前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Spring Boot多模块项目JSP配...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...模型分析指的是在同一问题上使用多个不同的预测模型,通过比较各模型的预测结果,最终得出更为可靠的结论。这种方法的优势在于,不同的模型擅长处理不同类型的数据和问题,通过组合多种模型,可以有效降低单一模型可能带来的偏差,提高预测的准确性和稳定性。 多模型分析在实际应用中的案例 近年来,随着电子商务的蓬勃发展,各大电商平台都在积极探索如何利用多模型分析来优化库存管理、提升用户体验。例如,某知名电商平台采用了包括时间序列分析、机器学习算法、深度学习模型在内的多种分析方法,对用户购物行为、商品销售趋势进行预测。通过比较不同模型的预测结果,平台能够更准确地预测热销商品,及时调整库存,避免缺货或滞销,同时优化推荐系统,提高用户满意度。 实时性与多模型分析 在大数据时代,数据的实时性变得尤为重要。多模型分析同样需要考虑实时数据处理能力。为了实现这一点,一些企业引入了流式数据处理技术,如Apache Flink或Kafka,这些技术能够实现实时数据的采集、处理和分析。结合实时数据的多模型分析,不仅能快速响应市场变化,还能为决策者提供即时的洞察,助力企业做出更迅速、更精准的决策。 结论与展望 多模型分析作为一种综合性强、适应性广的数据分析方法,其在提升决策效率、优化业务流程方面的潜力巨大。未来,随着AI技术的不断进步,多模型分析的应用场景将进一步拓宽,特别是在复杂多变的商业环境中,如何高效整合和运用多种模型,将成为企业竞争力的重要体现。同时,如何确保模型的透明度、可解释性和公平性,也将是多模型分析发展中亟待解决的问题。 多模型分析不仅是一种技术手段,更是企业战略思维的体现,它推动着企业在面对复杂多变的市场环境时,能够更加灵活、精准地做出决策,从而在竞争中占据有利位置。
2024-10-01 16:11:58
130
星辰大海
Apache Pig
...立马就能瞅到,遇到小问题还能马上调试调调试,改一改,试一试,挺好玩的!这样子,咱们的操作过程就像在跟老朋友聊天一样,轻松又自在~哎呀,这种交互方式简直是开发者的大救星啊!特别是对新手来说,简直就像有了个私人教练,手把手教你Pig的基本语法规则和工作流程,让你的学习之路变得轻松又愉快。就像是在玩游戏一样,不知不觉中就掌握了技巧,感觉真是太棒了! 四、使用Scripting Shell进行数据处理 实战演练 让我们通过几个具体的例子来深入了解如何利用Scripting Shell进行数据处理: 示例1:加载并查看数据 首先,我们需要从HDFS加载数据集。假设我们有一个名为orders.txt的文件,存储了订单信息,我们可以使用以下脚本来加载数据并查看前几行: pig A = LOAD 'hdfs://path_to_your_file/orders.txt' USING PigStorage(',') AS (order_id:int, customer_id:int, product_id:int, quantity:int); dump A; 在这个例子中,我们使用了LOAD语句从HDFS加载数据,PigStorage(',')表示数据分隔符为逗号,然后定义了一个元组类型(order_id:int, customer_id:int, product_id:int, quantity:int)。dump命令则用于输出数据集的前几行,帮助我们验证数据是否正确加载。 示例2:数据过滤与聚合 接下来,假设我们想要找出每个客户的总订单数量: pig B = FOREACH A GENERATE customer_id, SUM(quantity) as total_quantity; C = GROUP B by 0; D = FOREACH C GENERATE key, SUM(total_quantity); dump D; 在这段脚本中,我们首先对原始数据集A进行处理,计算每个客户对应的总订单数量(步骤B),然后按照客户ID进行分组(步骤C),最后再次计算每组的总和(步骤D)。最终,dump D命令输出结果,显示了每个客户的ID及其总订单数量。 示例3:数据清洗与异常值处理 在处理真实世界的数据时,数据清洗是必不可少的步骤。例如,假设我们发现数据集中存在无效的订单ID: pig E = FILTER A BY order_id > 0; dump E; 通过FILTER语句,我们仅保留了order_id大于0的记录,这有助于排除无效数据,确保后续分析的准确性。 五、结语 Apache Pig的未来与挑战 随着大数据技术的不断发展,Apache Pig作为其生态中的重要组成部分,持续进化以适应新的需求。哎呀,你知道吗?Scripting Shell这个家伙,简直是咱们数据科学家们的超级帮手啊!它就像个神奇的魔法师,轻轻一挥,就把复杂的数据处理工作变得简单明了,就像是给一堆乱糟糟的线理了个顺溜。而且,它还能搭建起一座桥梁,让咱们这些数据科学家们能够更好地分享知识、交流心得,就像是在一场热闹的聚会里,大家围坐一起,畅所欲言,气氛超棒的!哎呀,你知道不?现在数据越来越多,越来越复杂,咱们得好好处理才行。那啥,Apache Pig这东西,以后要想做得更好,得解决几个大问题。首先,怎么让性能更上一层楼?其次,怎么让系统能轻松应对更多的数据?最后,怎么让用户用起来更顺手?这些可是Apache Pig未来的头等大事! 通过本文的探索,我们不仅了解了Apache Pig的基本原理和Scripting Shell的功能,还通过实际示例亲身体验了如何使用它来进行高效的数据处理。希望这些知识能够帮助你开启在大数据领域的新篇章,探索更多可能!
2024-09-30 16:03:59
95
繁华落尽
转载文章
...) 概率与统计的中心问题,都是random variable, PMF与PDF PMF:probability mass function,概率质量函数,是离散型随机变量在各特定取值上的概率。与概率密度函数(PDF:probability density function)的不同之处在于:概率质量函数是对离散型随机变量定义的,本身代表该值的概率;概率密度函数是针对连续型随机变量定义的,本身不是概率(连续型随机变量单点测度为0),只有在对连续随机变量的pdf在某一给定的区间内进行积分才是概率。 notation 假设X 是一个定义在可数样本空间S 上的离散型随机变量S⊆R ,则其概率质量函数PMF为: fX(x)={Pr(X=x),0,x∈Sx∈R∖S 注意这在所有实数上,包括那些X 不可能等于的实数值上,都定义了pmf,只不过在这些X 不可能取的实数值上,fX(x) 取值为0(x∈R∖S,Pr(X=x)=0 )。 离散型随机变量概率质量函数(pmf)的不连续性决定了其累积分布函数(cdf)也不连续。 共轭先验(conjugate prior) 所谓共轭(conjugate),描述刻画的是两者之间的关系,单独的事物不构成共轭,举个通俗的例子,兄弟这一概念,只能是两者才能构成兄弟。所以,我们讲这两个人是兄弟关系,A是B的兄弟,这两个分布成共轭分布关系,A是B的共轭分布。 p(θ|X)=p(θ)p(X|θ)p(x) p(X|θ) :似然(likelihood) p(θ) :先验(prior) p(X) :归一化常数(normalizing constant) 我们定义:如果先验分布(p(θ) )和似然函数(p(X|θ) )可以使得先验分布(p(θ) )和后验分布(p(θ|X) )有相同的形式(如,Beta(a+k, b+n-k)=Beta(a, b)binom(n, k)),那么就称先验分布与似然函数是共轭的(成Beta分布与二项分布是共轭的)。 几个常见的先验分布与其共轭分布 先验分布 共轭分布 伯努利分布 beta distribution Multinomial Dirichlet Distribution Gaussian, Given variance, mean unknown Gaussian Distribution Gaussian, Given mean, variance unknown Gamma Distribution Gaussian, both mean and variance unknown Gaussian-Gamma Distribution 最大似然估计(MLE) 首先来看,大名鼎鼎的贝叶斯公式: p(θ|X)=p(θ)p(X|θ)p(X) 可将θ 看成欲估计的分布的参数,X 表示样本,p(X|θ) 则表示似然。 现给定样本集\mathcal{D}=\{x_1,x_2,\ldots,x_N\}D={x1,x2,…,xN} ,似然函数为: p(\mathcal{D}|\theta)=\prod_{n=1}^Np(x_n|\theta) p(D|θ)=∏n=1Np(xn|θ) 为便于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
517
转载
转载文章
转载文章
...近在工作当中遇到一个问题 有个页面需要添加一个浏览历史记录功能 具体来说就是要记录下用户在此网站的点击历史 并把它们降序排列出来(只显示前6个浏览历史而且不能重复) 由于以前对javascript了解不够深入 一时间手足无措 后来经过两位高手同事的指点(对这两位同事的敬仰犹如滔滔江水连绵不绝...) 恍然大悟 豁然开朗 成功地完成了此功能的添加 首先来介绍一下javascript中关于此功能的一些对象和方法: 1. window.event对象: event代表事件的状态,例如触发event对象的元素、鼠标的位置及状态、按下的键等等。 event对象只在事件发生的过程中才有效。 2. event.srcElement: 表示该事件的发生源 通俗一点说也就是该事件被触发的地方 3. srcElement.parentNode: 表示该事件发生源的父结点 4. srcElement.tagName: 表示事件发生源的标签名 5. toUpperCase(): 大写化相应字符串的方法 基本上就是这些属性和方法,可能对于刚刚接触javascript的朋友们或者以前很少使用此类功能的朋友来说, 这些对象有些陌生,不过没关系,了解以后发现其实并不难,和javascript验证表单之类的并没有太多的不同。 下面就结合程序给大家一步一步讲解(程序难免有不合理之处,希望大家多多指正,共同进步): 第一部分:javascript纪录浏览动作 复制内容到剪贴板 代码: function glog(evt) //定义纪录鼠标点击动作的函数 { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) //以上这个语句判断鼠标动作是否发生在有效区域,防止用户的无效点击也被纪录下来 { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A")//判断用户点击的对象是否属于链接 { linkname=srcElem.innerHTML; //取出事件发生源的名称,也就是和之间的文字,也就是链接名称哈 address=srcElem.href+"_www.achome.cn_"; //取出事件发生源的href值,也就是该链接的地址 wlink=linkname+"+"+address; //将链接名称和链接地址整合到一个变量当中 old_info=getCookie("history_info"); //从Cookies中取出以前纪录的浏览历史,该函数后面有声明 //以下程序开始判断新的浏览动作是否和已有的前6个历史重复,如果不重复则写入cookies var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } if(insert) { wlink+=getCookie("history_info"); setCookie("history_info",wlink); //写入cookie,该函数后面有声明 history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog;//使每一次页面的点击动作都执行glog函数 第2部分:Cookies的相关函数 复制内容到剪贴板 代码: //cookie的相关函数 //读取cookie中指定的内容 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } //将浏览动作写入cookie function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } 第3部分:页面显示函数 复制内容到剪贴板 代码: function history_show() { var history_info=getCookie("history_info"); //取出cookie中的历史记录 var content=""; //定义一个显示变量 if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } 代码差不多就是这些了 就为大家分析到这里 还有不足之处还请大家多多指教 下面可以运行代码查看效果 查看效果 //cookie的相关函数 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } function glog(evt) { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A") { linkname=srcElem.innerHTML; address=srcElem.href+"_www.achome.cn_"; wlink=linkname+"+"+address; old_info=getCookie("history_info"); var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } / if(insert) //如果符合条件则重新写入数据 { wlink+=getCookie("history_info"); setCookie("history_info",wlink); history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog; function history_show() { var history_info=getCookie("history_info"); var content=""; if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } // JavaScript Document 浏览历史排行(只显示6个最近访问站点并且没有重复的站点出现) history_show(); 点击链接: 网站1 网站2 网站3 网站4 网站5 网站6 网站7 网站8 网站9 如果有其他疑问请登陆www.achome.cn与我联系 提示:您可以先修改部分代码再运行 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30611227/article/details/117818020。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 21:14:40
48
转载
转载文章
...意的是,支付接口合规问题同样重要。近期,国家监管部门针对支付行业出台了多项新规定,强调支付机构需严格遵守用户信息保护、反洗钱等相关法规,要求企业在对接支付接口时必须充分考虑监管要求,做好合规审查和技术对接工作。 综上所述,商户在选择和使用支付接口时,除了关注即时到账、多渠道支付等功能特性外,还需要密切关注支付行业的最新动态、技术趋势以及相关法律法规的变化,以便及时调整策略,确保业务流程既高效又合规。
2023-12-18 16:55:58
91
转载
MySQL
...,我们常常会遇到一个问题:如何快速、有效地将无限极分类转换为层级结构呢? 二、为什么要使用无限极分类? 首先,我们需要了解一下什么是无限极分类。无限极分类就像一棵大树,它的构造挺有趣。在这样的树形结构中,每一个小节点都有一个自己的‘老爹’节点,而这个‘老爹’呢,它还可能是其他许多小节点的‘老爹’。这样的构造方式,其实就像家谱一样,可以展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
58
星河万里_t
Apache Lucene
...将深入剖析如何在实际项目中利用FuzzyQuery,让搜索体验更加人性化。 二、什么是FuzzyQuery 1. 概念解析 FuzzyQuery是Lucene中用于执行模糊搜索的核心工具,它通过计算查询词与索引中的单词之间的Levenshtein距离(也称编辑距离),找到那些相似度超过预设阈值的文档。你知道吗,编辑距离这玩意儿就像个搞笑的测谎游戏,它比量两个词串之间的亲密度,简单说就是,你要么得添字、减字或者动动手脚换个别字,最少几次才能让这两个词串变成亲兄弟一样挨着。 三、FuzzyQuery的使用示例 2. 编码实现 以下是一个简单的Java代码片段,展示了如何使用FuzzyQuery进行模糊搜索: java import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.queryparser.classic.QueryParser; import org.apache.lucene.search.; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class FuzzySearchExample { public static void main(String[] args) throws Exception { Directory indexDir = new RAMDirectory(); // 创建内存索引 Analyzer analyzer = new StandardAnalyzer(); // 使用标准分析器 // 假设我们有一个文档集合,这里只创建一个简单的文档 Document doc = new Document(); doc.add(new TextField("content", "Lucene is awesome", Field.Store.YES)); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(indexDir, config); writer.addDocument(doc); writer.close(); String queryTerm = "Lucenes"; // 用户输入的模糊查询词 float fuzziness = 1f; // 设置模糊度,例如1代表允许一个字符的差异 QueryParser parser = new QueryParser("content", analyzer); FuzzyQuery fuzzyQuery = new FuzzyQuery(parser.parse(queryTerm), fuzziness); IndexReader reader = DirectoryReader.open(indexDir); TopDocs topDocs = searcher.search(fuzzyQuery, 10); // 返回最多10个匹配结果 for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document hitDoc = searcher.doc(scoreDoc.doc); System.out.println("Score: " + scoreDoc.score + ", Hit: " + hitDoc.get("content")); } reader.close(); } } 这段代码首先创建了一个简单的索引,然后构造了一个FuzzyQuery实例,指定要搜索的关键词和允许的最大编辑距离。搜索时,我们能看到即使用户输入的不是完全匹配的"Lucene",而是"Lucenes",FuzzyQuery也能返回相关的结果。 四、FuzzyQuery优化策略 3. 性能与优化 当处理大量数据时,FuzzyQuery可能会变得较慢,因为它的计算复杂度与搜索词的长度和索引的大小有关。为了提高效率,可以考虑以下策略: - 前缀匹配:使用PrefixQuery结合FuzzyQuery,仅搜索具有相同前缀的文档,这可以减少搜索范围。 - 阈值调整:根据应用需求调整模糊度阈值,更严格的阈值可以提高精确度,但搜索速度会下降。 - 分批处理:如果搜索结果过多,可以分批处理,先缩小范围,再逐步细化。 五、结论 4. 未来展望与总结 FuzzyQuery在提高搜索灵活性的同时,也对性能提出了挑战。要想在项目里游刃有余,得深入理解那些神奇的机制和巧妙的策略,这样才能精准又高效,就像个武林高手一样,既能一击即中,又能快如闪电。Lucene那强大的模糊搜索绝不仅仅是纠错能手,它还能在你打字时瞬间给出超贴心的拼写建议,让找东西变得超级简单,简直提升了搜寻乐趣好几倍!随着科技日新月异,Lucene这家伙也越变越聪明,咱们可真盼着瞧见那些超酷的新搜索招数,让找东西这事变得更聪明又快捷,就像点穴一样精准! 在构建现代应用程序时,了解并善用这些高级查询工具,无疑会让我们的搜索引擎更具竞争力。希望这个简单示例能帮助你开始在项目中运用FuzzyQuery,提升搜索的精准度和易用性。
2024-06-11 10:54:39
497
时光倒流
转载文章
...loc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
转载文章
...比较菜,其中遇到一个问题,未对 Graphics 填充底色,那么文字的 ClearType 效果没有了,文字毛边比较明显,不知道为什么,谁能告诉竹子? 代码相对粗糙,没有考虑更多的情况,在测试过程中,以20px 字体呈现,效果感觉还不错,只是 ClearType 效果没有了。 帖几张看看 ------------ ------------ ------------ ------------ 有一些随机的不好,象下面这张 相关链接: 查看 V1.0 .NET 2.0 代码如下: using System; using System.Drawing; using System.Web; namespace Oran.Image { /// <summary> /// 旋转的可视验证码图象 /// </summary> public class RotatedVlidationCode { public enum RandomStringMode { /// <summary> /// 小写字母 /// </summary> LowerLetter, /// <summary> /// 大写字母 /// </summary> UpperLetter, /// <summary> /// 混合大小写字母 /// </summary> Letter, /// <summary> /// 数字 /// </summary> Digital, /// <summary> /// 混合数字与大小字母 /// </summary> Mix } public static string GenerateRandomString(int length, RandomStringMode mode) { string rndStr = string.Empty; if (length == 0) return rndStr; //以数组方式候选字符,可以更方便的剔除不要的字符,如数字 0 与字母 o char[] digitals = new char[10] { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }; char[] lowerLetters = new char[26] { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; char[] upperLetters = new char[26] { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] letters = new char[52]{ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; char[] mix = new char[62]{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' }; int[] range = new int[2] { 0, 0 }; Random random = new Random(); switch (mode) { case RandomStringMode.Digital: for (int i = 0; i < length; ++i) rndStr += digitals[random.Next(0, digitals.Length)]; break; case RandomStringMode.LowerLetter: for (int i = 0; i < length; ++i) rndStr += lowerLetters[random.Next(0, lowerLetters.Length)]; break; case RandomStringMode.UpperLetter: for (int i = 0; i < length; ++i) rndStr += upperLetters[random.Next(0, upperLetters.Length)]; break; case RandomStringMode.Letter: for (int i = 0; i < length; ++i) rndStr += letters[random.Next(0, letters.Length)]; break; default: for (int i = 0; i < length; ++i) rndStr += mix[random.Next(0, mix.Length)]; break; } return rndStr; } /// <summary> /// 显示验证码 /// </summary> /// <param name="seed">随机数辅助种子</param> /// <param name="strLen">验证码字符长度</param> /// <param name="fontSize">字体大小</param> /// <param name="mode">随机字符模式</param> /// <param name="clrFont">字体颜色</param> /// <param name="clrBg">背景颜色</param> public static void ShowValidationCode(ref int seed, int strLen, int fontSize, RandomStringMode mode, Color clrFont, Color clrBg) { int tmpSeed; unchecked { tmpSeed = (int)(seed DateTime.Now.Ticks); ++seed; } Random rnd = new Random(tmpSeed); string text = GenerateRandomString(strLen, mode); int height = fontSize 2; // 因为字体旋转后每个字体所占宽度会所有加大,所以要加一点补偿宽度 int width = fontSize text.Length + fontSize / (text.Length - 2); Bitmap bmp = new Bitmap(width, height); Graphics graphics = Graphics.FromImage(bmp); Font font = new Font("Courier New", fontSize, FontStyle.Bold); Brush brush = new SolidBrush(clrFont); Brush brushBg = new SolidBrush(clrBg); graphics.FillRectangle(brushBg, 0, 0, width, height); Bitmap tmpBmp = new Bitmap(height, height); Graphics tmpGph = null; int degree = 40; Point tmpPoint = new Point(); for (int i = 0; i < text.Length; i++) { tmpBmp = new Bitmap(height, height); tmpGph = Graphics.FromImage(tmpBmp); // tmpGph.TextRenderingHint = System.Drawing.Text.TextRenderingHint.SingleBitPerPixelGridFit; // 不填充底色,文字 ClearType 效果不见了,why?! // tmpGph.FillRectangle(brushBg, 0, 0, tmpBmp.Width, tmpBmp.Height); degree = rnd.Next(20, 51); // [20, 50]随机角度 if (rnd.Next(0, 2) == 0) { tmpPoint.X = 12; // 调整文本坐标以适应旋转后的图象 tmpPoint.Y = -6; } else { degree = ~degree + 1; // 逆时针旋转 tmpPoint.X = -10; tmpPoint.Y = 6; } tmpGph.RotateTransform(degree); tmpGph.DrawString(text[i].ToString(), font, brush, tmpPoint); graphics.DrawImage(tmpBmp, i fontSize, 0); // 拼接图象 } //输出图象 System.IO.MemoryStream memoryStream = new System.IO.MemoryStream(); bmp.Save(memoryStream, System.Drawing.Imaging.ImageFormat.Gif); HttpContext.Current.Response.Cache.SetCacheability(HttpCacheability.NoCache); HttpContext.Current.Response.ClearContent(); HttpContext.Current.Response.ContentType = "image/gif"; HttpContext.Current.Response.BinaryWrite(memoryStream.ToArray()); HttpContext.Current.Response.End(); //释放资源 font.Dispose(); brush.Dispose(); brushBg.Dispose(); tmpGph.Dispose(); tmpBmp.Dispose(); graphics.Dispose(); bmp.Dispose(); memoryStream.Dispose(); } } } 转载于:https://www.cnblogs.com/iRed/archive/2008/06/22/1227687.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30600197/article/details/96672619。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-27 09:38:56
249
转载
Spark
...绝对是我们处理大数据问题时的得力助手。然而,在处理大量小文件时,Spark的性能可能会受到影响。那么,如何通过一些技巧来优化Spark在读取大量小文件时的性能呢? 二、为什么要关注小文件处理? 在实际应用中,我们往往会遇到大量的小文件。例如,电商网站上的商品详情页、新闻站点的每篇文章等都是小文件。这些小文件要是拿Spark直接处理的话,可能不大给力,性能上可能会有点缩水。 首先,小文件的数量非常多。由于磁盘I/O这小子的局限性,咱们现在只能像小蚂蚁啃骨头那样,每次读取一点点的小文件,意思就是说,想要完成整个大任务,就得来回折腾、反复读取多次才行。这无疑会增加处理的时间和开销。 其次,小文件的大小较小,因此在传输过程中也会消耗更多的网络带宽。这不仅增加了数据传输的时间,还可能会影响到整体的系统性能。 三、优化小文件处理的方法 针对上述问题,我们可以采用以下几种方法来优化Spark在读取大量小文件时的性能。 1. 使用Dataframe API Dataframe API是Spark 2.x版本新增的一个重要特性,它可以让我们更方便地处理结构化数据。相比于RDD,Dataframe API可真是个贴心小能手,它提供的接口不仅瞅着更直观,操作起来更是高效溜溜的。这样一来,咱们就能把那些不必要的中间转换和操作通通“踢飞”,让数据处理变得轻松又愉快!另外,Dataframe API还超级给力地支持一些更高级的操作,比如聚合、分组什么的,这对于处理那些小文件可真是帮了大忙了! 下面是一个简单的例子,展示如何使用Dataframe API来读取小文件: java val df = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("/path/to/files/") 在这个例子中,我们使用read函数从指定目录下读取CSV文件,并将其转化为DataFrame。然后,我们可以通过各种函数对DataFrame进行操作,如show、filter、groupBy等。 2. 使用Spark SQL Spark SQL是一种高级抽象,用于查询关系表。就像Dataframe API那样,Spark SQL也给我们带来了一种超级实用又高效的处理小文件的方法,一点儿也不复杂,特别接地气儿。Spark SQL还自带了一堆超级实用的内置函数,比如COUNT、SUM、AVG这些小帮手,用它们来处理小文件,那速度可真是嗖嗖的,轻松又高效。 下面是一个简单的例子,展示如何使用Spark SQL来读取小文件: scss val df = spark.sql("SELECT FROM /path/to/files/") 在这个例子中,我们使用sql函数来执行SQL语句,从而从指定目录下读取CSV文件并转化为DataFrame。 3. 使用Partitioner Partitioner是Spark的一种内置机制,用于将数据分割成多个块。当我们处理大量小文件时,可以使用Partitioner来提高处理效率。其实呢,我们可以这样来操作:比如说,按照文件的名字呀,或者文件里边的内容这些规则,把那些小文件分门别类地整理一下。就像是给不同的玩具放在不同的抽屉里一样,每个类别都单独放到一个文件夹里面去存储,这样一来就清清楚楚、井井有条啦!这样一来,每次我们要读取文件的时候,就只需要瞄一眼一个文件夹里的内容,压根不需要把整个目录下的所有文件都翻个底朝天。 下面是一个简单的例子,展示如何使用Partitioner来处理小文件: python val partitioner = new HashPartitioner(5) val rdd = sc.textFile("/path/to/files/") .map(line => (line.split(",").head, line)) .partitionBy(partitioner) val output = rdd.saveAsTextFile("/path/to/output/") 在这个例子中,我们首先使用textFile函数从指定目录下读取文本文件,并将其转化为RDD。接着,我们运用一个叫做map的神奇小工具,就像魔法师挥动魔杖那样,把每一行文本巧妙地一分为二,一部分是文件名,另一部分则是内容。然后,我们采用了一个叫做partitionBy的神奇函数,就像把RDD里的数据放进不同的小篮子里那样,按照文件名给它们分门别类。这样一来,每个“篮子”里都恰好装了5个小文件,整整齐齐,清清楚楚。最后,我们使用saveAsTextFile函数将RDD保存为文本文件。因为我们已经按照文件名把文件分门别类地放进不同的“小桶”里了,所以现在每次找文件读取的时候,就不用像无头苍蝇一样满目录地乱窜,只需要轻轻松松打开一个文件夹,就能找到我们需要的文件啦! 四、结论 通过以上三种方法,我们可以有效地优化Spark在读取大量小文件时的性能。Dataframe API和Spark SQL提供了简单且高效的API,可以快速处理结构化数据。Partitioner这个小家伙,就像个超级有条理的文件整理员,它能够按照特定的规则,麻利地把那些小文件分门别类放好。这样一来,当你需要读取文件的时候,就仿佛拥有了超能力一般,嗖嗖地提升读取速度,让效率飞起来!当然啦,这只是入门级别的小窍门,真正要让方案火力全开,还得瞅准实际情况灵活变通,不断打磨和优化才行。
2023-09-19 23:31:34
45
清风徐来-t
Apache Solr
...机制,并激发你在实际项目中的创新应用。让我们一起探索更多可能,构建更加出色的信息检索系统吧!
2024-07-25 16:05:59
425
秋水共长天一色
转载文章
...,将有助于我们在实际项目中更好地利用Selenium以及其他配套工具,不断提升自动化测试的效果与价值。
2023-12-03 12:51:11
45
转载
Beego
...e)错误是一种常见的问题,它可能由各种原因引起,如服务器超载、资源耗尽、网络故障等。本文将围绕Beego框架,深入探讨如何识别、诊断和解决服务不可用的问题,提供实用的策略和代码示例。 一、认识服务不可用错误 服务不可用错误通常在HTTP响应中表现为503状态码,表示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
c++
...们经常遇到各种各样的问题,其中资源管理是至关重要的一个环节。哎呀,你猜怎么着?要是你对内存、文件啊,或者是网络连接这些玩意儿管得不好,那可就麻烦大了!搞不好程序就直接崩了,辛辛苦苦弄的数据全都没了,还有可能给坏蛋们留下可乘之机,让他们钻安全漏洞的空子。所以啊,咱们在这些事儿上可得细心点儿,别让它们成为你的大麻烦!哎呀,你瞧这C++,简直就是编程界的超级英雄嘛!它手里的工具可多啦,能让开发者们在写代码的时候,就像盖高楼大厦一样稳稳当当,既安全又可靠。想象一下,你用C++编程,就像是在用魔法,不仅能够创造出超酷的软件,还能让这些软件运行得比闪电还快,稳定性那就更不用说了,简直是无敌的存在!所以啊,如果你是个编程小能手,那C++绝对是你不可错过的神器!在这篇文章中,我们将探讨如何利用C++的特性,特别是资源管理机制,来构建异常安全的程序设计。 第一部分:资源管理的重要性 资源管理是程序设计中不可或缺的一部分,它关乎程序的稳定性和安全性。哎呀,你要是写代码的时候,不小心没把那些用到的资源,比如文件夹的小钥匙、数据库的密码本或者网线插头啥的,都给好好放回原位,那可是大麻烦啊!不光是浪费了电脑里的宝贵空间,程序要是遇到点啥意外,就像没关紧的水龙头,没法好好休息,容易出故障。更糟糕的是,这些乱糟糟的资源可能还会给坏人提供机会,让他们偷偷溜进你的系统里捣乱。所以,记得每次用完资源,都要好好收好,别让它们乱跑!因此,确保资源在不再需要时被正确地释放,对于构建健壮和可靠的软件至关重要。 第二部分:C++中的资源管理方法 C++提供了几种不同的方式来管理资源,包括智能指针、RAII(Resource Acquisition Is Initialization)原则以及手动管理资源的方法。在这篇文章中,我们将重点介绍智能指针,尤其是std::unique_ptr和std::shared_ptr,它们是现代C++中实现资源管理的强大工具。 代码示例 1: 使用 std::unique_ptr 管理资源 cpp include include class Resource { public: Resource() { std::cout << "Resource created." << std::endl; } ~Resource() { std::cout << "Resource destroyed." << std::endl; } }; int main() { std::unique_ptr resource = std::make_unique(); // 使用资源... return 0; } 在这个例子中,当 resource 对象离开作用域时(即函数执行完毕),Resource 的析构函数会被自动调用,确保资源被正确释放。这就是RAII原则的一个简单应用,它使得资源管理变得简洁且易于理解。 代码示例 2: 使用 std::shared_ptr 实现共享所有权 cpp include include class SharedResource { public: SharedResource() { std::cout << "SharedResource created." << std::endl; } ~SharedResource() { std::cout << "SharedResource destroyed." << std::endl; } }; int main() { std::shared_ptr shared_resource1 = std::make_shared(); std::shared_ptr shared_resource2 = shared_resource1; // 共享资源... return 0; } 这里展示了 std::shared_ptr 如何允许多个对象共享对同一资源的所有权。当最后一个持有 shared_resource1 的引用消失时,资源才会被释放。这种机制有助于避免内存泄漏,并确保资源在适当的时候被释放。 第三部分:异常安全的资源管理 在C++中,异常安全的资源管理尤为重要。当程序中包含可能抛出异常的操作时,确保资源在异常发生时也能得到妥善处理,是非常关键的。智能指针提供了一种自然的方式来实现这一点,因为它们会在异常发生时自动释放资源,而无需额外的保护措施。 代码示例 3: 异常安全的资源管理示例 cpp include include include class CriticalResource { public: CriticalResource() { std::cout << "CriticalResource created." << std::endl; } ~CriticalResource() { std::cout << "CriticalResource destroyed." << std::endl; } void criticalOperation() { throw std::runtime_error("An error occurred during critical operation."); } }; int main() { try { std::unique_ptr critical_resource = std::make_unique(); critical_resource->criticalOperation(); } catch (const std::exception& e) { std::cerr << "Exception caught: " << e.what() << std::endl; } return 0; } 在上述代码中,critical_operation 可能会抛出异常。哎呀,你知道的,critical_resource 这个家伙可是被 std::unique_ptr 给罩着呢!这可真是太好了,因为这样,如果程序里突然蹦出个异常来,critical_resource 就能自动被释放掉,不会出现啥乱七八糟、不靠谱的行为。这下子,咱们就不用操心资源没清理干净这种事儿啦! 第四部分:结论 通过使用C++的智能指针和RAII原则,我们可以轻松地实现异常安全的资源管理,这大大增强了程序的可靠性和稳定性。哎呀,兄弟,你要是想让你的代码跑得顺畅,资源管理这事儿可得好好抓牢!别小瞧了它,这玩意儿能防住好多坑,比如内存漏了或者资源没收好,那程序一不小心就卡死或者出bug,用户体验直接掉分。还有啊,万一程序遇到点啥意外,比如服务器突然断电啥的,资源管理做得好,程序就能像小猫一样,优雅地处理问题,然后自己蹦跶回来,用户一点都感觉不到。这样一来,不光用户体验上去了,系统的稳定性和质量也跟着水涨船高,你说值不值! 总之,资源管理是构建强大、安全和高效的C++程序的关键。嘿!兄弟,学了这些技术后,你就能像大厨炒菜一样,把程序做得既美味又营养。这样一来,修修补补的工作就少多了,就像不用天天洗碗一样爽快!而且,你的代码就像是一本好书,别人一看就懂,就像看《哈利·波特》一样过瘾。最后,用户得到的服务就像五星级餐厅的餐点,稳定又可靠,他们吃得开心,你也跟着美滋滋!
2024-10-05 16:01:00
48
春暖花开
转载文章
...果你有任何编程方面的问题,可以加我微信交流 2501902696(备注编程) by:年糕妈妈qcl 转载于:https://juejin.im/post/5ca30ad1e51d4514c01634f1 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/91475198。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-29 13:55:00
322
转载
转载文章
...更多开源地理空间数据项目纳入支持范围,让用户能更加便捷地创建符合特定业务需求的地图图表。通过这些升级,amCharts 5旨在巩固其作为行业领先的数据可视化工具的地位,赋能各行业用户高效、精准地洞察并传达复杂数据背后的价值。
2023-09-17 18:18:34
351
转载
Hadoop
...据融合 在大数据分析项目中,HBase可以与其他Hadoop生态系统内的组件(如MapReduce、Spark)结合,处理从各种来源收集的数据,包括但不限于NoSQL数据库。通过这种方式,可以构建更复杂的数据模型和分析流程。 3. 实时数据处理 借助HBase的实时查询能力,可以集成到流处理系统中,如Apache Kafka和Apache Flink,实现数据的实时分析和决策支持。 示例代码实现 下面我们将通过一个简单的示例,展示如何使用HBase与MongoDB进行数据交互。这里假设我们已经安装了HBase和MongoDB,并且它们在本地运行。 步骤一:连接HBase java import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; public class HBaseConnection { public static void main(String[] args) { String hbaseUrl = "localhost:9090"; try { Connection connection = ConnectionFactory.createConnection(HBaseConfiguration.create(), hbaseUrl); System.out.println("Connected to HBase"); } catch (Exception e) { System.err.println("Error connecting to HBase: " + e.getMessage()); } } } 步骤二:连接MongoDB java import com.mongodb.MongoClient; import com.mongodb.client.MongoDatabase; public class MongoDBConnection { public static void main(String[] args) { String mongoDbUrl = "mongodb://localhost:27017"; try { MongoClient client = new MongoClient(mongoDbUrl); MongoDatabase database = client.getDatabase("myDatabase"); System.out.println("Connected to MongoDB"); } catch (Exception e) { System.err.println("Error connecting to MongoDB: " + e.getMessage()); } } } 步骤三:数据交换 为了简单起见,我们假设我们有一个简单的HBase表和一个MongoDB集合,我们将从HBase读取数据并将其写入MongoDB。 java import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Table; import org.apache.hadoop.hbase.util.Bytes; import com.mongodb.client.MongoCollection; import com.mongodb.client.model.Filters; import com.mongodb.client.model.UpdateOptions; import com.mongodb.client.model.UpdateOneModel; public class DataExchange { public static void main(String[] args) { // 连接HBase String hbaseUrl = "localhost:9090"; try { Connection hbaseConnection = ConnectionFactory.createConnection(HBaseConfiguration.create(), hbaseUrl); Table hbaseTable = hbaseConnection.getTable(TableName.valueOf("users")); // 连接MongoDB String mongoDbUrl = "mongodb://localhost:27017"; MongoClient mongoClient = new MongoClient(mongoDbUrl); MongoDatabase db = mongoClient.getDatabase("myDatabase"); MongoCollection collection = db.getCollection("users"); // 从HBase读取数据 Put put = new Put(Bytes.toBytes("123")); hbaseTable.put(put); // 将HBase数据写入MongoDB Document doc = new Document("_id", "123").append("name", "John Doe"); UpdateOneModel updateModel = new UpdateOneModel<>(Filters.eq("_id", "123"), new Document("$set", doc), new UpdateOptions().upsert(true)); collection.updateOne(updateModel); System.out.println("Data exchange completed."); } catch (Exception e) { System.err.println("Error during data exchange: " + e.getMessage()); } } } 请注意,上述代码仅为示例,实际应用中可能需要根据具体环境和需求进行调整。 结论 Hadoop的HBase与NoSQL数据库的集成不仅拓展了数据处理的边界,还极大地提升了数据分析的效率和灵活性。通过灵活的数据交换策略,企业能够充分利用现有数据资源,构建更加智能和响应式的业务系统。无论是数据融合、实时分析还是复杂查询,HBase的集成能力都为企业提供了强大的数据处理工具包。嘿,你知道吗?科技这玩意儿真是越来越神奇了!随着每一步发展,咱们就像在探险一样,发现越来越多的新玩法,新点子。就像是在拼图游戏里,一块块新的碎片让我们能更好地理解这个大数据时代,让它变得更加丰富多彩。我们不仅能看到过去,还能预测未来,这感觉简直酷毙了!所以,别忘了,每一次技术的进步,都是我们在向前跑,探索未知世界的一个大步。
2024-08-10 15:45:14
35
柳暗花明又一村
转载文章
...利用win32api模块实现对键盘和鼠标事件模拟的实践之后,我们可以进一步关注自动化测试领域的发展动态和技术演进。近期,随着人工智能与软件测试技术的深度融合,诸如Selenium、PyAutoGUI等开源工具在UI自动化测试方面的应用越来越广泛。其中,PyAutoGUI作为一款基于Python的图形用户界面自动化库,不仅能够模拟鼠标和键盘操作,还支持跨平台使用,对于Windows、Mac OS X及Linux系统均能提供一致的操作接口。 与此同时,针对更复杂的交互场景如游戏或三维设计软件,一些高级模拟技术如Robot Framework、Appium也开始受到广泛关注。这些框架不仅能模拟基本的键盘鼠标输入,还能处理更精细的触屏手势操作,并能适应各种移动设备和桌面环境,极大提高了自动化测试的覆盖率和效率。 另外,在安全性方面,研究人员正不断探索如何防止恶意软件通过模拟合法用户的键盘和鼠标操作进行攻击。例如,某些安全软件已开始采用行为分析和机器学习算法来识别并阻止非人类产生的异常输入模式,确保只有真实的用户交互才能触发敏感操作。 总之,Python win32api提供的键盘鼠标模拟功能为自动化测试与脚本编写打开了新世界的大门,而结合最新的自动化测试技术和安全防护手段,我们不仅可以更高效地实现UI自动化,还能在保障用户体验的同时,有效抵御潜在的安全威胁。未来,随着相关技术的持续发展和完善,这一领域的应用场景将更加丰富多元。
2023-06-07 19:00:58
54
转载
Apache Solr
...是要深入地挖一挖这个问题的根源,然后给你支点招儿,让你在面对网络连接的烦恼时,Solr这个大神级别的搜索神器,能发挥出它的最佳状态!想象一下,当你在茫茫信息海洋中寻找那根救命稻草时,Solr就像你的私人导航,带你直达目的地。但是,有时候,这艘船可能会遭遇颠簸的海浪——网络连接问题。别担心,这篇文章就是你的救生圈和指南针,告诉你如何调整Solr的设置,让它在波涛汹涌的网络环境中依然航行自如。所以,准备好,让我们一起探索如何优化Solr在网络挑战中的表现吧! 一、理解问题根源 在讨论解决方案之前,首先需要理解外部服务依赖导致的问题。哎呀,你知道不?咱们用的那个Solr啊,它查询东西的速度啊,有时候得看外部服务的脸色。如果外部服务反应慢或者干脆不给力,那Solr就得跟着慢慢腾腾,甚至有时候都查不到结果,让人急得像热锅上的蚂蚁。这可真是个头疼的问题呢!这不仅影响了用户体验,也可能导致Solr服务本身的负载增加,进一步加剧问题。 二、案例分析 使用Solr查询外部数据源 为了更好地理解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...非回文字符串这一编程问题后,我们可以进一步了解字符串处理与算法优化的最新研究进展。近日,《自然》杂志子刊《自然-通讯》发表了一篇关于“在线字符串编辑与动态回文判定”的研究报告。研究者提出了一种新颖的在线算法,能够在字符串实时更新过程中高效地判断其是否为回文,并能快速找到使字符串变为非回文所需的最少编辑操作。这一成果不仅对于文本处理、数据压缩等领域具有重要价值,也对解决类似的编程挑战提供了新的思路。 此外,在ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
转载文章
...制了=。=如果还是有问题,欢迎在评论里进行讨论。 关于描述符 还记得之前我们所提到的一个定义么: Descriptors 是一种特殊的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法 。然后在 Python 官方文档的说明中,为了体现描述符的重要性,有这样一段话:“They are the mechanism behind properties, methods, static methods, class methods, and super(). They are used throughout Python itself to implement the new style classes introduced in version 2.2. ” 简而言之就是 先有描述符后有天,秒天秒地秒空气 。恩,在新式类中,属性,方法调用,静态方法,类方法等都是基于描述符的特定使用。 OK,你可能想问,为什么描述符是这么重要呢?别急,我们接着看 使用描述符 首先请看下一段代码 classA(object):注:在 Python 3.x 版本中,对于 new class 的使用不需要显式的指定从 object 类进行继承,如果在 Python 2.X(x>2)的版本中则需要defa(self): pass if__name__=="__main__": a=A() a.a() 大家都注意到了我们存在着这样一个语句 a.a() ,好的,现在请大家思考下,我们在调用这个方法的时候发生了什么? OK?想出来了么?没有?好的我们继续 首先我们调用一个属性的时候,不管是成员还是方法,我们都会触发这样一个方法用于调用属性 __getattribute__() ,在我们的 __getattribute__() 方法中,如果我们尝试调用的属性实现了我们的描述符协议,那么会产生这样一个调用过程 type(a).__dict__['a'].__get__(b,type(b)) 。好的这里我们又要给出一个结论了:“在这样一个调用过程中,有这样一个优先级顺序,如果我们所尝试调用属性是一个 data descriptors ,那么不管这个属性是否存在我们的实例的 __dict__ 字典中,优先调用我们描述符里的 __get__ 方法,如果我们所尝试调用属性是一个 non data descriptors ,那么我们优先调用我们实例里的 __dict__ 里的存在的属性,如果不存在,则依照相应原则往上查找我们类,父类中的 __dict__ 中所包含的属性,一旦属性存在,则调用 __get__ 方法,如果不存在则调用 __getattr__() 方法”。理解起来有点抽象?没事,我们马上会讲,不过在这里,我们先要解释下 data descriptors 与 non data descriptors ,再来看一个例子。什么是 data descriptors 与 non data descriptors 呢?其实很简单,在描述符中同时实现了 __get__ 与 __set__ 协议的描述符是 data descriptors ,如果只实现了 __get__ 协议的则是 non data descriptors 。好了我们现在来看个例子:importmath classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self): print("Com") returnmath.pi self.radius 2 deftest(self): pass if__name__=='__main__': c=Circle(4) print(c.area) 好的,让我们仔细来看看这段代码,首先类描述符 @lazyproperty 的替换过程,前面已经说了,我们不在重复。接着,在我们第一次调用 c.area 的时候,我们首先查询实例 c 的 __dict__ 中是否存在着 area 描述符,然后发现在 c 中既不存在描述符,也不存在这样一个属性,接着我们向上查询 Circle 中的 __dict__ ,然后查找到名为 area 的属性,同时这是一个 non data descriptors ,由于我们的实例字典内并不存在 area 属性,那么我们便调用类字典中的 area 的 __get__ 方法,并在 __get__ 方法中通过调用 setattr 方法为实例字典注册属性 area 。紧接着,我们在后续调用 c.area 的时候,我们能在实例字典中找到 area 属性的存在,且类字典中的 area 是一个 non data descriptors ,于是我们不会触发代码里所实现的 __get__ 方法,而是直接从实例的字典中直接获取属性值。 描述符的使用 描述符的使用面很广,不过其主要的目的在于让我们的调用过程变得可控。因此我们在一些需要对我们调用过程实行精细控制的时候,使用描述符,比如我们之前提到的这个例子classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue def__set__(self, instance, value=0): pass importmath classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self, value=0): print("Com") ifvalue ==0andself.radius ==0: raiseTypeError("Something went wring") returnmath.pi value 2ifvalue !=0elsemath.pi self.radius 2 deftest(self): pass 利用描述符的特性实现懒加载,再比如,我们可以控制属性赋值的值classProperty(object): "Emulate PyProperty_Type() in Objects/descrobject.c" def__init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel ifdocisNoneandfgetisnotNone: doc = fget.__doc__ self.__doc__ = doc def__get__(self, obj, objtype=None): ifobjisNone: returnself ifself.fgetisNone: raiseAttributeError("unreadable attribute") returnself.fget(obj) def__set__(self, obj, value=None): ifvalueisNone: raiseTypeError("You cant to set value as None") ifself.fsetisNone: raiseAttributeError("can't set attribute") self.fset(obj, value) def__delete__(self, obj): ifself.fdelisNone: raiseAttributeError("can't delete attribute") self.fdel(obj) defgetter(self, fget): returntype(self)(fget, self.fset, self.fdel, self.__doc__) defsetter(self, fset): returntype(self)(self.fget, fset, self.fdel, self.__doc__) defdeleter(self, fdel): returntype(self)(self.fget, self.fset, fdel, self.__doc__) classtest(): def__init__(self, value): self.value = value @Property defValue(self): returnself.value @Value.setter deftest(self, x): self.value = x 如上面的例子所描述的一样,我们可以判断所传入的值是否有效等等。 以上就是Python 描述符(Descriptor)入门,更多相关文章请关注PHP中文网(www.gxlcms.com)! 本条技术文章来源于互联网,如果无意侵犯您的权益请点击此处反馈版权投诉 本文系统来源:php中文网 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39736934/article/details/112888600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 19:03:49
94
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 显示文件开头的10行内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"