前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[网页源码解析JSON数据 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 三相送,送到通用的数据库访问函数中: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default3 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{cmd.Connection = conn;cmd.CommandType = cmdType;cmd.CommandText = cmdText;conn.Open();//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }} } 这个通用数据库访问函数可以进一步完善如下: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default4 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText,null);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText, params SqlParameter[] commandParameters){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{//cmd.Connection = conn;//cmd.CommandType = cmdType;//cmd.CommandText = cmdText;//conn.Open();PrepareCommand(cmd, conn, null, cmdType, cmdText, commandParameters);//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接。SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);cmd.Parameters.Clear();return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }private static void PrepareCommand(SqlCommand cmd, SqlConnection conn, SqlTransaction trans, CommandType cmdType, string cmdText, SqlParameter[] cmdParms){if (conn.State != ConnectionState.Open)conn.Open();cmd.Connection = conn;cmd.CommandText = cmdText;if (trans != null)cmd.Transaction = trans;cmd.CommandType = cmdType;if (cmdParms != null){foreach (SqlParameter parm in cmdParms)cmd.Parameters.Add(parm);} }} } 因为重点在过程,在结构,代码都比较简单,唯一值得一提的是SqlConnection的关闭问题,在最后比较完善的数据库访问函数中(这是SQLHelper中的源代码),没有使用using()结构,也没有显示关闭,主要原因是调用ExecuteReader方法时,使用了参数 CommandBehavior 并将其设置为 CloseConnection: SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection); 根据MSDN的说法:如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,则关闭 SqlDataReader 会自动关闭此连接。 参考网址:http://msdn.microsoft.com/zh-cn/library/y6wy5a0f(v=vs.80).aspx 版权所有©2012,WestGarden.欢迎转载,转载请注明出处.更多文章请参阅博客http://www.cnblogs.com/WestGarden/ 转载于:https://www.cnblogs.com/WestGarden/archive/2012/06/04/2533560.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33697898/article/details/94471782。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-18 20:09:36
89
转载
Kafka
...这么一送,它现在在大数据圈子里混得那叫一个风生水起,已经成了整个生态里头离不开的重要角色啦! 作为一个开发者,我对Kafka的第一印象是它超级可靠。无论是高吞吐量、低延迟还是容错能力,Kafka都表现得非常出色。大家有没有想过啊,“可靠”这个词到底是怎么来的?为啥说某个东西“靠谱”,我们就觉得它值得信赖呢?今天咱们就来聊聊这个事儿——比如说,你发出去的消息,咋就能保证它不会石沉大海、人间蒸发了呢?这可不是开玩笑的事儿,尤其是在大数据的世界里,丢一个消息可能就意味着丢了一笔订单或者错过了一次重要沟通。所以啊,今天我们就要揭开谜底,跟大家唠唠Kafka是怎么做到让消息“稳如老狗”的! 2. Kafka可靠性背后的秘密武器 Kafka的可靠性主要依赖于以下几个核心概念: 2.1 持久化与日志结构 Kafka将所有数据存储在日志文件中,并通过持久化机制确保数据不会因为服务器宕机而丢失。简单来说,就是把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
96
幽谷听泉
转载文章
...轴设备间的高效、同步数据交换。ECAT基于以太网技术,具备极低的通信延迟和高精度的数据传输特性;而RTEX作为一种高速实时网络技术,同样能确保控制器与伺服驱动器之间的高速、稳定通讯,以满足高精度运动控制的需求。 PWM模拟量输出 , PWM(Pulse Width Modulation,脉宽调制)是一种将数字信号转换为模拟信号的技术,常用于电机控制、电源管理等领域。在ZMC420SCAN控制器中,外部通用输出口具有PWM输出功能,可用于精细调节激光发生器的能量输出。通过改变PWM信号的占空比(即高电平时间相对于周期的比例),可以连续且精确地控制激光功率大小,适应不同的加工需求。同时,控制器还支持12位精度的模拟量输入输出,进一步提升了激光能量控制的精度。
2023-12-04 17:33:09
339
转载
转载文章
...下内容: 近期,随着数据隐私和网络安全问题日益突出,开源项目如Pi-hole的受欢迎程度正逐步提升。据《连线》杂志最近的一篇报道(2023年5月),在全球范围内,越来越多的家庭用户、小型企业和教育机构开始采用Pi-hole来保护他们的网络环境,对抗广告追踪、恶意软件和网络钓鱼等威胁。 同时,Raspberry Pi基金会发布了最新的硬件版本,为用户提供更强性能和更多功能选择,这也进一步拓宽了Pi-hole和其他安全相关项目的实施空间。例如,《 Ars Technica》在一篇深度技术分析中探讨了如何利用最新款的Raspberry Pi构建更为高效且强大的本地防火墙系统,并与Pi-hole结合,实现全方位的家庭网络安全防护。 此外,开源社区围绕Pi-hole开发了许多增强功能和插件,以适应不断变化的网络环境。TechCrunch发表的一篇文章介绍了几个重要的Pi-hole拓展工具,它们能够帮助用户更精细地管理网络流量,优化家庭网络体验,同时确保个人隐私不受侵犯。 总之,在数字化生活越发普及的今天,深入了解和运用像Pi-hole这样的开源解决方案,不仅能有效提升网络安全性,也是对个人隐私保护意识的重要体现。通过持续关注相关的技术发展和实践案例,我们可以更好地应对未来的网络挑战。
2023-08-12 20:49:59
61
转载
转载文章
...件管理比较方便,但是数据量大了之后,很难整理.所以建议将这些配置分开 cfg_file=/usr/local/nagios/etc/objects/commands.cfg cfg_file=/usr/local/nagios/etc/objects/contacts.cfg cfg_file=/usr/local/nagios/etc/objects/timeperiods.cfg cfg_file=/usr/local/nagios/etc/objects/templates.cfg cfg_file=/usr/local/nagios/etc/objects/contactgroups.cfg cfg_file=/usr/local/nagios/etc/objects/hosts.cfg cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg cfg_file=/usr/local/nagios/etc/objects/services.cfg cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg 改check_external_commands=0为check_external_commands=1.这行的作用是允许在web 界面下执行重启nagios、停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
484
转载
转载文章
...的,比如JAVA、大数据、算法等,下图从BOSS上截取的: 蚂蚁金服不在望京,在环球金融中心。 美团 美团是望京第二大互联网公司,技术氛围浓厚。事业部很多,包括酒店事业部、闪购、美团金融、优选事业部、美团买菜等。 美团的福利常常被叫做白开水福利,不过比普通公司还是要好一些,六险一金、15薪、餐补、下午茶等。 面试比阿里容易一些,不过算法和八股文也是必须要准备的。 常年招聘,岗位很多,下面岗位来自BOSS: Lazada 东南亚头部电商,而且业务还囊括了娱乐、金融和物流,业务主要服务于东南亚。工作地点在朝阳区阿里中心。 福利待遇包括六险一金、年终奖、股权、餐补交通补等。 主要招聘岗位包括java开发、游戏开发、前端、UI等。 bilibili bilibili也是非常不错的一家互联网公司,总部在上海,北京的工作地点在朝阳区东煌大厦10层。截至2021年第一季度,B站月活用户达2.23亿 福利待遇比较完备,包括六险一金、餐补、全勤奖、下午茶、股权等。 招聘岗位包括游戏服务端开发、java开发、C++开发、TA、linux内核开发等。从招聘岗位来看,java 开发并不是bilibili的热门岗位。 每日优鲜 每日优鲜近几年的发展是非常快速的,也是一家非常值得加入的公司。工作地点在万科时代中心。 工作强度比较大,工作内容也比较有挑战,晋升也比较快。建议想在技术上成长的朋友们加入。 福利待遇包括六险一金,股票期权。 招聘岗位以java为主,架构、资深、中高级都有。 BIGO BIGO主要业务在音视频领域,主要产品有Bigo Live、Likee、Hello,目前全球月活用户近4亿,产品和服务覆盖超过150个国家和地区。 福利待遇也是非常不错的,六险一金、年终奖、住房补贴、股票期权等。 主要招聘岗位包括JAVA、音视频领域后端开发。 coupang 韩国电商平台,总部在首尔,成立于2010年,是一家成熟的老牌公司,在2021年3月上市。目前国内研发团队主要在上海,在北京也有研发团队。工作地点在颐堤港。 coupang工作强度不大,不加班不内卷。福利待遇也是很不错的,包括六险一金、餐补、补充公积金、节日福利等。 招聘岗位主要包括JAVA、IOS、搜索工程师、全栈工程师等。 面试难度比较大,前后包括五轮以上面试,第一轮是电话面试,后面线程面试会有手写代码环节。 水滴公司 水滴这两年发展很快,工作地点在望京科技园。 福利待遇方面,属于互联公司中等偏上的水平,包括六险一金、补充公积金、免费健身房等。 招聘岗位JAVA居多,各种级别的都有,还有一些中间件的岗位。 据面试过水滴的求职者反馈,面试很难,对基础要求高,可能会问一些平时不太关注的非常细的问题。 keep 爱运动的小伙伴相信都熟悉keep这款软件,目前keep的用户量已经破3亿。工作地点在万科时代中心。 薪资待遇行业中等,不过该有的服务也基本都有,包括六险一金、年终奖、股权等。 招聘岗位以java为主,各种级别都有。 雪球 国内知名的投资交流平台,2020年底完成1.2亿美元 E 轮融资,发展潜力巨大。工作地点在融新科技中心。 福利待遇在行业内属于中等水平,包括六险一金、年终奖、餐补、零食下午茶等。 招聘岗位以java为主,还有搜索研发、全栈开发等。 陌陌 陌生人社交平台,深受年轻人喜爱,18年陌陌全资收购了探探,规模进一步扩大,目前月活用户在1亿+,出海业务也做的非常好。 福利待遇属于行业中等偏上,互联网有的福利基本都有,包括六险一金、年终奖等。 招聘岗位很多,包括java、中间件、推荐算法、自然语言处理、安全、游戏开发、IOS等。 面试难度中等,会有手写sql、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
529
转载
DorisDB
...》 引言:数据之海的波涛 在数据管理的世界里,DorisDB无疑是一艘载满现代数据处理技术的巨轮。哎呀,这家伙可真是个宝啊!不仅性能杠杠的,稳定性也是没得说,而且还能轻松升级扩容,怪不得那么多大公司都离不开它,用它来做数据的存储和分析,简直是如虎添翼!然而,就像任何航海之旅,DorisDB航行中也会遭遇风浪——“写入失败”。嘿,兄弟!这篇文章就像是一场探险之旅,带你深入揭秘这个棘手问题的真相。咱们不只停留在表面,而是要挖出问题的根儿,然后一起找寻解决的钥匙。想象一下,我们是在大海捞针,但有了指南针和渔网,这场寻找就变得既刺激又充满乐趣。跟着我,咱们在数据的汪洋里畅游,找到属于你的那片宁静海港,让你不再被信息的洪流淹没,而是能稳稳驾驭,轻松自在地航行。准备好了吗?出发吧! 第一章:写入失败的初探 现象描述:当你尝试向DorisDB表中插入数据时,突然间,一切变得静止。查询返回一个错误信息,告诉你“写入失败”。这不仅让你感到沮丧,还可能影响了业务流程的连续性。 原因分析:写入失败可能是由多种因素引起的,包括但不限于网络延迟、资源限制(如磁盘空间不足)、事务冲突、以及数据库配置问题等。理解这些原因有助于我们对症下药。 第二章:案例研究:网络延迟引发的写入失败 场景还原:假设你正使用Python的dorisdb库进行数据插入操作。代码如下: python from dorisdb import DorisDBClient client = DorisDBClient(host='your_host', port=your_port, database='your_db') cursor = client.cursor() 插入数据 cursor.execute("INSERT INTO your_table (column1, column2) VALUES ('value1', 'value2')") 问题浮现:执行上述代码后,你收到了“写入失败”的消息,同时发现网络连接偶尔会中断。 解决方案:首先,检查网络连接稳定性。确保你的服务器与DorisDB实例之间的网络畅通无阻。其次,优化SQL语句的执行效率,减少网络传输的数据量。例如,可以考虑批量插入数据,而不是逐条插入。 第三章:资源限制:磁盘空间不足的挑战 场景还原:你的DorisDB实例运行在一个资源有限的环境中,某天,当你试图插入大量数据时,系统提示磁盘空间不足。 问题浮现:尽管你已经确保了网络连接稳定,但写入仍然失败。 解决方案:增加磁盘空间是显而易见的解决方法,但这需要时间和成本。哎呀,兄弟,你得知道,咱们手头的空间那可是个大问题啊!要是想在短时间内搞定它,我这儿有个小妙招给你。首先,咱们得做个大扫除,把那些用不上的数据扔掉。就像家里大扫除一样,那些过时的文件、照片啥的,该删就删,别让它占着地方。其次呢,咱们可以用更牛逼的压缩工具,比如ZIP或者RAR,它们能把文件压缩得更小,让硬盘喘口气。这样一来,不仅空间大了,还能节省点资源,挺划算的嘛!试试看,说不定你会发现自己的设备运行起来比以前流畅多了!嘿,兄弟!你听说过 DorisDB 的分片和分布式功能吗?这玩意儿超级厉害!它就像个大仓库,能把咱们的数据均匀地摆放在多个小仓库里(那些就是节点),这样不仅能让数据更高效地存储起来,还能让我们的系统跑得更快,用起来更顺畅。试试看,保管让你爱不释手! 第四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
124
醉卧沙场
转载文章
...查。 2020年监测数据显示,新生代农民工占比达到50.1%,男性占比高于女性。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高。 2020年就业人数前五位的行业依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 2020年北京市外来新生代农民工监测报告 为了进一步做好农民工服务工作,了解外来农民工在京工作、生活需要,国家统计局北京调查总队在全市范围开展了农民工市民化进程动态监测调查,2020年监测数据显示,新生代农民工(出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口)占比达到50.1%,已经成为农民工的主体。 一、新生代农民工总体特征 男性占比高于女性,差距进一步加大。新生代农民工中男性占比为66.3%,比上年提高4.6个百分点;男性占比高于女性32.5个百分点,比上年提高9.1个百分点。 31-40岁农民工占比提高。新生代农民工平均年龄31.4岁,比上年增加0.4岁。其中,31-40岁的占比为57.9%,比上年提高3.2个百分点;21-30岁的占比为39.9%,16-20岁的占比为2.2%,分别比上年下降2.6个和0.6个百分点。 大学本科以上学历新生代农民工占比增加。新生代农民工中大学本科以上学历占比为21.2%,比上年提高7.9个百分点。其中,大学本科学历的占比为20.0%,研究生学历的占比为1.2%。 外来新生代农民工主要来自北京周边地区。其中,河北、河南两省占比最大,河北省占比为37.3%,比上年同期提高3.5个百分点,河南省占比为12.3%,比上年同期下降3.3个百分点。 二、新生代农民工就业情况 (一)就业集中于劳动密集型行业,从事信息传输、软件和信息技术服务业的新生代农民工占比大幅提高 调查样本中,2020年就业人数前五位的行业与上年一致,依次为居民服务、修理和其他服务业,制造业,建筑业,批发和零售业,住宿和餐饮业,共吸纳67.2%的新生代农民工就业。 除上述五大行业外,从事信息传输、软件和信息技术服务业的新生代农民工比例为7.9%,比上年提高3.7个百分点,在所有行业中增幅最大。 (二)收入水平整体提高,内部差距拉大 调查样本中,新生代农民工月均收入6214元,比上年增加364元,增长6.2%。其中,66.5%月均收入在5000元及以上,比上年高8.6个百分点。 1.不同行业差距较大 新生代农民工从业人数最多的七个行业按照收入水平排序依次为:信息传输、软件和信息技术服务业,建筑业,交通运输、 仓储和邮政业,制造业,批发零售业,住宿和餐饮业,居民服务、修理和其他服务业。月均收入分别为10571元、6587元、6489元、6017元、5888元、5668元和5195元。其中,收入最高的信息传输、软件和信息技术服务业从业人员月均收入比上年同期增长15.5%;从业人数最多、收入最低的居民服务、修理和其他服务业从业人员月均收入比上年同期降低2.6%。 2.不同收入段间收入差距加大 高收入段人员收入增速高于中低收入段。月均收入5000元及以上人员平均月收入为7507元,比上年同期提高2.8个百分点;月均收入4000-5000元人员平均月收入为4175元,比上年同期降低3.4个百分点;月均收入4000元以下人员平均月收入为3064元,比上年同期提高1.1个百分点。 (三)自营人员收入高,工作强度大 自营就业的新生代农民工月均收入6716元,比务工就业人员高568元;自营就业的新生代农民工平均每周工作6.5天,每天工作9.5小时,分别比务工就业人员多0.9天和0.7小时。 三、新生代农民工生活情况 (一)消费支出下降,吃穿住消费占新生代农民工总消费支出的7成以上 受疫情影响,未来收入的不确定性增加,新生代农民工户均消费支出降低。2020年,新生代农民工家庭户均生活消费支出42395元,比上年减少1833元,下降4.1%。 按照金额排序,新生代农民工消费支出排在前三位的依次为:食品烟酒、居住、衣着及其他日用品和服务,分别为14032元、10861元和5141元,前三位消费支出占总消费支出的70.8%。 (二)居住性质略有改变,居住满意度小幅提升 租赁私房人员占比减少,单位提供住房比例提升。从住房性质来看,新生代农民工主要以租赁私房为主,租赁私房的占60.5%,比上年同期降低3.2个百分点;单位提供住房的占33.1%,比上年同期提高4.7个百分点。 单位提供住房,居住消费支出减少,新生代农民工对现在居住条件表示满意的占66.5%,比上年提高3.0个百分点,其中,表示非常满意的占18.6%,比较满意的占47.9%。 (三)网络依赖增加,自我提升类活动减少 上网已经成为新生代农民工业余时间的主要休闲活动。新生代农民工业余时间的主要活动排在前三位的依次是:上网、休息和朋友聚会,其中上网占60.1%,比上年同期提高4.7个百分点。 自我提升类活动减少。业余时间参加学习培训、读书看报的新生代农民工占比分别为3.8%和7.6%,比上年同期分别下降2.5个和1.3个百分点。 四、“90后”农民工工作和生活特点 (一)“90后”农民工工作特点 1.“90后”农民工从事行业略有不同 “90后”农民工喜好略有不同,就业人数最多的七个行业依次为:制造业,建筑业,居民服务、修理和其他服务业,信息传输、软件和信息技术服务业,住宿和餐饮业,文化和娱乐服务业,批发和零售业。与新生代农民工群体差距最大的两个行业是信息传输、软件和信息技术服务业,批发和零售业,其中,从事信息传输、软件和信息技术服务业的占11.6%,比新生代农民工群体高3.7个百分点;从事批发和零售业的占5.8%,比新生代农民工群体低6.3个百分点。 2.“90后”农民工收入略高 调查样本中,“90后”农民工月均收入6424元,比新生代农民工群体平均水平高210元。其中,月均收入在5000元及以上的占68.4%,比新生代农民工群体高1.9个百分点。 3.自营人员占比较低 由于年纪尚轻,积累不够,“90后”农民工中的96.3%以受雇就业为主,自营就业人员仅占3.7%,低于新生代农民工群体7.9个百分点。 (二)“90后”农民工生活特点 1.消费支出略低,更偏重于衣着及教育文化娱乐方面 “90后”农民工家庭户均生活消费支出42009元,比新生代农民工群体低386元。其中,衣着及其他日常用品和服务、教育文化娱乐支出占总消费支出的比重分别为14.0%和5.9%,分别比新生代农民工群体高1.9个和1.0个百分点;居住和交通通信费支出占总消费支出的比重分别为23.9%和9.2%,分别比新生代农民工群体低1.8个和1.0个百分点。 2.业余生活更注重休息和自我提升 “90后”农民工业余时间的主要活动排在前三位的依旧是上网、休息和朋友聚会,但与整个新生代农民工群体不同的是,“90后”农民工更注重休息和自我提升,其中,业余时间休息的占34.5%,比新生代农民工群体高5.6个百分点;业余时间参加文娱体育活动、学习培训和读书看报的占27.5%,分别比新生代农民工群体、全部外来农民工整体高5.7个和11.8个百分点。 新生代农民工定义:出生于20世纪80年代以后,年龄在16周岁及以上,在异地以非农就业为主的农业户籍人口 推荐阅读: 世界的真实格局分析,地球人类社会底层运行原理 不是你需要中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
63
转载
Go-Spring
...年来,随着云计算、大数据、人工智能等技术的快速发展,开源软件的应用范围不断扩大,不仅在企业内部得到广泛应用,也成为全球范围内科技创新与合作的新模式。本文旨在探讨开源软件的价值所在,分析其未来的发展趋势,并提出在拥抱开源软件过程中应考虑的关键因素。 开源软件的价值 开源软件以其透明、可定制和社区驱动的特点,为企业和个人用户带来了诸多价值。首先,开源软件降低了创新门槛,使得开发者能够基于已有代码进行快速迭代和创新,加速产品和服务的推出。其次,开源软件的社区化运作模式促进了知识共享与协作,形成了强大的技术支持和用户群体,有助于解决技术难题,提升产品质量。此外,开源软件的低成本和高可移植性,使其成为中小企业乃至个人开发者降低成本、快速进入市场的重要途径。 未来发展趋势 展望未来,开源软件的发展将呈现出以下几个趋势: 1. 云原生与容器化:随着云计算技术的成熟,基于云原生架构的开源软件将得到更多应用,而容器化技术的普及将进一步提升软件部署的效率与灵活性。 2. AI与机器学习:开源社区正在积极开发AI相关的开源项目,如TensorFlow、PyTorch等,这将促进AI技术的普及与创新,推动行业应用的深度发展。 3. 安全与隐私保护:随着数据安全与隐私保护成为关注焦点,开源社区将加强对安全框架和工具的开发,以满足不同行业对数据安全的需求。 4. 全球化与多语种支持:开源软件的全球化趋势日益明显,多语种支持将成为重要考量因素,有助于提升软件的国际竞争力。 拥抱开源软件的关键因素 1. 知识产权管理:明确开源软件的使用和贡献规则,保护自身权益的同时,尊重和遵守开源社区的规范。 2. 人才培养与激励:培养具备开源文化意识和技术能力的人才,通过项目贡献、社区活动等方式激励开发者积极参与开源项目。 3. 风险评估与管理:在采用开源软件前进行全面的风险评估,包括代码质量、安全漏洞、许可证合规性等方面,确保其符合组织的安全策略和法律法规要求。 4. 持续参与与贡献:积极参与开源社区,不仅使用开源软件,更要贡献自己的代码和知识,促进开源生态的健康发展。 拥抱开源软件不仅是技术层面的选择,更是推动创新、促进知识共享与合作的行动。面对未来的挑战与机遇,企业和个人开发者应积极适应这一趋势,充分利用开源资源,共同构建更加开放、协作的科技生态系统。
2024-07-31 16:06:44
278
月下独酌
转载文章
...)。同时,MySQL数据库也在不断迭代更新,MySQL 8.0带来了诸如窗口函数、Caching_sha2_password等安全性和功能性的重大改进,对于提升项目的数据处理效率和安全性具有重要意义(参考来源:MySQL官网博客)。 在云服务和镜像源方面,阿里云、腾讯云等国内服务商也推出了针对deepin系统的加速镜像源服务,用户可根据自身网络状况选择合适的镜像源以提高软件安装和更新的速度(参考来源:阿里云、腾讯云官方文档)。此外,随着Web开发技术的发展,Vue.js、React等前端框架持续火爆,配合Webpack、Vite等现代构建工具,可以更高效地搭建和维护前端项目结构(参考来源:Vue.js、React官网及技术社区文章)。 在办公领域,WPS Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
54
转载
Hive
... 大家好啊,我是你的数据工程师小A。嘿,今天咱们来聊个有点“叛逆”的事儿——你知道吗?在Hive里头,有些压缩格式虽然官方文档上明晃晃地写着“不支持”,但其实很多人还在偷偷用,像GZIP和BZIP2这些就挺典型的。这事儿听着是不是还挺有意思?相当于跟官方规矩唱反调嘛!哈哈,我知道这话听着可能有点“疯疯癫癫”的,但说实话,谁还没点被迫走出舒适区的时候呢?比如为了给硬盘腾地方,或者让数据库跑得更快一点,咱总得豁出去折腾折腾吧! 先简单介绍一下背景吧。Hive其实就像是个建在Hadoop上的“数据仓库”,它能帮我们把有条理的数据存到HDFS里,然后用类似SQL的语句去查询和处理这些数据,特别方便!Hive默认支持一些常见的压缩格式,比如Snappy、LZO等。哎呀,你要是想用GZIP或者BZIP2来存表,那可得小心点啊!没准Hive会直接给你整出个错误,连数据都不让你加载。这到底是咋回事儿呢?其实吧,这是因为这两种压缩方式的性格和Hive的理念不太合拍。简单来说,它们的玩法不一样,所以Hive就觉得有点不爽,干脆就不让你这么干了。 那么问题来了:既然Hive不支持它们,为什么我们还要去折腾这些“非主流”压缩格式呢?我的回答是:因为它们可能真的有用!比如,GZIP非常适合用于压缩单个文件,而BZIP2则在某些场景下能提供更高的压缩比。所以说嘛,官方案子虽然说了不让搞,但我们不妨大胆试试,看看这些玩意儿到底能整出啥名堂! --- 二、理论基础 GZIP vs BZIP2 vs Hive的“规则” 在深入讨论具体操作之前,我们得先搞清楚这三个东西之间的差异。嘿,先说个大家可能都知道的小秘密——GZIP可是个超火的压缩“神器”呢!它最大的特点就是又快又好用,压缩文件的速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
转载文章
...收集集群中的资源使用数据,如CPU、内存等,并将这些数据发送到后端存储系统以便进一步分析和可视化。在本文的具体实验步骤中,虽然并非必需组件,但用户可以通过Heapster获取Pod的内存使用情况以验证内存资源配置是否生效。 内存请求与限制 , 在Kubernetes中,内存请求(requests.memory)是指容器向系统声明的最低内存需求量,而内存限制(limits.memory)则是容器可使用的最大内存额度。当Kubernetes调度器决定将Pod分配到哪个节点时,会考虑每个节点剩余的内存资源以及Pod内所有容器的内存请求。同时,如果容器试图分配超过其内存限制的资源,Kubernetes会采取相应措施(例如终止容器)以防止整个系统的稳定性受到影响。
2023-12-23 12:14:07
496
转载
Hadoop
...。作为一个程序员或者数据工程师,你可能已经听说过这个名字。Hadoop是一种开源的大数据处理框架,它的核心功能是存储和处理海量的数据。不过,我今天想带大家深入探讨的是Hadoop的一个非常实用的功能:跨硬件复制文件。 为什么这个功能这么重要呢?想象一下,如果你正在运行一个大型的分布式系统,突然某个节点挂了怎么办?数据丢了?那可太惨了!Hadoop通过分布式文件系统(HDFS)来解决这个问题。HDFS 可不只是简单地把大文件切成小块儿,它还特聪明,会把这些小块儿分散存到不同的机器上。这就跟把鸡蛋放在好几个篮子里一个道理,哪怕有一台机器突然“罢工”了(也就是挂掉了),你的数据还是稳稳的,一点都不会丢。 那么,Hadoop是如何做到这一点的呢?咱们先来看看它是怎么工作的。 --- 2. HDFS的工作原理 数据块与副本 HDFS是一个分布式的文件系统,它的设计理念就是让数据更加可靠。简单讲啊,HDFS会把一个大文件切成好多小块儿(每块默认有128MB这么大),接着把这些小块分开放到集群里的不同电脑上存着。更关键的是,HDFS会为每个数据块多弄几个备份,一般是三个副本。这就相当于给你的数据买了“多重保险”,哪怕有一台机器突然“罢工”或者出问题了,你的数据还是妥妥地躺在别的机器上,一点都不会丢。 举个例子,假设你有一个1GB的文件,HDFS会把这个文件分成8个128MB的小块,并且每个小块会被复制成3份,分别存储在不同的服务器上。这就意味着啊,就算有一台服务器“挂了”或者出问题了,另外两台服务器还能顶上,数据照样能拿得到,完全不受影响。 说到这里,你可能会问:“为什么要复制这么多份?会不会浪费空间?”确实,多副本策略会占用更多的磁盘空间,但它的优点远远超过这一点。先说白了就是,它能让数据更好用、更靠谱啊!再说了,在那种超大的服务器集群里头,这样的备份机制还能帮着分散压力,不让某一个地方出问题就整个崩掉。 --- 3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
98
冬日暖阳
转载文章
...关键作用。 同时,在数据中心和云环境中,Google等科技巨头正在研究和部署新型的时间同步技术,如White Rabbit,这是一种基于光纤传输的亚纳秒级精确时钟同步方案,能够有效提升大规模集群环境下的时间同步性能。 另外,针对网络安全领域,由于不准确的时间同步可能导致诸如证书验证失效等问题,全球各地的网络安全专家正呼吁加强对NTP服务器的安全管理,以防止恶意攻击者通过篡改ntp服务来影响系统时间进而发动攻击。最近的一项案例显示,某大型企业因为未妥善配置NTP服务,导致其内部网络出现了严重的时间偏差,引发了数据同步混乱和安全隐患。 综上所述,时间同步技术不仅关乎计算机系统的正常运行,也对新兴技术的发展及网络安全防护起着至关重要的作用。无论是从技术研发前沿还是日常运维实践,深入理解并正确运用NTP及其他高精度时间同步协议都是不可或缺的一环。
2023-03-01 12:56:47
113
转载
Hadoop
...人抓狂!作为一个对大数据技术充满热情的技术宅男(或者宅女),这种问题简直就像一道数学题里的“未知数”一样困扰着我。今天,我就想跟大家聊聊这个话题,希望能找到一些解决办法。 一、背景介绍 HDFS为什么重要? 首先,让我们简单回顾一下HDFS是什么。HDFS(Hadoop分布式文件系统)就像是Hadoop这个大家族里的“顶梁柱”之一,它专门用来管理海量的数据,就像一个超级大的仓库,能把成千上万的数据文件整整齐齐地存放在不同的电脑上,还能保证它们既安全又容易取用。简单来说,就是把一个大文件分成很多小块,然后把这些小块分散存储在不同的服务器上。这么做的好处嘛,简直太明显了!就算哪台机器突然“罢工”了,数据也能稳稳地保住,完全不会丢。而且呢,还能同时对这些数据进行处理,效率杠杠的! 但是,任何技术都有它的局限性。HDFS虽然功能强大,但在实际应用中也可能会遇到各种问题,比如读取速度慢。这可能是由于网络延迟、磁盘I/O瓶颈或者其他因素造成的。那么,具体有哪些原因会导致HDFS读取速度变慢呢?接下来,我们就来一一分析。 二、可能的原因及初步排查 1. 网络延迟过高 想象一下,你正在家里看电影,突然发现画面卡顿了,这是因为你的网络连接出了问题。同样地,在HDFS中,如果网络延迟过高,也会导致读取速度变慢。比如说,假如你的数据节点散落在天南海北的各种数据中心里,那数据跑来跑去就得花更多时间,就像你在城市两端都有家一样,来回折腾肯定比在同一个小区里串门费劲得多。 示例代码: java Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path filePath = new Path("/user/hadoop/input/file.txt"); FSDataInputStream in = null; try { in = fs.open(filePath); byte[] buffer = new byte[1024]; int bytesRead = in.read(buffer); while (bytesRead != -1) { bytesRead = in.read(buffer); } } catch (IOException e) { e.printStackTrace(); } finally { if (in != null) { try { in.close(); } catch (IOException e) { e.printStackTrace(); } } } 这段代码展示了如何从HDFS中读取文件。如果你发现每次执行这段代码时都需要花费很长时间,那么很可能是网络延迟的问题。 2. 数据本地性不足 还记得小时候玩过的接力赛吗?如果接力棒总是从一个人传到另一个人再传回来,效率肯定不高。这就跟生活中的事儿一样啊,在HDFS里头,要是数据没分配到离客户端最近的那个数据节点上,那不是干等着嘛,多浪费时间呀! 解决方案: 可以通过调整副本策略来改善数据本地性。比如说,默认设置下,HDFS会把文件的备份分散存到集群里的不同机器上。不过呢,如果你想让这个过程变得更高效或者更适合自己的需求,完全可以去调整那个叫dfs.replication的参数! xml dfs.replication 3 3. 磁盘I/O瓶颈 磁盘读写速度是影响HDFS性能的一个重要因素。要是你的服务器用的是那些老掉牙的机械硬盘,那读文件的速度肯定就慢得像乌龟爬了。 实验验证: 为了测试磁盘I/O的影响,可以尝试将一部分数据迁移到SSD上进行对比实验。好啦,想象一下,你手头有一堆日志文件要对付。先把它们丢到普通的老硬盘(HDD)里待着,然后又挪到固态硬盘(SSD)上,看看读取速度变了多少。是不是感觉像在玩拼图游戏,只不过这次是在折腾文件呢? 三、进阶优化技巧 经过前面的分析,我们可以得出结论:要提高HDFS的读取速度,不仅仅需要关注硬件层面的问题,还需要从软件配置上下功夫。以下是一些更高级别的优化建议: 1. 增加带宽 带宽就像是高速公路的车道数量,车道越多,车辆通行就越顺畅。对于HDFS来说,增加带宽意味着可以同时传输更多的数据块。 实际操作: 联系你的网络管理员,询问是否有可能升级现有的网络基础设施,比如更换更快的交换机或者部署新的光纤线路。 2. 调整副本策略 默认情况下,HDFS会将每个文件的三个副本均匀分布在整个集群中。然而,在某些特殊场景下,这种做法并不一定是最优解。比如说,你家APP平时就爱扎堆在那几个服务器节点上干活儿,那就可以把副本都放一块儿,这样它们串门聊天、传文件啥的就方便多了,也不用跑太远浪费时间啦! 配置修改: xml dfs.block.local-path-access.enabled true 3. 使用缓存机制 缓存就像冰箱里的剩饭,拿出来就能直接吃,不用重新加热。HDFS也有类似的机制,叫做“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
103
月影清风
Netty
...务器宕机、网络抖动、数据丢失等情况随时随地可能发生。如果我们的程序没有应对这些问题的能力,那后果简直不堪设想! 想象一下,你正在做一个在线支付系统,用户刚输入完支付信息,结果服务器突然挂了,这笔交易失败了。哎呀,这要是让用户碰上了,那可真是抓狂了!所以啊,咱们得想点办法,给系统加点“容错”的本事,不然出了问题用户可就懵圈了。说白了,故障恢复不就是干这个的嘛,就是为了不让小问题变成大麻烦! Netty在这方面做得非常到位。它有一套挺管用的招数,就算网络突然“捣乱”或者出问题了,也能尽量把损失降到最低,然后赶紧恢复到正常状态,一点儿都不耽误事儿。接下来,咱们就一步步拆解这些机制。 --- 三、Netty的故障恢复机制 3.1 异常处理与重试机制 首先,咱们来看看Netty最基础的故障恢复手段:异常处理与重试机制。 Netty提供了一种优雅的方式来处理异常。好比说呗,当客户端和服务器之间的连接突然“闹别扭”了,Netty就会立刻反应过来,自动给我们发个提醒,就像是“叮咚!出问题啦!”这样,咱们就能赶紧去处理这个小麻烦了。具体代码如下: java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
Mahout
...eaming:实时流数据分析 1. 引言 在数据爆炸的时代,实时流数据分析成为了解决海量数据处理的关键技术之一。哎呀,你听说过Mahout这个玩意儿没?这家伙可是个开源的机器学习宝库,专治大数据这事儿。它那分发式计算的能力啊,就像魔法一样,能让你的数据处理起来轻松又高效。用Mahout做分析,就像是给一堆乱糟糟的数据整了套华丽丽的整理术,让它们变得井井有条,还能从中找出各种有价值的信息和模式。这玩意儿一出手,数据处理界的难题就被它玩转得飞起,简直是个大数据时代的超级英雄呢!而Apache Spark Streaming,则是为实时数据流提供高性能处理的框架。哎呀,兄弟!把这两样技术给整到一块儿用,那效果简直不要太棒!不仅能快速消化那些源源不断的数据洪流,还能帮咱们做出超明智的决定,简直就是开挂的存在嘛!本文旨在探索Mahout与Spark Streaming如何协同工作,为实时流数据分析提供强大的解决方案。 2. Mahout概述 Mahout是一个基于Hadoop的机器学习库,旨在利用分布式计算资源来加速大规模数据集上的算法执行。哎呀,这个家伙可真厉害!它能用上各种各样的机器学习魔法,比如说分门别类的技巧(就是咱们说的分类)、把相似的东西归到一块儿的本事(聚类)还有能给咱们推荐超棒东西的神奇技能(推荐系统)。而且,它最擅长的就是对付那些海量的数据,就像大鱼吃小鱼一样,毫不费力就能搞定!通过Mahout,我们可以构建复杂的模型来挖掘数据中的模式和关系,从而驱动业务决策。 3. Spark Streaming简介 Apache Spark Streaming是Spark生态系统的一部分,专为实时数据流处理设计。哎呀,这个玩意儿简直就是程序员们的超级神器!它能让咱这些码农兄弟们轻松搞定那些超快速、高效率的实时应用,你懂的,就是那种分秒必争、数据飞速流转的那种。想象一下,一秒钟能处理几千条数据,那感觉简直不要太爽啊!就像是在玩转数据的魔法世界,每一次点击都是对速度与精准的极致追求。这不就是我们程序员的梦想吗?在数据的海洋里自由翱翔,每一刻都在创造奇迹!Spark Streaming的精髓就像个魔术师,能把连续不断的水流(数据流)变换成小段的小溪(微批次)。这小溪再通过Spark这个强大的分布式计算平台,就像是在魔法森林里跑的水车,一边转一边把水(数据)处理得干干净净。这样一来,咱们就能在实时中捕捉到信息的脉动,做出快速反应,既高效又灵活! 4. Mahout与Spark Streaming的集成 为了将Mahout的机器学习能力与Spark Streaming的实时处理能力结合起来,我们需要创建一个流水线,使得Mahout可以在实时数据流上执行分析任务。这可以通过以下步骤实现: - 数据接入:首先,我们需要将实时数据流接入Spark Streaming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
60
月影清风
转载文章
...。 简介 学习编程,数据结构是你必须要掌握的基础知识,那么数据结构到底是什么呢? 根据百度百科的介绍,数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。 听听这是人话么,我帮你们翻译一下,其实数据结构就是用来描述计算机里存储数据的一种数学模型,因为计算机里要存储很多乱七八糟的数据,所以也需要不同的数据结构来描述。 本文思维导图 为什么要学数据结构 了解了基本概念之后,接下来我们再来看看,为什么我们要学习数据结构呢? 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
134
转载
ZooKeeper
...和维护分布式系统中的数据一致性。它通过提供诸如节点创建、删除、监听等功能,帮助应用程序在复杂的分布式环境下实现高效协作。文中提到,ZooKeeper内部存在一个请求队列,当队列满时会触发CommitQueueFullException。 异步API , ZooKeeper提供的两种API之一,允许客户端在发起请求后无需等待立即响应即可继续执行后续操作。这种方式可以减少请求等待时间,从而降低队列满的风险。文中举例说明了使用异步API创建节点的过程,展示了其与同步API的区别在于不阻塞主线程,适合高并发场景。
2025-03-16 15:37:44
11
林中小径
Redis
...你有个超大的储物间(数据库或者其他服务),里面塞满了各种好玩意儿(数据),想拿啥就能拿啥!嘿,想象一下,现在有一群小毛贼(服务实例)都盯上了你的那些值钱的小宝贝,可不能让他们随便进来顺手牵羊啊!所以呢,你就得准备一把“神奇的钥匙”(锁),谁要是想进去拿东西,就必须先拿到这把钥匙才行。没有钥匙?不好意思,请自觉退散吧! 为什么要用分布式锁呢?因为在线上系统里,多台机器可能会同时操作同一个资源,比如抢购商品这种场景。如果没有锁机制的话,就可能出现重复下单、库存超卖等问题。分布式锁嘛,简单说就是抢车位的游戏规则——在同一时间里,只能有一个家伙抢到那个“资源位”,别的家伙就只能乖乖排队等着轮到自己啦! 不过说起来容易做起来难啊,尤其是在分布式环境下,网络延迟、机器宕机等问题会带来各种意想不到的情况。嘿,今天咱们就来唠唠,在Redis这个超级工具箱里,怎么才能整出个靠谱的分布式锁! --- 2. Redis为什么适合用来做分布式锁? 嘿,说到Redis,相信很多小伙伴都对它不陌生吧?Redis是一个基于内存的高性能键值存储系统,速度贼快,而且支持多种数据结构,比如字符串、哈希表、列表等等。最重要的是,它提供了原子性的操作指令,比如SETNX(Set if Not Exists),这让我们能够轻松地实现分布式锁! 让我给你们讲个小故事:有一次我尝试用数据库来做分布式锁,结果发现性能特别差劲,查询锁状态的SQL语句每次都要扫描整个表,效率低得让人抓狂。换了Redis之后,简直像开了挂一样,整个系统都丝滑得不行!Redis这玩意儿不光跑得快,还自带一堆黑科技,像什么过期时间、消息订阅啥的,这些功能简直就是搞分布式锁的神器啊! 所以,如果你也在纠结选什么工具来做分布式锁,强烈推荐试试Redis!接下来我会结合实际案例给你们展示具体的操作步骤。 --- 3. 实现分布式锁的基本思路 首先,我们要明确分布式锁需要满足哪些条件: 1. 互斥性 同一时刻只能有一个客户端持有锁。 2. 可靠性 即使某个客户端崩溃了,锁也必须自动释放,避免死锁。 3. 公平性 排队等待的客户端应该按照请求顺序获取锁。 4. 可重入性(可选) 允许同一个客户端多次获取同一个锁。 现在我们就来一步步实现这些功能。 示例代码 1:最基本的分布式锁实现 python import redis import time def acquire_lock(redis_client, lock_key, timeout=10): 尝试加锁,设置过期时间为timeout秒 result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_lock(redis_client, lock_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
59
寂静森林
ElasticSearch
...一切看起来都很顺利,数据导入、索引创建啥的都没问题。但当我尝试对某些节点进行操作时,突然蹦出了这么一行错误: org.elasticsearch.cluster.block.ClusterBlockException: blocked by: [SERVICE_UNAVAILABLE/2/no active shards]; 当时我心里那个急啊!赶紧去查文档,发现这是NodeNotActiveException的表现之一。简单说吧,就好比某个关键的小哥突然“罢工”了,可能是因为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
65
林中小径
转载文章
...面我们强行将它变成了数据属性描述符 其次,如果我们想监听更加丰富的操作,比如新增属性、删除属性,那么 Object.defineProperty 是无能为力的 所以我们要知道,存储数据描述符设计的初衷并不是为了去监听一个完整的对象 Ps: 原来的对象是 数据属性描述符,通过 Object.defineProperty 变成了 访问属性描述符 2. Proxy基本使用 在ES6中,新增了一个Proxy类,这个类从名字就可以看出来,是用于帮助我们创建一个代理的: 也就是说,如果我们希望监听一个对象的相关操作,那么我们可以先创建一个代理对象(Proxy对象) 之后对该对象的所有操作,都通过代理对象来完成,代理对象可以监听我们想要对原对象进行哪些操作 将上面的案例用 Proxy 来实现一次: 首先,我们需要 new Proxy 对象,并且传入需要侦听的对象以及一个处理对象,可以称之为 handler; const p = new Proxy(target, handler) 其次,我们之后的操作都是直接对 Proxy 的操作,而不是原有的对象,因为我们需要在 handler 里面进行侦听 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue} })console.log(objProxy.name)console.log(objProxy.age)objProxy.name = 'kobe'objProxy.age = 30console.log(obj.name)console.log(obj.age)/ 监听到obj对象的name属性被访问了why监听到obj对象的age属性被访问了18监听到obj对象的name属性被设置值监听到obj对象的age属性被设置值kobe30/ 2.1 Proxy 的 set 和 get 捕获器 如果我们想要侦听某些具体的操作,那么就可以在 handler 中添加对应的捕捉器(Trap) set 和 get 分别对应的是函数类型 set 函数有四个参数: target:目标对象(侦听的对象) property:将被设置的属性 key value:新属性值 receiver:调用的代理对象 get 函数有三个参数 target:目标对象(侦听的对象) property:被获取的属性 key receiver:调用的代理对象 2.2 Proxy 所有捕获器 (13个) handler.getPrototypeOf() Object.getPrototypeOf 方法的捕捉器 handler.setPrototypeOf() Object.setPrototypeOf 方法的捕捉器 handler.isExtensible() Object.isExtensible 方法的捕捉器 handler.preventExtensions() Object.preventExtensions 方法的捕捉器 handler.getOwnPropertyDescriptor() Object.getOwnPropertyDescriptor 方法的捕捉器 handler.defineProperty() Object.defineProperty 方法的捕捉器 handler.ownKeys() Object.getOwnPropertyNames 方法和 Object.getOwnPropertySymbols 方法的捕捉器 handler.has() in 操作符的捕捉器 handler.get() 属性读取操作的捕捉器 handler.set() 属性设置操作的捕捉器 handler.deleteProperty() delete 操作符的捕捉器 handler.apply() 函数调用操作的捕捉器 handler.construct() new 操作符的捕捉器 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {// 获取值时的捕获器get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return target[key]},// 设置值时的捕获器set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)target[key] = newValue},// 监听 in 的捕获器has: function (target, key) {console.log(监听到obj对象的${key}属性的in操作)return key in target},// 监听 delete 的捕获器deleteProperty: function (target, key) {console.log(监听到obj对象的${key}属性的delete操作)delete target[key]} })// in 操作符console.log('name' in objProxy)// delete 操作delete objProxy.name/ 监听到obj对象的name属性的in操作true监听到obj对象的name属性的delete操作/ 2.3 Proxy 的 construct 和 apply 到捕捉器中还有 construct 和 apply,它们是应用于函数对象的 function foo() {console.log('调用了 foo')}const fooProxy = new Proxy(foo, {apply: function (target, thisArg, argArray) {console.log(对 foo 函数进行了 apply 调用)target.apply(thisArg, argArray)},construct: function (target, argArray, newTarget) {console.log(对 foo 函数进行了 new 调用)return new target(...argArray)} })fooProxy.apply({}, ['abc', 'cba'])new fooProxy('abc', 'cba')/ 对 foo 函数进行了 apply 调用调用了 foo对 foo 函数进行了 new 调用调用了 foo/ 3. Reflect 3.1 Reflect 的作用 Reflect 也是 ES6 新增的一个 API,它是一个对象,字面的意思是反射 Reflect 的作用: 它主要提供了很多操作 JavaScript 对象的方法,有点像 Object 中操作对象的方法 比如 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() 比如 Reflect.defineProperty(target, propertyKey, attributes) 类似于 Object.defineProperty() 如果我们有 Object 可以做这些操作,那么为什么还需要有Reflect这样的新增对象呢? 这是因为在早期的 ECMA 规范中没有考虑到这种对 对象本身 的操作如何设计会更加规范,所以将这些 API 放到了 Object上面 但是 Object 作为一个构造函数,这些操作实际上放到它身上并不合适 另外还包含一些类似于 in、delete 操作符,让 JS 看起来是会有一些奇怪的 所以在 ES6 中新增了 Reflect,让我们这些操作都集中到了 Reflect 对象上 那么 Object 和 Reflect 对象之间的 API 关系,可以参考 MDN 文档: 比较 Reflect 和 Object 方法 3.2 Reflect 的常见方法 Reflect中有哪些常见的方法呢?它和Proxy是一一对应的,也是13个 Reflect.getPrototypeOf(target) 类似于 Object.getPrototypeOf() Reflect.setPrototypeOf(target, prototype) 设置对象原型的函数. 返回一个 Boolean, 如果更新成功,则返回 true Reflect.isExtensible(target) 类似于 Object.isExtensible() Reflect.preventExtensions(target) 类似于 Object.preventExtensions() , 返回一个 Boolean Reflect.getOwnPropertyDescriptor(target, propertyKey) 类似于 Object.getOwnPropertyDescriptor() , 如果对象中存在该属性,则返回对应的属性描述符, 否则返回 undefined Reflect.defineProperty(target, propertyKey, attributes) 和 Object.defineProperty() 类似, 如果设置成功就会返回 true Reflect.ownKeys(target) 返回一个包含所有自身属性(不包含继承属性)的数组 (类似于 Object.keys(), 但不会受 enumerable 影响) Reflect.has(target, propertyKey) 判断一个对象是否存在某个属性,和 in 运算符 的功能完全相同 Reflect.get(target, propertyKey[, receiver]) 获取对象身上某个属性的值,类似于 target[name] Reflect.set(target, propertyKey, value[, receiver]) 将值分配给属性的函数,返回一个 Boolean,如果更新成功,则返回 true Reflect.deleteProperty(target, propertyKey) 作为函数的 delete 操作符,相当于执行 delete target[name] Reflect.apply(target, thisArgument, argumentsList) 对一个函数进行调用操作,同时可以传入一个数组作为调用参数。和 Function.prototype.apply() 功能类似 Reflect.construct(target, argumentsList[, newTarget]) 对构造函数进行 new 操作,相当于执行 new target(...args) 3.3 Reflect 的使用 那么我们可以将之前Proxy案例中对原对象的操作,都修改为Reflect来操作 const obj = {name: 'why',age: 18}const objProxy = new Proxy(obj, {get: function (target, key) {console.log(监听到obj对象的${key}属性被访问了)return Reflect.get(target, key)// return target[key] // 对原来对象进行了直接操作},set: function (target, key, newValue) {console.log(监听到obj对象的${key}属性被设置值)Reflect.set(target, key, newValue)// target[key] = newValue // 对原来对象进行了直接操作} })objProxy.name = 'kobe'console.log(objProxy.name)/ 监听到obj对象的name属性被设置值监听到obj对象的name属性被访问了kobe/ 3.4 Receiver的作用 我们发现在使用getter、setter的时候有一个receiver的参数,它的作用是什么呢? 如果我们的源对象(obj)有 setter 、getter 的访问器属性,那么可以通过 receiver 来改变里面的 this const obj = {_name: 'why',get name() {return this._name // 不使用receiver, _name属性的操作不会被objProxy代理,因为this指向obj},set name(newValue) {this._name = newValue} }const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// receiver 是创建出来的代理对象console.log('get 方法被访问-------', key, receiver)console.log(objProxy === receiver) // truereturn Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)} })objProxy.name = 'kobe'console.log(objProxy.name) // kobe/ get 方法被访问------- name { _name: 'kobe', name: [Getter/Setter] }trueget 方法被访问------- _name { _name: 'kobe', name: [Getter/Setter] }truekobe/ 3.5 Reflect 的 construct function Student(name, age) {this.name = namethis.age = age}function Teacher() {}const stu = new Student('why', 18)console.log(stu)console.log(stu.__proto__ === Student.prototype)/ Student { name: 'why', age: 18 }true/// 执行 Student 函数中的内容,但是创建出来的对象是 Teacher 对象const teacher = Reflect.construct(Student, ['why', 18], Teacher)console.log(teacher)console.log(teacher.__proto__ === Teacher.prototype)/ Teacher { name: 'why', age: 18 }true/ 4. 响应式 4.1 什么是响应式? 先来看一下响应式意味着什么?我们来看一段代码: m 有一个初始化的值,有一段代码使用了这个值; 那么在 m 有一个新的值时,这段代码可以自动重新执行 let m = 0// 一段代码console.log(m)console.log(m 2)console.log(m 2)m = 200 上面的这样一种可以自动响应数据变量的代码机制,我们就称之为是响应式的 对象的响应式 4.2 响应式函数设计 首先,执行的代码中可能不止一行代码,所以我们可以将这些代码放到一个函数中: 那么问题就变成了,当数据发生变化时,自动去执行某一个函数; 但是有一个问题:在开发中是有很多的函数的,如何区分一个函数需要响应式,还是不需要响应式呢? 很明显,下面的函数中 foo 需要在 obj 的 name 发生变化时,重新执行,做出相应; bar 函数是一个完全独立于 obj 的函数,它不需要执行任何响应式的操作; // 对象的响应式const obj = {name: 'why',age: 18}function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)}function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行 响应式函数的实现 watchFn 如何区分响应式函数? 这个时候我们封装一个新的函数 watchFn 凡是传入到 watchFn 的函数,就是需要响应式的 其他默认定义的函数都是不需要响应式的 / 封装一个响应式的函数 /let reactiveFns = []function watchFn(fn) {reactiveFns.push(fn)}// 对象的响应式const obj = {name: 'why',age: 18}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe' // name 发生改变时候 foo 函数执行reactiveFns.forEach((fn) => {fn()}) 4.3 响应式依赖的收集 目前收集的依赖是放到一个数组中来保存的,但是这里会存在数据管理的问题: 在实际开发中需要监听很多对象的响应式 这些对象需要监听的不只是一个属性,它们很多属性的变化,都会有对应的响应式函数 不可能在全局维护一大堆的数组来保存这些响应函数 所以要设计一个类,这个类用于管理某一个对象的某一个属性的所有响应式函数: 相当于替代了原来的简单 reactiveFns 的数组; class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}watchFn(function foo() {const newName = obj.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(obj.name)})watchFn(function demo() {console.log(obj.name, 'demo function ---------')})function bar() {console.log('普通的其他函数')console.log('这个函数不需要有任何的响应式')}obj.name = 'kobe'depend.notify() 4.4 监听对象的变化 那么接下来就可以通过之前的方式来监听对象的变化: 方式一:通过 Object.defineProperty 的方式(vue2采用的方式); 方式二:通过 new Proxy 的方式(vue3采用的方式); 我们这里先以Proxy的方式来监听 class Depend {constructor() {this.reactiveFns = []}addDepend(reactiveFn) {this.reactiveFns.push(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }const depend = new Depend()function watchFn(fn) {depend.addDepend(fn)}// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)depend.notify()} })watchFn(function foo() {const newName = objProxy.nameconsole.log('你好啊,李银河')console.log('Hello World')console.log(objProxy.name)})watchFn(function demo() {console.log(objProxy.name, 'demo function ---------')})objProxy.name = 'kobe'objProxy.name = 'james'/ 你好啊,李银河Hello Worldkobekobe demo function ---------你好啊,李银河Hello Worldjamesjames demo function ---------/ 4.5 对象的依赖管理 目前是创建了一个 Depend 对象,用来管理对于 name 变化需要监听的响应函数: 但是实际开发中我们会有不同的对象,另外会有不同的属性需要管理; 如何可以使用一种数据结构来管理不同对象的不同依赖关系呢? 在前面我们刚刚学习过 WeakMap,并且在学习 WeakMap 的时候我讲到了后面通过 WeakMap 如何管理这种响应式的数据依赖: 实现 可以写一个 getDepend 函数专门来管理这种依赖关系 / 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取mapconst map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象const depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 正确的依赖收集 我们之前收集依赖的地方是在 watchFn 中: 但是这种收集依赖的方式我们根本不知道是哪一个 key 的哪一个 depend 需要收集依赖; 只能针对一个单独的 depend 对象来添加你的依赖对象; 那么正确的应该是在哪里收集呢?应该在我们调用了 Proxy 的 get 捕获器时 因为如果一个函数中使用了某个对象的 key,那么它应该被收集依赖 / 封装一个响应式函数 /let activeReactviceFn = nullfunction watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数activeReactviceFn && depend.addDepend(activeReactviceFn)return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} }) 4.6 对 Depend 重构 两个问题: 问题一:如果函数中有用到两次 key,比如 name,那么这个函数会被收集两次 问题二:我们并不希望将添加 reactiveFn 放到 get 中,因为它是属于 Depend 的行为 所以我们需要对 Depend 类进行重构: 解决问题一的方法:不使用数组,而是使用 Set 解决问题二的方法:添加一个新的方法,用于收集依赖 // 保存当前需要收集的响应式函数let activeReactviceFn = nullclass Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }// 对象的响应式const obj = {name: 'why', // depend 对象age: 18 // depend 对象}/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)const objProxy = new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })watchFn(function () {console.log(objProxy.name, '--------------')console.log(objProxy.name, '++++++++++++++')})objProxy.name = 'kobe'/ why --------------why ++++++++++++++kobe --------------kobe ++++++++++++++/ 4.7 创建响应式对象 目前的响应式是针对于obj一个对象的,我们可以创建出来一个函数,针对所有的对象都可以变成响应式对象 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {// 监听对象的属性变化:Proxy(vue3)/Object.defineProperty(vue2)return new Proxy(obj, {get: function (target, key, receiver) {// 根据 target key 获取对应的 depnedconst depend = getDepend(target, key)// 给 depend 对象中添加响应式函数depend.depend()return Reflect.get(target, key, receiver)},set: function (target, key, newValue, receiver) {Reflect.set(target, key, newValue, receiver)const depend = getDepend(target, key)depend.notify()} })}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 4.8 Vue2 响应式原理 前面所实现的响应式的代码,其实就是 Vue3 中的响应式原理: Vue3 主要是通过 Proxy 来监听数据的变化以及收集相关的依赖的 Vue2 中通过 Object.defineProerty的方式来实现对象属性的监听 可以将 reactive 函数进行如下的重构: 在传入对象时,我们可以遍历所有的 key,并且通过属性存储描述符来监听属性的获取和修改 在 setter 和 getter 方法中的逻辑和前面的 Proxy 是一致的 / 保存当前需要收集的响应式函数 /let activeReactviceFn = null/ 依赖收集类 /class Depend {constructor() {this.reactiveFns = new Set()}depend() {if (activeReactviceFn) {this.reactiveFns.add(activeReactviceFn)} }addDepend(reactiveFn) {this.reactiveFns.add(reactiveFn)}notify() {this.reactiveFns.forEach((fn) => {fn()})} }/ 封装一个响应式函数 /function watchFn(fn) {activeReactviceFn = fnfn()activeReactviceFn = null}/ 封装一个获取depend的函数 /const taregtMap = new WeakMap()function getDepend(target, key) {// 根据target对象获取maplet map = taregtMap.get(target)if (!map) {map = new Map()taregtMap.set(target, map)}// 根据key获取depend对象let depend = map.get(key)if (!depend) {depend = new Depend()map.set(key, depend)}return depend}/ 创建响应式对象函数 /function reactive(obj) {Object.keys(obj).forEach((key) => {let value = obj[key]Object.defineProperty(obj, key, {get: function () {const dep = getDepend(obj, key)dep.depend()return value},set: function (newValue) {value = newValueconst dep = getDepend(obj, key)dep.notify()} })})return obj}const info = reactive({address: '广州市',height: 1.88})watchFn(() => {console.log(info.address, '---')})info.address = '北京市' 本篇文章为转载内容。原文链接:https://blog.csdn.net/wanghuan1020/article/details/126774033。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 12:37:47
679
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
renice -n [+|-priority] pid
- 更改进程运行时的优先级。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"