首先,我们需要确认ClickHouse服务运行账户对目标文件或目录拥有读取权限。可以通过更改文件或目录的所有权或修改访问权限来实现: bash sudo chown -R clickhouse:clickhouse /path/to/your/file.parquet sudo chmod -R 750 /path/to/your/file.parquet 这里,“clickhouse”是ClickHouse服务默认使用的系统账户名,您需要将其替换为您的实际环境下的账户名。对了,你知道吗?这个“750”啊,就像是个门锁密码一样,代表着一种常见的权限分配方式。具体来说呢,就是文件的所有者,相当于家的主人,拥有全部权限——想读就读,想写就写,还能执行操作;同组的其他用户呢,就好比是家人或者室友,他们能读取文件内容,也能执行相关的操作,但就不能随意修改了;而那些不属于这个组的其他用户呢,就像是门外的访客,对于这个文件来说,那可是一点权限都没有,完全进不去。 4. 文件不存在的问题及其解决策略 4.1 问题描述 当我们在创建外部表时指定的文件路径无效或者文件已被删除时,尝试从该表查询数据会返回“File not found”的错误。 sql CREATE TABLE missing_file_table (data String) ENGINE = File(TSV, '/nonexistent/path/file.tsv'); SELECT FROM missing_file_table; -- File not found 4.2 解决方案 针对此类问题,我们的首要任务是确保指定的文件路径是存在的并且文件内容有效。若文件确实已被移除,那么重新生成或恢复文件是最直接的解决办法。另外,你还可以琢磨一下在ClickHouse的配置里头开启自动监控和重试功能,这样一来,万一碰到文件临时抽风、没法用的情况,它就能自己动手解决问题了。 另外,对于周期性更新的外部数据源,推荐结合ALTER TABLE ... UPDATE语句或MaterializeMySQL等引擎动态更新外部表的数据源路径。 sql -- 假设新文件已经生成,只需更新表结构即可 ALTER TABLE missing_file_table MODIFY SETTING path = '/new/existing/path/file.tsv'; 5. 结论与思考 在使用ClickHouse外部表的过程中,理解并妥善处理文件系统权限和文件状态问题是至关重要的。只有当数据能够被安全、稳定地访问,才能充分发挥ClickHouse在大数据分析领域的强大效能。这也正好敲响我们的小闹钟,在我们捣鼓数据架构和运维流程的设计时,千万不能忘了把权限控制和数据完整性这两块大骨头放进思考篮子里。这样一来,咱们才能稳稳当当地保障整个数据链路健健康康地运转起来。
2023-09-29 09:56:06
467
落叶归根
Mongo
...备份恢复、监控告警等功能,助力企业无缝迁移至云端,实现弹性伸缩与按需付费,进一步优化资源利用率和降低成本。 综上所述,持续跟踪MongoDB的最新动态和技术演进,结合具体业务场景合理运用其异步特性,有助于提升应用程序性能,应对日益增长的数据处理需求。推荐读者关注MongoDB官方博客、文档更新及行业技术论坛,深入探讨更多关于数据库异步操作的实战经验和最佳实践案例。
2024-03-10 10:44:19
167
林中小径_
PostgreSQL
...版本发布,其中对索引功能进行了多项重要升级,包括引入了全新的BRIN(Block Range Indexes)区间索引增强特性,使得处理大规模数据表时的索引效率得到显著提升。此外,对于JSONB类型的数据,新版本支持了更精细化的索引策略,允许用户基于JSONB字段内的特定路径创建索引,从而实现复杂文档结构查询的加速。 另一方面,数据库性能调优并非仅仅依靠索引就能解决所有问题,还需结合实际业务场景和工作负载进行深度分析。例如,适时运用分区表、并行查询等功能,并结合SQL查询优化器的使用策略,可以更全面地提升系统性能。同时,监控与统计分析工具如pg_stat_statements等在实际运维中的应用也不容忽视,它们能有效帮助DBA了解索引的实际使用情况以及潜在的优化空间。 值得注意的是,随着硬件技术的发展,诸如SSD存储、内存计算等新型基础设施也为数据库性能优化提供了新的思路。比如,利用现代硬件优势,合理设计索引结构和存储参数,可以在很大程度上降低I/O瓶颈,进一步提高查询速度。 总之,在PostgreSQL乃至整个数据库领域,索引是优化查询性能的关键一环,而与时俱进的技术发展和对业务场景的深刻理解则是让这一“艺术”持续发挥效能的基石。不断学习与实践,方能在瞬息万变的数据洪流中,确保您的数据库始终保持高效运转。
2023-06-04 17:45:07
409
桃李春风一杯酒_
Kibana
...分析和展示方面的强大功能。实际上,Elastic Stack及其组件在全球范围内的广泛应用不断推动着实时数据分析与可视化的边界。近日,Elastic公司发布了Kibana 8.0版本,带来了全新的用户体验、增强的数据可视化功能以及更强大的机器学习集成。 例如,新版本引入了Canvas工作区,让用户能够以更加直观和灵活的方式混合文本、图像和动态数据,构建出专业级的报告和故事板。此外,时间序列分析也得到了显著提升,用户现在可以更便捷地对大规模时序数据进行深度挖掘,揭示隐藏的趋势和异常情况。 对于希望进一步探索Kibana应用实践的企业而言,一些知名企业在实际业务中运用Kibana的成功案例值得研究。如某大型电商企业通过搭建基于Kibana的实时监控系统,实现了对其海量交易数据的实时洞察与故障预警,有效提升了运维效率与服务质量。 同时,也有越来越多的开发者和数据科学家投入到Kibana插件生态建设中,开发出一系列创新工具和扩展功能,以满足不同行业和场景下的定制化需求。这些前沿发展不仅展示了Kibana作为开源数据可视化平台的强大生命力,也为广大用户提供了更为广阔的应用前景和想象空间。因此,在掌握了基础操作之后,持续关注并深入学习Kibana的最新特性和最佳实践,无疑将有助于我们在数据驱动决策的时代浪潮中保持领先优势。
2023-08-20 14:56:06
336
岁月静好
转载文章
...58。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 在前期的推文《SAP软件付款条件的配置及应用介绍》中详细介绍了付款条件的配置及应用,那篇文章中提到了分期付款,但没有展开详细的介绍说明,今天在此文中补充上。 我们知道付款条件配置好后,在做发票凭证时候可以输入付款条件,但是那个付款条件的字段只能输入一个值(如下图) 那么如果遇到一笔款项要分多期支付,并且每一期对应的付款条件不同,比如公司要支付供应商10000元,但和供应商商定可以分三期支付,一期支付20%,对应的付款条件为Z001,二期支付30%,对应的付款条款为Z002,三期支付剩余50%,对应的付款条件为Z003。 SAP如何处理上面这样的业务场景? SAP软件发票凭证录入界面的付款条件字段只能输入一个付款条件代码,我们可以想象下系统要处理这样的分期付款,那么这个付款条件代码就必须能关联到三个不同的付款条件,即它要包含三个具体的付款条件,SAP软件也就是基于这样逻辑设计的,所以对于分期付款的付款条件可以把它看做是一个付款条件组,它包含了三个具体的付款条款(如下图)。 详细信息直接访问下面链接吧,懒得一点点粘贴了 https://mp.weixin.qq.com/s/WnUEKH5TpoQjsFM66E1Yxg 推荐阅读: 《DEMO:接口以XML为入参》 《DEMO:接口以Json为入参》 《Odata 增删改查详例》 《ODATA CREATE_DEEP_ENTITY 详例》 《RESTful DEMO 一:SAP 如何提供 RESTful Web 服务》 《RESTful DEMO 四 :增删改查及调用》 《十年老码农搬砖习惯和技巧》 《我这个老码农是怎么debug标准程序的》 《我是怎样调试BAPI的,以F-02为例》 《动态批量修改任意表任意字段的值》 《动态获取查询条件的一个小Demo》 《使用cl_gui_docking_container 实现多ALV》 《VOFM 修改 组单开票时 会计凭拆分规则》 《DEMO SUBMIT 某程序并获取该程序ALV数据》 《DEMO:S/4 1809 FAGLL03H 增加字段增强》 《几个ABAP实用模板,体力活就别一行行敲了,复制粘贴得了》 《DEMO:BTE增强实现凭证创建检查》 《SAP Parallel Accounting(平行分类账业务)配置+操作手册+BAPI demo程序》 《CC02修改确认日期BAPI:Processing of change number was canceled》 《我是怎样调试BAPI的,以F-02为例》 《女儿的部分书单》 《推荐几本小说吧,反正过年闲着也是闲着,看看呗》 《我是不是被代码给耽误了……不幸沦为一名程序员……》 《三亚自由行攻略(自己穷游总结)》 《苏州游记》 《杂谈:说走就走的旅行没那么难》 《溜达:无锡》 《记码农十周年(20110214--20210214)》 《不一样的SAP干货铺群:帅哥靓妹、红包、烤羊腿!》 《杂谈:几种接口》 《干货来袭:2020年公众号内容汇总》 《DEMO search help 增强 ( vl03n KO03 等)》 《录BDC时 弹出的公司代码框问题》 《动态获取查询条件的一个小Demo》 《动态批量修改任意表任意字段的值》 WDA Demo WDA DEMO 0:开启服务 设置hosts WDA DEMO 02: 简单介绍 WDA DEMO 03: 根据选择条件查询并显示 WDA DEMO 04: select options 查询并显示 WDA DEMO 05:两个table联动展示数据 WDA DEMO 06: 创建事务代码 WDA DEMO 07 页面跳转及全局变量的使用 WDA DEMO 08 全局变量方式二 WDA DEMO 09 ALV 简单展示 WDA DEMO 1:简单查询并显示结果 WDA DEMO 10 代码模块化整理 WDA DEMO 11 根据BAPI/Function创建WDA Debug 系列 DEBUG 系列一:Dump debug DEBUG 系列二:Configure Debugger Layer DEBUG系列三:使用 F9 和 watch point DEBUG系列四:第三方接口debug DEBUG系列五:Update 模式下的function debug DEBUG系列六:后台JOB debug DEBUG系列七:保存测试参数 DEBUG系列八:Debug弹出框 debug系列九:SM13查看update更新报错 DEBUG系列十:Smartforms debug DEBUG系列十一:GGB1 debug Debug系列十二:QRFC 队列 debug 本篇文章为转载内容。原文链接:https://blog.csdn.net/senlinmu110/article/details/122086258。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 21:25:44
141
转载
Kylin
...商平台利用Kylin实现了对用户行为数据的实时分析,大幅提升了个性化推荐系统的准确性和响应速度,从而显著提高了用户满意度和购买转化率。 此外,国外也有不少企业采用了Kylin来优化其业务流程。例如,美国的一家知名社交媒体公司通过引入Kylin,成功解决了复杂查询响应慢的问题,使得数据分析团队能够更快地获取洞察,为产品迭代和市场决策提供了有力支持。该公司还开源了一些改进Kylin性能的技术方案,供社区成员共同参考和使用,推动了Kylin生态系统的持续发展。 为了更好地理解Kylin在实际应用中的表现,不妨参考一些最新的技术论坛和博客文章。比如,一篇名为《Kylin在电商场景下的最佳实践》的文章,详细介绍了如何通过合理配置和优化Kylin,实现对大规模交易数据的高效处理。另一篇《Kylin与Spark集成的性能对比研究》则深入探讨了Kylin与其他大数据组件的协同工作效果,为读者提供了丰富的实证数据和案例分析。 这些最新动态不仅展示了Kylin在不同行业的广泛应用前景,也反映了开源社区在推动技术进步方面的重要作用。通过不断学习和借鉴这些实践经验,我们可以更好地掌握Kylin的使用技巧,充分发挥其在大数据分析中的潜力。
2024-12-31 16:02:29
28
诗和远方
转载文章
...39。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1 引言 定长数组包 在平时的开发中,缓冲区数据收发时,如果采用缓冲区定长包,假定大小是 1k,MAX_LENGTH 为 1024。结构体如下: // 定长缓冲区struct max_buffer{int len;char data[MAX_LENGTH];}; 数据结构的大小 >= sizeof(int) + sizeof(char) MAX_LENGTH为了防止数据溢出的情况,data 的长度一般会设置得足够大,但也正是因为这样,才会导致数组的冗余。 假如发送 512 字节的数据, 就会浪费 512 个字节的空间, 平时通信时,大多数是心跳包,大小远远小于 1024,除了浪费空间还消耗很多流量。 内存申请: if ((m_buffer = (struct max_buffer )malloc(sizeof(struct max_buffer))) != NULL){m_buffer->len = CUR_LENGTH;memcpy(m_buffer->data, "max_buffer test", CUR_LENGTH);printf("%d, %s\n", m_buffer->len, m_buffer->data);} 内存释放: free(m_buffer);m_buffer = NULL; 指针数据包 为了避免空间上的浪费,我们可以将上面的长度为 MAX_LENGTH 的定长数组换为指针, 每次使用时动态的开辟 CUR_LENGTH 大小的空间。数据包结构体定义: struct point_buffer{int len;char data;}; 数据结构大小 >= sizeof(int) + sizeof(char )但在内存分配时,需要两步进行: 需为结构体分配一块内存空间; 为结构体中的成员变量分配内存空间; 内存申请: if ((p_buffer = (struct point_buffer )malloc(sizeof(struct point_buffer))) != NULL){p_buffer->len = CUR_LENGTH;if ((p_buffer->data = (char )malloc(sizeof(char) CUR_LENGTH)) != NULL){memcpy(p_buffer->data, "point_buffer test", CUR_LENGTH);printf("%d, %s\n", p_buffer->len, p_buffer->data);} } 内存释放: free(p_buffer->data);free(p_buffer);p_buffer = NULL; 虽然这样能够节约内存,但是两次分配的内存是不连续的, 需要分别对其进行管理,导致的问题就是需要对结构体和数据分别申请和释放内存,这样对于程序员来说无疑是一个灾难,因为这样很容易导致遗忘释放内存造成内存泄露。 有没有更好的方法呢?那就是今天的主题柔性数组。 2 柔性数组 什么是柔性数组? 柔性数组成员(flexible array member)也叫伸缩性数组成员,这种代码结构产生于对动态结构体的需求。在日常的编程中,有时候需要在结构体中存放一个长度动态的字符串,鉴于这种代码结构所产生的重要作用,C99 甚至把它收入了标准中: As a special case, the last element of a structure with more than one named member may have an incomplete array type; this is called a flexible array member. 柔性数组是 C99 标准引入的特性,所以当你的编译器提示不支持的语法时,请检查你是否开启了 C99 选项或更高的版本支持。 C99 标准的定义如下: struct test {short len; // 必须至少有一个其它成员char arr[]; // 柔性数组必须是结构体最后一个成员(也可是其它类型,如:int、double、...)}; 柔性数组成员必须定义在结构体里面且为最后元素; 结构体中不能单独只有柔性数组成员; 柔性数组不占内存。 在一个结构体的最后,申明一个长度为空的数组,就可以使得这个结构体是可变长的。对于编译器来说,此时长度为 0 的数组并不占用空间,因为数组名本身不占空间,它只是一个偏移量,数组名这个符号本身代表了一个不可修改的地址常量, 但对于这个数组的大小,我们可以进行动态分配,对于编译器而言,数组名仅仅是一个符号,它不会占用任何空间,它在结构体中,只是代表了一个偏移量,代表一个不可修改的地址常量! 对于柔性数组的这个特点,很容易构造出变成结构体,如缓冲区,数据包等等, 其实柔性数组成员在实现跳跃表时有它特别的用法,在Redis的SDS数据结构中和跳跃表的实现上,也使用柔性数组成员。它的主要用途是为了满足需要变长度的结构体,为了解决使用数组时内存的冗余和数组的越界问题。 柔性数组解决引言的例子 //柔性数组struct soft_buffer{int len;char data[0];}; 数据结构大小 = sizeof(struct soft_buffer) = sizeof(int),这样的变长数组常用于网络通信中构造不定长数据包, 不会浪费空间浪费网络流量。 申请内存: if ((softbuffer = (struct soft_buffer )malloc(sizeof(struct soft_buffer) + sizeof(char) CUR_LENGTH)) != NULL){softbuffer->len = CUR_LENGTH;memcpy(softbuffer->data, "softbuffer test", CUR_LENGTH);printf("%d, %s\n", softbuffer->len, softbuffer->data);} 释放内存: free(softbuffer);softbuffer = NULL; 对比使用指针和柔性数组会发现,使用柔性数组的优点: 由于结构体使用指针地址不连续(两次 malloc),柔性数组地址连续,只需要一次 malloc,同样释放前者需要两次,后者可以一起释放。 在数据拷贝时,结构体使用指针时,必须拷贝它指向的内存,内存不连续会存在问题,柔性数组可以直接拷贝。 减少内存碎片,由于结构体的柔性数组和结构体成员的地址是连续的,即可一同申请内存,因此更大程度地避免了内存碎片。另外由于该成员本身不占结构体空间,因此,整体而言,比普通的数组成员占用空间要会稍微小点。 缺点:对结构体格式有要求,必要放在最后,不是唯一成员。 3 总结 在日常编程中,有时需要在结构体中存放一个长度是动态的字符串(也可能是其他数据类型),可以使用柔性数组,柔性数组是一种能够巧妙地解决数组内存的冗余和数组的越界问题一种方法。非常值得大家学习和借鉴。 推荐阅读: 专辑|Linux文章汇总 专辑|程序人生 专辑|C语言 我的知识小密圈 本篇文章为转载内容。原文链接:https://linus.blog.csdn.net/article/details/112645639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-21 13:56:11
501
转载
转载文章
...简洁清晰、易于学习且功能强大而广受欢迎。在本文中,Python语言的火爆导致了学习者数量剧增,从而引发了关于如何有效学习Python,是选择自学还是参加培训班的讨论。 在线教育平台 , 在线教育平台是指通过互联网技术提供教育资源和教学服务的数字化平台,在本文语境下,它为学习Python的用户提供了由专业教师主讲的入门课程,使学员能够不受地域限制地进行系统化学习,并强调实操以提升编程能力。 就业竞争力 , 就业竞争力是指个人在劳动力市场中相对于其他求职者的竞争优势,包括技能水平、经验积累、学历背景等多个方面。在文中提到,面对Python领域的激烈竞争,通过参加培训班可以节省时间,提高学习效率,从而增强自身的就业竞争力,获取更多的工作机会。 系统学习计划 , 系统学习计划是指为了实现特定学习目标,将学习内容按照一定的逻辑顺序和结构进行规划的过程。在自学Python的过程中,制定系统的学习计划有助于克服知识碎片化的问题,确保知识点之间的衔接性和连贯性,从而达到高效学习的目的。 实践操作 , 实践操作在本文中特指Python语言的学习过程中,理论知识应用于实际项目或案例中的动手环节。由于Python是一门应用性强的语言,只有通过不断的实践操作才能更好地掌握其精髓,实现从理论到实践的转化,提升解决实际问题的能力。
2023-07-01 23:27:10
313
转载
Kibana
...如何在Kibana中实现数据的切片? 1. 为什么我们需要数据切片? 在处理大量数据时,我们常常需要对数据进行过滤和分析,以便能够更清晰地看到特定条件下的数据特征。这就是所谓的“数据切片”。在Kibana中,数据切片可以帮助我们更高效地探索和理解我们的数据集。想象一下,你面前有一座数据的山脉,而数据切片就像是你的登山工具,帮助你在其中找到那些隐藏的宝藏。 2. Kibana中的数据切片工具 Kibana提供了多种工具来帮助我们实现数据切片,包括但不限于搜索栏、时间过滤器、索引模式以及可视化工具。这些工具凑在一起,就成了个超棒的数据分析神器,让我们可以从各种角度来好好研究数据,简直不要太爽! 2.1 使用搜索栏进行基本数据切片 搜索栏是Kibana中最直接的数据切片工具之一。通过输入关键词,你可以快速筛选出符合特定条件的数据。例如,如果你想查看所有状态为“已完成”的订单,只需在搜索栏中输入status:completed即可。 代码示例: json GET /orders/_search { "query": { "match": { "status": "completed" } } } 2.2 利用时间过滤器进行时间切片 时间过滤器允许我们根据时间范围来筛选数据。这对于分析特定时间段内的趋势非常有用。比如,如果你想要查看过去一周内所有的用户登录记录,你可以设置时间过滤器来限定这个范围。 代码示例: json GET /logs/_search { "query": { "range": { "@timestamp": { "gte": "now-7d/d", "lt": "now/d" } } } } 2.3 使用索引模式进行多角度数据切片 索引模式允许你根据不同的字段来创建视图,从而从不同角度观察数据。比如说,你有个用户信息的大台账,里面记录了各种用户的小秘密,比如他们的位置和年龄啥的。那你可以根据这些小秘密,弄出好几个不同的小窗口来看,这样就能更清楚地知道你的用户都分布在哪儿啦! 代码示例: json PUT /users/_mapping { "properties": { "location": { "type": "geo_point" }, "age": { "type": "integer" } } } 2.4 利用可视化工具进行高级数据切片 Kibana的可视化工具(如图表、仪表板)提供了强大的数据可视化能力,使我们可以直观地看到数据之间的关系。比如说,你可以画个饼图来看看各种产品卖得咋样,比例多大;还可以画个时间序列图,看看每天的销售额是涨了还是跌了。 代码示例: 虽然直接通过API创建可视化对象不是最常见的方式,但你可以通过Kibana的界面来设计你的可视化,并将其导出为JSON格式。下面是一个简单的示例,展示了如何通过API创建一个简单的柱状图: json POST /api/saved_objects/visualization { "attributes": { "title": "Sales by Category", "visState": "{\"title\":\"Sales by Category\",\"type\":\"histogram\",\"params\":{\"addTimeMarker\":false,\"addTooltip\":true,\"addLegend\":true,\"addTimeAxis\":true,\"addDistributionBands\":false,\"scale\":\"linear\",\"mode\":\"stacked\",\"times\":[],\"yAxis\":{},\"xAxis\":{},\"grid\":{},\"waterfall\":{} },\"aggs\":[{\"id\":\"1\",\"enabled\":true,\"type\":\"count\",\"schema\":\"metric\",\"params\":{} },{\"id\":\"2\",\"enabled\":true,\"type\":\"terms\",\"schema\":\"segment\",\"params\":{\"field\":\"category\",\"size\":5,\"order\":\"desc\",\"orderBy\":\"1\"} }],\"listeners\":{} }", "uiStateJSON": "{}", "description": "", "version": 1, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"index\":\"sales\",\"filter\":[],\"highlight\":{},\"query\":{\"query_string\":{\"query\":\"\",\"analyze_wildcard\":true} }}" } }, "references": [], "migrationVersion": {}, "updated_at": "2023-09-28T00:00:00.000Z" } 3. 思考与实践 在实际操作中,数据切片并不仅仅是简单的过滤和查询,它还涉及到如何有效地组织和呈现数据。这就得咱们不停地试各种招儿,比如说用聚合函数搞更复杂的统计分析,或者搬出机器学习算法来预测未来的走向。每一次尝试都可能带来新的发现,让数据背后的故事更加生动有趣。 4. 结语 数据切片是数据分析中不可或缺的一部分,它帮助我们在海量数据中寻找有价值的信息。Kibana这家伙可真不赖,简直就是个数据分析神器,有了它,我们实现目标简直易如反掌!希望本文能为你提供一些灵感和思路,让你在数据分析的路上越走越远! --- 以上就是本次关于如何在Kibana中实现数据切片的技术分享,希望能对你有所帮助。如果你有任何疑问或想了解更多内容,请随时留言讨论!
2024-10-28 15:42:51
42
飞鸟与鱼
转载文章
...34。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 2.1.1 Linux 目录及文件的基本操作 一、pwd命令 Linux中用pwd命令来查看当前工作目录的完整路径。 在不确定当前位置时,就会用pwd来判定当前目录在文件系统内的确切位置 命令格式:pwd 【选项】 常用参数 :-P pwd -P 显示出实际路径。而非使用连接(link)路径 注意:选项-P 是大写的P,不要搞错。 使用pwd 显示了当前的路径 实例2. 使用pwd -P显示了返回连接的真实路径 二、cd命令 1.命令格式: cd【目录名】 2.命令功能: cd的命令作用是切换当前工作目录 参数以实例表示 实例1 切换工作目录到/opt/soft 实例2 切换工作目录至当前目录的上一级目录 实例3 返回前一个目录,至/opt/soft目录 实例4 切换工作目录到当前用户的家目录 三、ls命令 ls命令的含义是list显示目录与文件的信息。注意不加参数它显示除隐藏文件外的所有文件及目录的名字。 ls的格式 ls【选项】…【文件/目录】… 下面是常用的ls命令的应用 实例1 ls -l 以格式显示文件 这里显示的文件属性第一个字符‘-‘表示这是一个普通文件,第二个字段表示权限,第三个字段表示链接数,第四个字段表示所有者,第五个字段表示所属组,第六个字段表示文件大小,第七个字段表示时间,第八个地段表示文件名。 实例2 ls -a 查看包含以 . 开始的隐藏文件与目录信息 显示隐藏文件 实例3 ls-lh 以易读的格式显示文件的大小 以人性化更清晰的显示文件 实例4 ls– i 显示文件或目录的inode(i节点)编号 i节点可以看作是一个指向磁盘上该文件存储区的地址 四、touch 命令 touch命令可创建一个文件或者更改文件时间 实例1 touch a.txt 创建一个a.txt文件 一开始使用ls命令查看当前目录显示没有文件,然后使用touch命令创建了一个a.txt文件 实例2更改a.txt的时间 可以看到文件名没有改变,只有时间改变了 五、mkdir命令 mkdir命令可以创建一个目录 命令格式: mkdir 【选项】【文件名】 命令选项参数: -p : 递归创建目录 -v : 创建新目录显示信息 实例1 mkdir abc 创建一个空目录 实例2 mkdir -p test/test1 递归创建多个目录 实例3 mkdir-v hao 创建新目录显示信息 六、cp 命令 cp命令用来对一个或多个文件,目录进行拷贝 命令格式: cp【选项】【参数】 命令选项 -r 递归的复制子文件或子目录 -a 复制时保留源文档的所有属性(包括权限、时间等) 实例1 cp -a a.txt test 复制a.txt的所有属性复制到test 实例2 cp -r text /opt 复制text下的所有子文件到opt下 七、rm 命令 rm命令可以删除不需要的文件或者目录 命令格式 rm 【选项】【文件】 选项:-i 删除前,提示是否删除 -f 不提示,强制删除-r 递归删除,删除目录以及目录下的所有内容 实例1 rm -i a.txt删除a.txt 并显示提示 实例2 rm -f text 强制删除text 实例3 rm -r test 递归删除test下所有子文件 实例4 rm -rf hao 递归强制删除文件 八、mv命令 mv命令用来移动或者重命名文件或目录 实例1 mv a.txt b.txt 将a.txt改名为b.txt 实例2 mv b.txt /opt 将b.txt 移动到opt下 九、 find 命令 find命令用来搜索文件或目录 命令格式: find 【命令选项】【路径】【表达式选项】 命令选项: -empty 查找空白文件或目录 -group 按组查找 -name 按文档名称查找 -iname 按文档名称查找,且不区分大小写 -mtime 按修改时间查找 -size 按容量大小查找 -type 按文档类型查找,文件(f),目录(d),设备(b,c),链接(l)等 -user 按用户查找 -exec 对找到的档案执行特定的命令 -a 并且 -o 或者 查找当前目录下所有的普通文件 find ./ -type f 查找大于1mb的文件后列出文件的详细信息‘ find ./ -size +1M -exec ls – l {} ; 查找计算机中所有大于1mb的文件 find / -size +1M -a -type f 查找当前目录下名为hello.doc 的文档 find -name hello.doc 查找/root目录下所有名称以.log 结尾的文档 十、du命令 用来计算文件或目录的容量大小 命令格式: du 【选项】 【文件或目录】 命令选项: -h 人性化显示容量信息 -a 查看所有目录以及文件的容量信息 -s 仅显示总容量 实例1 du -h /opt 实例2 du -a /opt 实例3 du -s /opt 2.1.2查看文件内容 一、 cat 命令 cat命令用来查看文件内容 命令格式: cat 【选项】 【文件】 选项命令 -b 显示行号,空白行不显示行号 -n 显示行号,包含空白行 实例1. cat /opt/test 查看test里面的内容 实例2.cat -n /opt/test 显示行号 二、more命令和less命令 more命令可以分页查看文件内容,通过空格键查看下一页,q键则退出查看。 less命令也可以分页查看文件内容,空格是下一页,方向键可以上下翻页,q键退出查看 命令格式: more 【文件名】 用来查看指定文件 more -num 【文件名】 可以指定显示行数 less 【文件名】 查看指定文件 三、head 命令 head 命令可以查看文件头部内容,默认显示前10行 命令格式 head -6 【文件名】 显示的是文件前6行 head -n -6 【文件名】 显示除了最后6行最后的行 head -c 10 【文件名】显示前十个字节的数据 四、tail 命令 tail命令用来查看文件尾部内容,默认显示后10行 命令格式: tail -6 【文件名】 显示最后6行 tail -f 【文件名】即时显示文件中新写入的行 五、wc 命令 wc命令用来显示文件的行、单词与字节统计信息 命令格式: wc 【选项】【文件】 选项: -c 显示文件字节统计信息 -l 显示文件行数统计信息 -w 显示文件单词统计信息 实例1 依次显示文件的行数,单词数,字节数 实例2 使用-c选项显示文件的字节信息 实例3 使用-l 选项显示文件行数 实例4 使用-w选项显示文件单词个数 六、grep命令 grep命令用来查找关键字并打印匹配的值 命令格式: grep【选项】 匹配模式【文件】 选项: -i 查找时忽略大小写 -v 取反匹配 -w 匹配单词 –color 显示颜色 实例1 在test文件中过滤出包含a的行 实例2 过滤不包含a关键词的行 七、echo 命令 echo命令用来输出显示一行指定的字符串 实例1 显示一行普通的字符串 实例2 显示转义字符使用-e选项 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zenian_dada/article/details/88669234。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-16 19:29:49
511
转载
转载文章
...24。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 金融经济数据方面应用Python非常广泛,也可以算是用Python进行数据分析的一个实际应用。 数据规整化方面的应用 时间序列与截面对齐 在处理金融数据时,最费神的一个问题就是所谓的“数据对齐” (data alignment)问题。两个相关的时间序列的索引可能没有很好的对齐,或两个DataFrame对象可能含有不匹配的列或行。 Pandas可以在算术运算中自动对齐数据。在实际工作中,这不仅能为你带来极大自由度,而且还能提升工作效率。如下,看这个两个DataFrame分别含有股票价格和成交量的时间序列: 假设你想要用所有有效数据计算一个成交量加权平均价格(为了简单起见,假设成交量数据是价格数据的子集)。由于pandas会在算术运算过程中自动将数据对齐,并在sum这样的函数中排除缺失数据,所以我们只需编写下面这条简洁的表达式即可: 由于SPX在volume中找不到,所以你随时可以显式地将其丢弃。如果希望手工进行对齐,可以使用DataFrame的align方法,它返回的是一个元组,含有两个对象的重索引版本: 另一个不可或缺的功能是,通过一组索引可能不同的Series构建一个DataFrame。 跟前面一样,这里也可以显式定义结果的索引(丢弃其余的数据): 时间和“最当前”数据选取 假设你有一个很长的盘中市场数据时间序列,现在希望抽取其中每天特定时间的价格数据。如果数据不规整(观测值没有精确地落在期望的时间点上),该怎么办?在实际工作当中,如果不够小心仔细的话,很容易导致错误的数据规整化。看看下面这个例子: 利用Python的datetime.time对象进行索引即可抽取出这些时间点上的值: 实际上,该操作用到了实例方法at_time(各时间序列以及类似的DataFrame对象都有): 还有一个between_time方法,它用于选取两个Time对象之间的值: 正如之前提到的那样,可能刚好就没有任何数据落在某个具体的时间上(比如上午10点)。这时,你可能会希望得到上午10点之前最后出现的那个值: 如果将一组Timestamp传入asof方法,就能得到这些时间点处(或其之前最近)的有效值(非NA)。例如,我们构造一个日期范围(每天上午10点),然后将其传入asof: 拼接多个数据源 在金融或经济领域中,还有几个经常出现的合并两个相关数据集的情况: ·在一个特定的时间点上,从一个数据源切换到另一个数据源。 ·用另一个时间序列对当前时间序列中的缺失值“打补丁”。 ·将数据中的符号(国家、资产代码等)替换为实际数据。 第一种情况:其实就是用pandas.concat将两个TimeSeries或DataFrame对象合并到一起: 其他:假设data1缺失了data2中存在的某个时间序列: combine_first可以引入合并点之前的数据,这样也就扩展了‘d’项的历史: DataFrame也有一个类似的方法update,它可以实现就地更新。如果只想填充空洞,则必须传入overwrite=False才行: 上面所讲的这些技术都可实现将数据中的符号替换为实际数据,但有时利用DataFrame的索引机制直接对列进行设置会更简单一些: 收益指数和累计收益 在金融领域中,收益(return)通常指的是某资产价格的百分比变化。一般计算两个时间点之间的累计百分比回报只需计算价格的百分比变化即可:对于其他那些派发股息的股票,要计算你在某只股票上赚了多少钱就比较复杂了。不过,这里所使用的已调整收盘价已经对拆分和股息做出了调整。不管什么样的情况,通常都会先算出一个收益指数,它是一个表示单位投资(比如1美元)收益的时间序列。 从收益指数中可以得出许多假设。例如,人们可以决定是否进行利润再投资。我们可以利用cumprod计算出一个简单的收益指数: 得到收益指数之后,计算指定时期内的累计收益就很简单了: 当然了,就这个简单的例子而言(没有股息也没有其他需要考虑的调整),上面的结果也能通过重采样聚合(这里聚合为时期)从日百分比变化中计算得出: 如果知道了股息的派发日和支付率,就可以将它们计入到每日总收益中,如下所示: 本篇文章为转载内容。原文链接:https://blog.csdn.net/geerniya/article/details/80534324。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 19:15:59
323
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep pattern
- 根据名称模式查找进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"