前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[基于功能划分的组件分层结构设计 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...标记语言,用于创建和设计网页内容结构。在本文语境中,HTML代码被用来构建烟花特效的基本页面结构,定义元素的位置、层级关系以及基础样式,如黑色背景的设置。 CSS(Cascading Style Sheets) , CSS是层叠样式表的简称,是一种样式表语言,用于描述HTML或XML文档的呈现方式,包括布局、颜色、字体等视觉效果。在制作炫酷烟花特效的过程中,CSS负责为烟花提供动画效果所需的样式规则,比如设定烟花的颜色、大小、旋转、透明度变化等属性,以实现不同的形状与动态效果。 JavaScript , JavaScript是一种轻量级的解释型编程语言,常用于给网页添加交互式功能。在该篇文章中,JavaScript扮演了关键角色,编写算法控制烟花的生成、运动轨迹、爆炸形态以及消失等动态过程,使得鼠标点击后能够触发烟花特效,并根据不同类型(分散形、圆形、爱心形)产生相应的视觉效果。 WebGL , 虽然文章未直接提及WebGL,但在类似场景下,它是一个重要的技术名词。WebGL是一种JavaScript API,用于在任何兼容的Web浏览器中呈现交互式2D、3D图形而无需插件。在更复杂的烟花特效实现中,开发者可以利用WebGL结合着色器(shader)进行高性能的三维立体烟花渲染,模拟更加真实和细腻的烟花爆炸效果。
2023-02-15 08:02:38
277
转载
Tomcat
...自动扩展、负载均衡等功能,有助于缓解Tomcat服务器在高并发场景下可能遇到的性能瓶颈问题。 例如,阿里巴巴集团旗下的阿里云,在今年发布了全新的ACK One(Alibaba Cloud Container Service for Kubernetes)版本,该版本不仅支持多集群统一管理,还增强了安全性和可观测性。对于使用Tomcat的应用开发者来说,迁移到基于Kubernetes的云原生架构,不仅可以提高应用的稳定性和弹性,还能显著降低运维成本。 此外,Spring Boot框架也在不断发展和完善,它与Tomcat紧密结合,提供了一种更加现代化的方式来构建微服务。Spring Boot 3.0版本引入了对Java 17的支持,并改进了内存管理和启动速度,这对于解决Tomcat应用中的内存泄漏和启动缓慢等问题非常有帮助。开发者可以通过升级Spring Boot框架,利用其内置的健康检查、指标收集等功能,更好地监控和调优Tomcat应用的性能。 综上所述,通过结合Kubernetes和Spring Boot等现代技术,可以更全面地解决Tomcat应用面临的性能挑战。这不仅是技术发展的趋势,也是企业提高竞争力的关键所在。未来,随着更多新技术的涌现,我们期待看到更多创新性的解决方案来应对这些挑战。
2025-01-07 16:14:31
35
草原牧歌
Scala
...弹性分布式数据集)的设计理念与ParSeq、ParMap的并行化思想异曲同工,但它更适用于大规模分布式环境下的数据处理。 此外,针对Scala中的并发集合优化策略,《Effective Scala》一书提供了许多实战经验和原则指导,包括如何权衡数据分割粒度、如何避免不必要的同步开销等深度解读。同时,研究Scala官方文档和其他开源项目源码,如Apache Flink或Kafka Streams,也能帮助开发者深入了解并行计算的实际应用场景和最佳实践。 实时动态方面,Scala 3(Dotty)项目的演进带来了更多关于并发和并行特性的改进,旨在简化并提升程序性能。与此同时,学术界和工业界也在不断探讨新的并发算法和数据结构,以应对日益复杂的并行计算挑战,这些研究成果对于掌握Scala并发集合的使用者来说具有很高的参考价值。
2023-03-07 16:57:49
130
落叶归根
NodeJS
...和Express都是基于Node.js的web开发框架,它们都提供了强大的路由系统、中间件机制和模板引擎等功能。然而,两者的实现方式和设计理念有所不同。 三、Koa的特点 1. 轻量级设计 相比Express,Koa的代码更简洁,没有过多的内置特性,使得开发者能够更好地专注于业务逻辑。 2. 原生异步I/O Koa采用了最新的ES6语法,支持Promise和async/await等特性,这使得Koa具有更好的性能和可读性。 3. 中间件流程控制 Koa使用了柯里化和函数式编程的理念,提供了一种新的中间件处理方式,使得中间件的调用变得更加清晰和易于维护。 四、Express的特点 1. 大而全 Express提供了大量的内置特性,包括模板引擎、静态文件服务器、错误处理等,使得开发者能够更快地搭建出一个完整的web应用。 2. 更丰富的第三方模块支持 由于Express有着广泛的用户群体和社区支持,因此有很多优秀的第三方模块可供选择,如Passport、Body-parser等。 3. 优雅的错误处理 Express提供了优雅的错误处理机制,可以在发生错误时自动捕获并返回一个统一的错误页面,从而提高了用户体验。 五、对比总结 综上所述,Koa和Express各有其特点和优势。如果你追求简洁快速,对高效有着特别的偏爱,那么Koa绝对是个不错的选择;而如果你更倾向于稳扎稳打,喜欢久经沙场、成熟可靠的框架,那Express绝对是你的不二之选。在实际开发中,可以根据项目需求和个人喜好来选择合适的框架。 六、示例代码 为了更好地理解和掌握这两种框架,我们来通过一些代码示例来进行比较。 首先,我们来看一下如何使用Express来创建一个新的web应用: javascript const express = require('express'); const app = express(); const port = 3000; app.get('/', (req, res) => { res.send('Hello World!'); }); app.listen(port, () => { console.log(Server is listening at http://localhost:${port}); }); 这段代码定义了一个简单的HTTP服务,当访问根路径时,会返回'Hello World!'字符串。如果需要添加更多的路由,就像在地图上画出新路线一样简单,你只需要在对应的位置“挥笔一画”,加个新的app.get()或者app.post()方法就大功告成了。就像是给你的程序扩展新的“小径”一样,轻松便捷。 然后,我们来看一下如何使用Koa来创建一个新的web应用: javascript const Koa = require('koa'); const app = new Koa(); app.use(async ctx => { ctx.body = 'Hello World!'; }); app.listen(3000, () => { console.log('Server is listening at http://localhost:3000'); }); 这段代码也定义了一个简单的HTTP服务,但是使用了Koa的柯里化和async/await特性,使得代码更加简洁和易读。举个例子来说,这次咱们就做了件特简单的事儿,就是把返回的内容设成'Hello World!',别的啥路由规则啊,都没碰,没加。 七、结论 总的来说,Koa和Express都是非常优秀的Node.js web开发框架,它们各有各的优点和适用场景。无论是选择哪一种框架,都需要根据自己的需求和技术水平进行考虑。希望通过这篇文章,能够帮助大家更好地理解和掌握这两种框架,为自己的web开发工作带来更大的便利和效率。
2023-07-31 20:17:23
102
青春印记-t
Go Gin
...能需要更复杂的URL结构,这时可以使用嵌套路由组: go v1 := r.Group("/users") { v1.GET("/:id", getUser) v1.POST("", createUser) // 注意这里的空字符串,表示没有特定的路径部分 } 六、中间件的应用 在路由组上添加中间件可以为一组路由提供通用的功能,如验证、日志记录等。例如,我们可以在所有v1组的请求中添加身份验证中间件: go authMiddleware := func(c gin.Context) { // 这里是你的身份验证逻辑 } v1.Use(authMiddleware) 七、总结与拓展 通过以上步骤,你已经掌握了如何在Go Gin中使用路由组。路由组不仅帮助我们组织代码,还使我们能够更好地复用和扩展代码。当你碰到那些需要动点脑筋的难题,比如权限控制、出错应对的时候,你就把这玩意儿往深里挖,扩展升级,让它变得更聪明更顺溜。 记住,编程就像搭积木,每一块都对应着一个功能。用Go Gin的聪明路由功能,就像给你的代码设计了个贴心的导航系统,让结构井然有序,维护起来就像跟老朋友聊天一样顺溜。祝你在Go Gin的世界里玩得开心,构建出强大的Web应用!
2024-04-12 11:12:32
502
梦幻星空
ClickHouse
...e社区也在积极研发新功能以满足更复杂场景的需求,例如对Apache Parquet格式的支持,使得ClickHouse能够更好地融入现有的大数据生态体系,实现与其他组件如Hadoop、Spark的无缝集成。 此外,ClickHouse的开发者团队正致力于进一步优化分布式计算能力,计划推出的新特性将极大增强跨集群数据迁移与同步的效率,这对于全球化部署的企业来说具有重大意义。 总之,在当前瞬息万变的大数据环境下,深入研究并掌握ClickHouse这类高性能数据库工具的使用技巧,无疑将为企业的数据驱动战略提供有力支撑,并帮助企业在未来竞争中占得先机。因此,紧跟ClickHouse的发展动态与最佳实践,对于广大数据工程师和技术决策者来说,是一项极具价值且必不可少的任务。
2023-02-14 13:25:00
491
笑傲江湖
Netty
...动的网络应用框架,它基于Java NIO库开发,用于简化TCP、UDP和HTTP等协议的服务器和客户端编程。在本文中,作者深入探讨了Netty内部核心组件ByteBuf的内存管理机制。 ByteBuf , ByteBuf是Netty框架中的一种高级字节缓冲区抽象实现,不同于传统的Java NIO ByteBuffer。它提供了丰富的API接口,并通过独特的内存管理策略实现了高效、灵活的内存分配与回收,从而极大地提升了网络数据处理性能并减轻了垃圾回收的压力。 内存池(PooledByteBufAllocator) , 内存池是一种计算机程序设计中的资源管理策略,其在Netty中具体体现为PooledByteBufAllocator类。该类负责管理和复用预先分配的内存块,以避免频繁地进行内存分配和回收操作,进而减少系统开销和GC暂停时间。当需要创建ByteBuf时,Netty会优先尝试从内存池中获取已存在的内存块来使用,从而提高了内存使用的效率和系统的整体性能。
2023-11-04 20:12:56
292
山涧溪流
SeaTunnel
...日志,找出哪些步骤或组件导致了内存问题。例如: java java.lang.OutOfMemoryError: Java heap space 这条错误信息告诉你,Java堆空间不足了。那么下一步就是看看哪些地方需要优化内存使用。 3.2 使用工具分析 除了日志,还可以借助一些工具来帮助分析。比如,你可以使用VisualVM或者JProfiler等工具来监控内存使用情况。这些工具能实时显示你的应用内存使用情况,帮你找到内存泄漏点或者内存使用效率低下的地方。 4. 解决方案 4.1 增加JVM堆内存 最直接的方法是增加JVM的堆内存。你可以在启动SeaTunnel时通过参数设置堆内存大小。例如: bash -DXms=2g -DXmx=4g 这段命令设置了初始堆内存为2GB,最大堆内存为4GB。当然,具体的值需要根据你的实际情况来调整。 4.2 分批处理数据 另一个有效的方法是分批处理数据。如果你一次性加载所有数据到内存中,那肯定是不行的。可以考虑将数据分批次加载,处理完一批再处理下一批。这不仅减少了内存压力,还能提高处理效率。比如,在SeaTunnel中,可以使用Limit插件来限制每次处理的数据量: json { "job": { "name": "example_job", "nodes": [ { "id": "source", "type": "Source", "name": "Kafka Source", "config": { "topic": "test_topic" } }, { "id": "limit", "type": "Transform", "name": "Limit", "config": { "limit": 1000 } }, { "id": "sink", "type": "Sink", "name": "HDFS Sink", "config": { "path": "/output/path" } } ] } } 在这个例子中,我们使用了一个Limit节点,限制每次只处理1000条数据。 4.3 优化代码逻辑 有时候,内存问题不仅仅是由于数据量大,还可能是由于代码逻辑不合理。比如说,你在操作过程中搞了一大堆临时对象,它们占用了不少内存空间。检查代码,尽量减少不必要的对象创建,或者重用对象。此外,可以考虑使用流式处理方式,避免一次性加载大量数据到内存中。 5. 结论 总之,“Out of memory during processing”是一个常见但棘手的问题。通过合理设置、分批处理和优化代码流程,我们就能很好地搞定这个问题。希望这篇东西能帮到你,如果有啥不明白的或者需要更多帮助,别客气,随时找我哈!记得,解决问题的过程也是学习的过程,保持好奇心,不断探索,你会越来越强大!
2025-02-05 16:12:58
72
昨夜星辰昨夜风
ActiveMQ
...开源的消息代理,它的功能非常强大,能够处理大量的消息,并且具有很高的可靠性。这个工具超级 versatile(多才多艺),既能一对一聊天,也能像广播一样发消息给大家。而且,它跟各种编程语言都能愉快地玩耍,比如 Java、C、Python 这些,完全没有沟通障碍!这使得它成为构建复杂分布式系统的理想选择。设想一下,你正忙着搞一个实时客服系统,结果各种渠道的海量请求一股脑儿涌来——电邮、社交媒体、电话,应有尽有。这时你会发现,有个能高效处理这些消息的队列简直是救星啊! 3. 实时客户服务系统的需求分析 在设计一个实时客户服务系统时,我们需要考虑几个关键因素: - 高并发性:系统需要能够同时处理大量用户请求。 - 低延迟:响应时间要快,不能让用户等待太久。 - 可扩展性:随着业务的增长,系统需要能够轻松地进行水平扩展。 - 可靠性:即使出现故障,也不能丢失任何一条消息。 为了满足这些需求,我们可以利用ActiveMQ的强大功能来搭建我们的消息传递平台。接下来,我将通过几个具体的例子来展示如何使用ActiveMQ来实现这些目标。 4. 使用ActiveMQ实现消息传递 4.1 创建一个简单的点对点消息传递系统 首先,我们需要创建一个生产者(Producer)和消费者(Consumer)。生产者负责发送消息,而消费者则负责接收并处理这些消息。 java // 生产者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.MessageProducer; import javax.jms.Queue; import javax.jms.Session; import javax.jms.TextMessage; public class Producer { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建队列 Queue queue = session.createQueue("CustomerSupportQueue"); // 创建消息生产者 MessageProducer producer = session.createProducer(queue); // 发送消息 TextMessage message = session.createTextMessage("Hello, Customer!"); producer.send(message); System.out.println("Message sent successfully."); // 关闭资源 session.close(); connection.close(); } } java // 消费者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.Queue; import javax.jms.Session; public class Consumer { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建队列 Queue queue = session.createQueue("CustomerSupportQueue"); // 创建消息消费者 MessageConsumer consumer = session.createConsumer(queue); // 接收消息 Message message = consumer.receive(1000); if (message instanceof TextMessage) { TextMessage textMessage = (TextMessage) message; System.out.println("Received message: " + textMessage.getText()); } else { System.out.println("Received non-text message."); } // 关闭资源 session.close(); connection.close(); } } 4.2 实现发布/订阅模式 在实时客服系统中,我们可能还需要处理来自多个来源的消息,这时候可以使用发布/订阅模式。 java // 发布者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.MessageProducer; import javax.jms.Topic; import javax.jms.Session; import javax.jms.TextMessage; public class Publisher { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建主题 Topic topic = session.createTopic("CustomerSupportTopic"); // 创建消息生产者 MessageProducer producer = session.createProducer(topic); // 发送消息 TextMessage message = session.createTextMessage("Hello, Customer!"); producer.send(message); System.out.println("Message sent successfully."); // 关闭资源 session.close(); connection.close(); } } java // 订阅者代码示例 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.ConnectionFactory; import javax.jms.Message; import javax.jms.MessageListener; import javax.jms.Session; import javax.jms.Topic; import javax.jms.TopicSubscriber; public class Subscriber implements MessageListener { public static void main(String[] args) throws Exception { // 创建连接工厂 ConnectionFactory connectionFactory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接 Connection connection = connectionFactory.createConnection(); connection.start(); // 创建会话 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建主题 Topic topic = session.createTopic("CustomerSupportTopic"); // 创建消息订阅者 TopicSubscriber subscriber = session.createSubscriber(topic); subscriber.setMessageListener(new Subscriber()); // 等待接收消息 Thread.sleep(5000); // 关闭资源 session.close(); connection.close(); } @Override public void onMessage(Message message) { if (message instanceof TextMessage) { TextMessage textMessage = (TextMessage) message; try { System.out.println("Received message: " + textMessage.getText()); } catch (javax.jms.JMSException e) { e.printStackTrace(); } } else { System.out.println("Received non-text message."); } } } 5. 总结 通过以上示例,我们可以看到,ActiveMQ不仅功能强大,而且易于使用。这东西能在咱们的实时客服系统里头,让消息传得飞快,提升大伙儿的使用感受。当然了,在实际操作中你可能会碰到更多复杂的情况,比如要处理事务、保存消息、搭建集群之类的。不过别担心,只要你们把基础的概念和技能掌握好,这些难题都能迎刃而解。希望这篇文章对你有所帮助,如果有任何问题或者想法,欢迎随时交流讨论!
2025-01-16 15:54:47
85
林中小径
Mahout
... Mahout是一个基于Hadoop的数据挖掘库,专为大规模数据集设计。它可以让你轻松地进行各种机器学习任务,比如分类、聚类和推荐系统等。今天我们来聊聊怎么在Mahout里玩转作业调度和资源分配,让你的工作更顺畅!这不仅对提高系统性能超级重要,更是保证数据处理任务顺利搞定的关键! 那么,让我们开始吧! 2. 为什么需要Job Scheduling and Resource Allocation? 首先,我们得弄清楚为什么要关心这些事情。想想看,假如你有一大堆事儿等着做,但这些事儿没个好计划,乱七八糟的,那会怎样?做事慢吞吞,东西用完了也不知道节省,事情越堆越多……这种情况咱们都遇到过吧?更糟的是,如果一些任务的优先级不高,它们可能会被晾在一边,结果整个系统就变得慢吞吞的,像乌龟爬一样。所以说,搞好作业调度和资源分配,就跟一个指挥官带兵打仗似的,特别关键。咱们得让每份资源都使出浑身解数,保证所有任务都能及时搞定。 接下来,我们来看看如何在Mahout中实际操作这些策略。 3. 理解Mahout中的Job Scheduling 3.1 基本概念 在Mahout中,Job Scheduling主要涉及到如何管理和控制任务的执行顺序和时间。Mahout本身并不直接提供Job Scheduling的功能,而是依赖于底层的Hadoop框架来实现这一功能。但是,作为开发者,我们可以利用一些配置参数来影响Job Scheduling的行为。 示例代码: java // 设置MapReduce作业的队列 Job job = Job.getInstance(conf, "my job"); job.setQueueName("high-priority"); // 设置作业的优先级 job.setPriority(JobPriority.HIGH); 在这个例子中,我们通过setQueueName方法将作业设置到了一个名为“high-priority”的队列中,并通过setPriority方法设置了作业的优先级为HIGH。这样做的目的是为了让这个作业能够优先得到处理。 3.2 实战演练 假设你有一个大数据处理任务,其中包括多个子任务。你可以通过调整这些子任务的优先级,来优化整体的执行流程。比如说,你可以把那些对最后成果影响很大的小任务排在前面做,把那些不太重要的小任务放在后面慢慢来。这样能确保你先把最关键的事情搞定。 代码示例: java // 创建多个作业 Job job1 = Job.getInstance(conf, "sub-task-1"); Job job2 = Job.getInstance(conf, "sub-task-2"); // 设置不同优先级 job1.setPriority(JobPriority.NORMAL); job2.setPriority(JobPriority.HIGH); // 提交作业 job1.submit(); job2.submit(); 在这个例子中,我们创建了两个子任务,并分别设置了不同的优先级。用这种方法,我们可以随心所欲地调整那些小任务的先后顺序,这样就能更轻松地掌控整个任务的大局了。 4. 探索Resource Allocation Policies 接下来,我们来聊聊Resource Allocation Policies。这部分内容涉及到如何合理地分配计算资源(如CPU、内存等),以确保每个作业都能得到足够的支持。 4.1 理论基础 在Mahout中,资源分配主要由Hadoop的YARN(Yet Another Resource Negotiator)来负责。YARN会根据每个任务的需要灵活分配资源,这样就能让作业以最快的速度搞定啦。 示例代码: java // 设置MapReduce作业的资源需求 job.setNumReduceTasks(5); // 设置Reduce任务的数量 job.getConfiguration().set("mapreduce.map.memory.mb", "2048"); // 设置Map任务所需的内存 job.getConfiguration().set("mapreduce.reduce.memory.mb", "4096"); // 设置Reduce任务所需的内存 在这个例子中,我们通过setNumReduceTasks方法设置了Reduce任务的数量,并通过set方法设置了Map和Reduce任务所需的内存大小。这样做可以确保作业在运行时能够获得足够的资源支持。 4.2 实战演练 假设你正在处理一个非常大的数据集,需要运行多个MapReduce作业。要想让每个任务都跑得飞快,你就得根据实际情况来调整资源分配,挺简单的。比如说,你可以多设几个Reduce任务来分担工作,或者给Map任务加点内存,这样就能更好地应付数据暴涨的情况了。 代码示例: java // 创建多个作业并设置资源需求 Job job1 = Job.getInstance(conf, "task-1"); Job job2 = Job.getInstance(conf, "task-2"); job1.setNumReduceTasks(10); job1.getConfiguration().set("mapreduce.map.memory.mb", "3072"); job2.setNumReduceTasks(5); job2.getConfiguration().set("mapreduce.reduce.memory.mb", "8192"); // 提交作业 job1.submit(); job2.submit(); 在这个例子中,我们创建了两个作业,并分别为它们设置了不同的资源需求。用这种方法,我们就能保证每个任务都能得到足够的资源撑腰,这样一来整体效率自然就上去了。 5. 总结与展望 通过今天的探讨,我们了解了如何在Mahout中有效管理Job Scheduling和Resource Allocation Policies。这不仅对提高系统性能超级重要,更是保证数据处理任务顺利搞定的关键!希望这些知识能帮助你在未来的项目中更好地运用Mahout,创造出更加出色的成果! 最后,如果你有任何问题或者想了解更多细节,欢迎随时联系我。我们一起交流,共同进步! --- 好了,小伙伴们,今天的分享就到这里啦!希望大家能够喜欢这篇充满情感和技术的文章。如果你觉得有用,不妨给我点个赞,或者留言告诉我你的想法。我们下次再见!
2025-03-03 15:37:45
66
青春印记
ReactJS
...洁,也不会影响到页面结构。这样一来,我们就能够更轻松地把一组相关的东西放在一起,而且不用担心额外的HTML代码会影响到它们的样式或排版。 2.1 Fragment的语法 在React中,你可以使用两种形式的Fragment: - 短语法:直接使用尖括号包裹多个元素。 - 长语法:使用React.Fragment标签。 示例代码: jsx // 短语法 function MyComponent() { return ( <> 这是第一个元素 这是第二个元素 ); } // 长语法 function MyComponent() { return ( 这是第一个元素 这是第二个元素 ); } 三、遇到的第一个问题 样式问题 3.1 问题描述 在使用Fragment时,最常遇到的一个问题是样式问题。由于Fragment不会在DOM中生成额外的节点,有时候我们的样式可能会受到影响。比如说,你有个CSS选择器,专门用来给某个父元素底下的子元素加样式。但万一这个子元素被塞进了Fragment里,那你可能就得重新想想你的CSS选择了。 3.2 解决方案 3.2.1 使用CSS类名 最简单的解决方案是给Fragment中的元素添加一个唯一的类名,然后通过类名来应用样式。 jsx function MyComponent() { return ( <> 这是第一个元素 这是第二个元素 ); } 3.2.2 使用内联样式 当然,如果你不喜欢使用外部CSS文件,也可以直接在JSX中使用内联样式。 jsx function MyComponent() { return ( <> 这是第一个元素 这是第二个元素 ); } 四、遇到的第二个问题 调试困难 4.1 问题描述 另一个常见的问题是调试困难。因为Fragment在DOM里是没有单独的节点的,所以在浏览器开发者工具里想找某个特定的元素可能会有点难,就像大海捞针一样。这对于初学者来说尤其令人头疼。 4.2 解决方案 4.2.1 使用开发者工具 虽然Fragment本身没有DOM节点,但你可以通过查看其父元素的子元素列表来间接找到它。现代浏览器的开发者工具通常会提供这样的功能。 4.2.2 打印日志 在开发过程中,打印日志也是一个非常有用的技巧。你可以试试用console.log把组件的状态或属性打印出来,这样能更清楚地看到它是怎么工作的。 jsx function MyComponent() { console.log('MyComponent rendered'); return ( <> 这是第一个元素 这是第二个元素 ); } 五、遇到的第三个问题 性能问题 5.1 问题描述 虽然Fragment的主要目的是为了简化代码结构,并不会引入额外的DOM节点,但在某些情况下,如果过度使用,也可能会影响性能。尤其是当Fragment里塞满了各种子元素时,React就得对付一大堆虚拟DOM节点,这样一来,渲染的速度可就受影响了。 5.2 解决方案 5.2.1 合理使用Fragment 尽量只在必要时使用Fragment,避免不必要的嵌套。比如,当你只需要包裹两三个小东西时,用Fragment还挺合适的;但要是东西多了,你可能就得想想,真的有必要用Fragment吗? 5.2.2 使用React.memo或PureComponent 对于那些渲染频率较高且状态变化不频繁的组件,可以考虑使用React.memo或PureComponent来优化性能。这样可以减少不必要的重新渲染。 jsx const MyComponent = React.memo(({ children }) => ( <> {children} )); 六、遇到的第四个问题 可读性问题 6.1 问题描述 最后,还有一种不太明显但同样重要的问题,那就是代码的可读性。虽然Fragment能帮我们更好地整理代码,让结构更清晰,但要是用得太多或者不恰当,反而会让代码变得更乱,读起来费劲,维护起来也头疼。 6.2 解决方案 6.2.1 保持简洁 尽量保持每个Fragment内部的逻辑简单明了。要是某个Fragment里头塞了太多东西或者逻辑太复杂,那最好还是把它拆成几个小块儿,这样会好管理一些。 6.2.2 使用有意义的名字 给Fragment起一个有意义的名字,可以让其他开发者更容易理解这个Fragment的作用。例如,你可以根据它的用途来命名,如。 jsx function UserList() { return ( <> 用户列表 用户1 用户2 ); } 七、总结 总的来说,虽然使用Fragment可以极大地提升代码的可读性和可维护性,但在实际开发过程中也需要注意避免一些潜在的问题。希望能帮到你,在以后的项目里更好地用上Fragment,还能避开那些常见的坑。如果有任何疑问或者更好的建议,欢迎随时交流讨论! --- 以上就是关于“使用Fragment时遇到问题”的全部内容,希望对你有所帮助。如果你觉得这篇文章对你有启发,不妨分享给更多的人看到,我们一起进步!
2024-12-06 16:01:42
48
月下独酌
Etcd
...严苛,如何在保证日志功能的同时确保敏感信息的安全也成为当前热点话题。因此,学习并采用加密传输、日志脱敏等相关技术,也是Etcd以及其他分布式系统运维者在日志管理方面不可忽视的一环。 综上所述,在实际运维工作中,结合最新的日志管理理念和技术手段,将有助于运维团队更加从容地应对复杂多变的业务场景,使Etcd及其他关键组件在保障服务稳定性的同时,更好地服务于企业的数字化转型和云原生战略实施。
2023-01-29 13:46:01
832
人生如戏
Netty
...先从Netty的核心组件之一——ChannelPipeline开始讲起。ChannelPipeline就像是一个传送带,专门用来处理进入和离开的各种事件。每个处理器(ChannelHandler)就像传送带上的一环,共同完成整个流程。当数据流经管道时,每个处理器都可以对其进行修改或过滤。 java public class MyHandler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { // 处理接收到的消息 System.out.println("Received message: " + msg); // 将消息传递给下一个处理器 ctx.fireChannelRead(msg); } } 理解过程: - MyHandler 是一个简单的处理器,它接收消息并打印出来,然后调用 ctx.fireChannelRead(msg) 将消息传递给管道中的下一个处理器。 - JIT编译器可以针对这种频繁调用的方法进行优化,通过预测调用路径减少分支预测错误,进而提升整体性能。 3. ByteBuf 内存管理的艺术 接下来,我们来看看ByteBuf,这是Netty用来替代传统的byte[]数组的一个高性能类。ByteBuf提供了自动内存管理和池化功能,能够显著减少垃圾回收的压力。 java ByteBuf buffer = Unpooled.buffer(16); buffer.writeBytes(new byte[]{1, 2, 3, 4}); System.out.println(buffer.readByte()); buffer.release(); 探讨性话术: - 在这个例子中,我们创建了一个容量为16字节的缓冲区,并写入了一些字节。之后读取第一个字节并释放缓冲区。这里的关键在于JIT编译器如何识别和优化这些内存操作。 - 比如,JIT可能会预热并缓存一些常见的方法调用路径,如writeBytes() 和 readByte(),从而在实际运行时提供更快的访问速度。 4. 内联与逃逸分析 JIT优化的利器 说到JIT编译器的优化策略,不得不提的就是内联和逃逸分析。内联就像是把函数的小身段直接塞进调用的地方,这样就省去了函数调用时的那些繁文缛节;而逃逸分析呢,就像是个聪明的侦探,帮JIT(即时编译器)搞清楚对象到底能不能在栈上安家,这样就能避免在堆上分配对象时产生的额外花销。 java public int sum(int a, int b) { return a + b; } // 调用sum方法 int result = sum(10, 20); 思考过程: - 这段代码展示了简单的内联优化。比如说,如果那个sum()方法老是被反复调用,聪明的JIT编译器可能就会直接把它变成简单的加法运算,这样就省去了每次调用函数时的那些麻烦和开销。 - 同样,如果JIT发现某个对象只在方法内部使用且不逃逸到外部,它可能决定将该对象分配到栈上,这样就无需进行垃圾回收。 5. 结语 拥抱优化,追求极致 总之,Netty框架通过精心设计和利用JIT编译器的各种优化策略,实现了卓越的性能表现。作为开发者,咱们得好好搞懂这些机制,然后在自己的项目里巧妙地用上。说真的,性能优化就像一场永无止境的马拉松,每次哪怕只有一点点进步,也都值得我们去琢磨和尝试。 希望这篇文章能给你带来一些启发,让我们一起在编程的道路上不断前行吧! --- 以上就是我对Netty中JIT编译优化的理解和探讨。如果你有任何问题或者想法,欢迎随时留言交流!
2025-01-21 16:24:42
56
风中飘零_
Kylin
...远程集群引用的表,并设计所需的维度和度量。 4. 构建Cube并对跨集群数据进行查询 完成模型定义后,即可构建Cube。Kylin会在后台执行MapReduce任务,读取远程集群的数据并进行预计算。构建完成后,您便可以针对这个Cube进行快速、高效的查询操作,即使这些数据分布在不同的集群上。 bash 在Kylin命令行工具中构建Cube ./bin/kylin.sh org.apache.kylin.tool.BuildCubeCommand --cube-name MyCube --project-name MyProject --build-type BUILD 至此,通过精心配置和一系列操作,您的Kylin环境已经成功支持了跨集群的数据源查询。在这一路走来,我们不断挠头琢磨、摸石头过河、动手实践,不仅硬生生攻克了技术上的难关,更是让Kylin在各种复杂环境下的强大适应力和灵活应变能力展露无遗。 总结起来,配置Kylin支持跨集群查询的关键在于正确设置数据源连接,并在模型设计阶段合理引用这些远程数据源。每一次操作都像是人类智慧的一次小小爆发,每查询成功的背后,都是我们对Kylin功能那股子钻研劲儿和精心打磨的成果。在这整个过程中,我们实实在在地感受到了Kylin这款大数据处理神器的厉害之处,它带来的便捷性和无限可能性,真是让我们大开眼界,赞不绝口啊!
2023-01-26 10:59:48
84
月下独酌
Sqoop
...pReduce等核心组件。通过Sqoop,用户可以高效地将大量结构化数据从传统数据库导入到Hadoop生态中进行大规模分析和处理。 Sqoop版本号 , Sqoop版本号是指Apache Sqoop项目的特定迭代版本标识,如文中提到的“Sqoop 1.4.7”。每个版本都代表了Sqoop功能集、性能优化以及兼容性等方面的特定状态。在实际使用中,了解Sqoop版本信息至关重要,因为不同版本可能支持的功能、对其他系统(如Hadoop或数据库驱动)的兼容性以及存在的已知问题可能存在差异。 数据迁移 , 数据迁移是指将数据从一个存储位置或系统迁移到另一个位置或系统的全过程。在本文背景下,Sqoop作为一种强大的数据迁移工具,能够实现关系型数据库(如MySQL、Oracle等)与Hadoop生态系统之间的数据交换。具体而言,数据迁移包括从传统数据库抽取数据并将其导入到Hadoop的HDFS或数据分析工具Hive中,或者反向操作,将Hadoop中的数据导出到关系型数据库。这一过程对于大数据处理工作流程中的数据集成、分析和应用具有重要意义。
2023-06-29 20:15:34
64
星河万里
Tomcat
...va应用程序,特别是基于Java EE的应用程序。它在Web开发中扮演着关键角色,提供了一个平台,使得Java应用能在Web服务器上运行,处理HTTP请求并响应。 ClassLoader , Java运行时环境中的一个重要组件,负责加载类和资源到JVM内存中。类加载器根据类名寻找并加载所需的类,如果没有找到,会导致ClassNotFoundError,如文章中提到的空指针异常,通常是由于类加载失败引起的。 Spring Boot , 一个开源框架,简化了现代企业级Java应用的初始搭建和开发过程。它通过自动配置和依赖注入,减少了开发者编写配置代码的工作量,同时支持模块化和快速部署。文章中提到的Spring Boot项目,通常涉及到Spring MVC的使用,其中类加载器在启动时负责加载Spring的组件和配置。 Parent First ClassLoader , Spring Boot中的一个类加载器策略,它首先从父类路径(通常是应用的类路径)中查找类,如果找不到,则会继续在子类路径(即Spring Boot自身的类路径)中查找。这种策略有助于防止类加载冲突,确保应用可以正常运行。 Application ClassLoader , Spring Boot中的另一个类加载器,它是独立于父类加载器的,允许开发者自定义应用的类加载行为。在Spring Boot项目中,它负责加载应用代码、Spring配置和模块化的依赖。 ComponentScan , Spring Boot中的一个功能,允许开发者指定哪些包或组件需要被自动扫描和注册。通过@ComponentScan注解,Spring Boot能够自动发现并管理应用中的各种Spring组件,如@Controller、@Service等。 Classpath , Java应用程序执行时搜索类文件的目录路径,包括JDK安装目录、用户自定义目录以及项目中的类库目录。类路径的设置直接影响类加载器能否找到所需的类。 Maven , 一个流行的Java项目构建工具,它负责管理和协调项目依赖,包括下载、构建和部署JAR文件。Maven的pom.xml文件是配置项目依赖和类路径的关键部分,确保类加载器能找到所有必要的类。 Java EE , Enterprise Edition(企业版)Java,一套全面的企业级Java技术标准,包括Servlet、JSP、EJB、JMS等。Tomcat作为Java EE的轻量级实现,支持这些技术的部署。 ModulePath , 在Spring Boot 3.0及更高版本中,引入的模块化系统中的概念,它定义了模块间的依赖关系和类加载顺序,有助于更好地管理大型项目中的类加载。
2024-04-09 11:00:45
270
心灵驿站
CSS
近日,随着互联网设计领域的不断发展,越来越多的设计师开始关注如何通过CSS技术提升用户体验。除了光标竖线的问题,还有许多类似的细节值得关注。例如,最近苹果公司在iOS 17更新中引入了一项新功能——“专注模式”的动态效果。这项功能不仅提升了系统的交互感,还通过细腻的动画设计减少了用户的认知负担。这一案例再次证明了细节设计对用户体验的重要性。 与此同时,国内也有不少平台在无障碍设计方面取得了显著进展。例如,某电商平台近期推出了一款针对视障用户的语音助手插件,该插件通过深度学习技术实现了更自然的语言交互,极大改善了视障用户购物时的操作体验。这一举措不仅体现了企业社会责任,也为其他互联网公司提供了可借鉴的经验。 此外,W3C(万维网联盟)最近发布了一份关于无障碍标准的新指南,强调了“包容性设计”的必要性。这份指南指出,现代网页设计不仅要注重美观,更要考虑到不同人群的需求,包括老年人、残障人士以及文化背景不同的用户。例如,对于老年用户,设计师应减少复杂的交互步骤,并提供更大的字体和更明显的对比度;而对于多语言环境下的用户,则需要确保内容的翻译准确且符合当地习惯。 这些趋势表明,互联网设计正在从单纯的美学追求向更加人性化、社会化的方向演进。未来,随着人工智能和大数据技术的发展,我们有理由相信,更多基于用户行为分析的设计创新将涌现出来,从而推动整个行业的进步。
2025-04-27 15:35:12
47
风轻云淡_
Apache Solr
...出现版本冲突时,可以设计一种重试机制,让客户端获取最新的版本号后重新发起更新请求。但需要注意避免无限循环和性能开销。 - 分布式事务:对于复杂业务场景,可能需要引入分布式事务管理,如使用Solr的TransactionLog功能实现ACID特性,确保在高并发环境下的数据一致性。 - 应用层控制:在应用层设计合理的并发控制策略,例如使用队列、锁等机制,确保在同一时刻只有一个请求在处理特定文档的更新。 - 合理设置Solr配置:比如调整autoCommit和softCommit的参数,以减少因频繁提交而导致的并发冲突。 5. 总结与思考 在实际开发过程中,我们不仅要了解Apache Solr提供的并发控制机制,更要结合具体业务场景灵活运用,适时采取合适的并发控制策略。当碰上并发写入冲突,导致数据插不进去的尴尬情况时,咱们得主动出击,找寻并实实在在地执行那些能解决问题的好法子,这样才能确保咱们系统的平稳运行,保证数据的准确无误、前后一致。在摸爬滚打的探索旅程中,我们不断吸收新知识,理解奥秘,改进不足,这正是技术所散发出的独特魅力,也是咱们这群开发者能够持续进步、永不止步的原动力。
2023-12-03 12:39:15
538
岁月静好
ClickHouse
...的读取、分析和统计而设计的数据库系统。与传统的行式存储不同,列式数据库将数据按照列进行存储和压缩,优化了对某一列或几列的大规模查询性能,尤其在大数据分析领域表现出色。在本文中,ClickHouse即是一款高性能的列式数据库管理系统。 DDL(Data Definition Language)操作 , DDL是SQL语言的一个子集,用于定义和管理数据库结构,如创建表、修改表结构、删除表等操作。在ClickHouse中,当执行DDL命令如ALTER TABLE时,会对表进行加锁以保证数据一致性,这可能导致并发情况下出现“TableAlreadyLockedException”异常。 MergeTree系列引擎 , MergeTree是ClickHouse数据库中的一个核心存储引擎系列,专门为OLAP(在线分析处理)场景设计,具有高效的数据合并功能,支持多版本并发控制,能够自动合并小的数据块并保持排序,从而提高查询性能。当MergeTree引擎进行数据合并操作时,同样会锁定相关的表,防止并发写入导致的数据不一致。 分布式集群环境 , 分布式集群环境是指由多个计算节点组成的系统,这些节点协同工作,共同提供服务或处理任务。在ClickHouse中,可以通过配置形成分布式表,在这种环境下,数据会被分散存储在各个节点上,ON CLUSTER语法就是为了确保在所有集群节点上顺序执行DDL操作,避免因并发引起的表锁定问题。
2024-02-21 10:37:14
351
秋水共长天一色
Consul
...rvice Mesh组件,可以在多维度上实现服务实例的健壮管理和故障恢复,有效避免服务实例频繁注销带来的负面影响。 此外,对于大规模分布式系统的运维实践,Google SRE团队在其著作《Site Reliability Engineering》中强调了服务注册表的稳定性和完整性对整个系统的重要性,并分享了一系列关于如何设计和实施可靠服务发现系统的最佳实践。这些内容不仅可以帮助我们更好地理解和应对Consul中的服务注销问题,也为构建高可用微服务架构提供了宝贵的经验参考。
2024-01-22 22:56:45
520
星辰大海
Redis
...用解决方案。它的主要功能就是在主节点挂掉后,自动选出一个新老大,并告诉所有的小弟们赶紧换队长。这使得Redis能够更好地应对单点故障问题。 3.1 工作原理 哨兵模式由一组哨兵实例组成,它们负责监控Redis实例的状态。当哨兵发现主节点挂了,就会用Raft算法选出一个新老大,并告诉所有的小弟们赶紧更新配置信息。这个过程是自动完成的,无需人工干预。 3.2 代码示例 要启用哨兵模式,需要先配置哨兵实例。假设你已经安装了Redis,并且主节点运行在localhost:6379上。接下来,你需要创建一个哨兵配置文件sentinels.conf,内容如下: conf sentinel monitor mymaster 127.0.0.1 6379 2 sentinel down-after-milliseconds mymaster 5000 sentinel failover-timeout mymaster 60000 sentinel parallel-syncs mymaster 1 然后启动哨兵实例: bash redis-sentinel sentinels.conf 现在,当你故意关闭主节点时,哨兵会自动选举出一个新的主节点,并通知从节点进行切换。 4. 集群模式 最后,我们来看看Redis集群模式(Cluster Mode),这是一种更加复杂但也更强大的数据同步机制。集群模式允许Redis实例分布在多个节点上,每个节点都可以同时处理读写请求。 4.1 集群架构 在集群模式下,Redis实例被划分为多个槽(slots),每个槽可以归属于不同的节点。当你用客户端连到某个节点时,它会通过键名算出应该去哪个槽,然后就把请求直接发到对的节点上。这样做的好处是,即使某个节点宕机,也不会影响整个系统的可用性。 4.2 实现步骤 为了建立一个Redis集群,你需要准备至少六个Redis实例,每个实例监听不同的端口。然后,使用redis-trib.rb工具来创建集群: bash redis-trib.rb create --replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 创建完成后,你可以通过任何节点来访问集群。例如: bash redis-cli -c -h 127.0.0.1 -p 7000 5. 总结 通过以上介绍,我们可以看到Redis提供了多种数据同步机制,每种机制都有其独特的应用场景。不管是基本的主从复制,还是复杂的集群模式,Redis都能搞定数据同步,让人放心。当然啦,每种方法都有它的长处和短处,到底选哪个还得看你自己的具体情况和所处的环境。希望今天的分享能对你有所帮助,也欢迎大家在评论区讨论更多关于Redis的话题!
2025-03-05 15:47:59
28
草原牧歌
.net
...的编程语言,其强大的功能使我们能够轻松地操作数据库。嘿,有时候生活就像个谜,对吧?比如,你费劲巴拉地在数据海洋里捞啊捞,想把好东西都装进集合里,结果却发现有几样宝贝竟然重复了!想知道这是咋回事吗?今天,咱们就一起解开这个小谜团,学学怎么聪明地避开重复,还能把重复的小伙伴处理得既简单又体面。走起! 二、C遍历数据库的基本原理 1.1 数据访问层概述 首先,让我们回顾一下在.NET中是如何通过ADO.NET或Entity Framework等ORM(对象关系映射)框架来连接和查询数据库的。例如,使用Entity Framework,我们可以这样获取数据: csharp using (var context = new MyDbContext()) { var query = context.MyTable.OrderBy("MyField"); var result = query.ToList(); } 这段代码创建了一个上下文对象,执行SQL查询(按"myField"排序),并将结果转换为List集合。 1.2 遍历与重复问题 当我们直接将查询结果存储到集合中时,如果数据库中有重复的记录,那么集合自然也会包含这些重复项。这是因为集合的默认行为是不进行去重的。 三、去重机制与解决方案 2.1 去重的基本概念 在.NET中,我们需要明确区分两种不同的去重方式:在内存中的去重和在数据库层面的去重。你知道吗,通常在我们拿到数据后,第一件事儿就是清理内存里的重复项,就像整理房间一样,要把那些重复的玩意儿挑出去。而在数据库那头,去重可就有点技术含量了,得靠咱们精心编写的SQL语句,就像侦探破案一样,一点一点找出那些隐藏的“双胞胎”记录。 2.2 内存层面的去重 如果我们希望在遍历后立即去除重复项,可以使用LINQ的Distinct()方法: csharp var uniqueResult = result.Distinct().ToList(); 这将创建一个新的集合,其中只包含唯一的元素。 2.3 SQL层面的去重 如果去重应在数据库层面完成,我们需要在查询语句中加入GROUP BY或DISTINCT关键字。例如: csharp var query = context.MyTable.OrderBy("MyField").GroupBy(x => x.MyField).Select(x => x.First()); 这将确保每组相同的"MyField"值仅返回一个结果。 四、优化与最佳实践 3.1 性能考虑 在处理大量数据时,直接在内存中去重可能会消耗大量资源。在这种情况下,我们可以选择分批处理或者使用数据库的分组功能。 3.2 数据一致性 在设计数据库表结构时,考虑使用唯一索引或主键来保证数据的唯一性,这将减少在应用程序中手动去重的需求。 五、结论 虽然.NET的C为我们提供了强大的数据库操作能力,但处理重复数据时需要我们细心考虑。要想在翻遍数据库的时候不被重复数据烦扰,关键在于透彻明白查询的门道,熟练掌握去重技巧,还得根据实际情况灵活运用策略,就像找宝藏一样,每次都能避开那些已经踩过的雷区。记住,编程不仅仅是语法,更是逻辑和思维的艺术。祝你在.NET的世界里游刃有余!
2024-04-07 11:24:46
437
星河万里_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
history | grep keyword
- 查找历史记录中包含关键词的命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"