前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[日志文件过大]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
SeaTunnel
... 这是一个简单的配置文件示例,用于指定数据源和目标数据库 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password" } } } 4.2 示例二:优化资源管理 java // 通过调整配置文件中的参数,增加数据库连接池的大小 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password", "connectionPoolSize": 50 // 增加连接池大小 } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "connectionPoolSize": 50 // 增加连接池大小 } } } 4.3 示例三:避免锁争用 java // 在配置文件中添加适当的并发控制策略 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "concurrency": 10 // 设置并发度 } } } 4.4 示例四:验证SQL语句 java // 在配置文件中明确指定要执行的SQL语句 { "source": { "type": "sql", "config": { "sql": "SELECT FROM source_table" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "table": "target_table", "sql": "INSERT INTO target_table (column1, column2) VALUES (?, ?)" } } } 5. 总结与展望 在这次探索中,我们不仅学习了如何处理数据库事务提交失败的问题,还了解了如何通过实际操作来解决这些问题。虽然在这个过程中遇到了不少挑战,但正是这些挑战让我们成长。未来,我们将继续探索更多关于数据集成和处理的知识,让我们的旅程更加丰富多彩。 希望这篇技术文章能够帮助你在面对类似问题时有更多的信心和方法。如果你有任何疑问或建议,欢迎随时与我交流。让我们一起加油,不断进步!
2025-02-04 16:25:24
112
半夏微凉
Go Iris
...时间抢着去编辑同一个文件,要是不管它,搞不好就会撞车,出现混乱啦。这时候,我们就需要数据库锁来帮助我们解决问题。 3. Iris框架中的数据库锁类型 Iris框架提供了一些内置的支持,让我们可以轻松地配置数据库锁类型。目前,它支持以下几种锁类型: - 共享锁(Shared Lock):允许多个事务同时读取数据,但不允许任何事务修改数据。 - 排他锁(Exclusive Lock):只允许一个事务读取和修改数据,其他事务必须等待该锁释放后才能访问数据。 4. 配置数据库锁类型 接下来,我们来看一下如何在Iris中配置这些锁类型。假设我们正在使用MySQL数据库,我们可以这样配置: go import ( "github.com/kataras/iris/v12" "github.com/go-sql-driver/mysql" ) func main() { app := iris.New() // 配置MySQL连接 config := mysql.NewConfig() config.User = "root" config.Passwd = "password" config.Net = "tcp" config.Addr = "localhost:3306" config.DBName = "testdb" // 设置锁类型 config.InterpolateParams = true config.Params = map[string]string{ "charset": "utf8mb4", "parseTime": "True", "loc": "Local", "sql_mode": "STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION", "tx_isolation": "READ-COMMITTED", // 这里设置为读提交,你可以根据需求调整 } // 创建数据库连接池 db, err := sql.Open("mysql", config.FormatDSN()) if err != nil { panic(err) } // 使用数据库连接池 app.Use(func(ctx iris.Context) { ctx.Values().Set("db", db) ctx.Next() }) // 定义路由 app.Get("/", func(ctx iris.Context) { db := ctx.Values().Get("db").(sql.DB) // 开始事务 tx, err := db.Begin() if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error starting transaction") return } defer tx.Rollback() // 执行查询 stmt, err := tx.Prepare("SELECT FROM users WHERE id = ? FOR UPDATE") if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error preparing statement") return } defer stmt.Close() var user User err = stmt.QueryRow(1).Scan(&user.ID, &user.Name, &user.Email) if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error executing query") return } // 更新数据 _, err = tx.Exec("UPDATE users SET name = ? WHERE id = ?", "New Name", user.ID) if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error updating data") return } // 提交事务 err = tx.Commit() if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error committing transaction") return } ctx.WriteString("Data updated successfully!") }) // 启动服务器 app.Run(iris.Addr(":8080")) } 5. 实际应用中的考虑 在实际应用中,我们需要根据具体的业务场景选择合适的锁类型。比如说,如果有好几个小伙伴得同时查看数据,又不想互相打扰,那我们就用共享锁来搞定。要是你想保证数据一致,防止同时有人乱改,那就得用排他锁了。 另外,要注意的是,过度使用锁可能会导致性能问题,因为锁会阻塞其他事务的执行。因此,在设计系统时,我们需要权衡数据一致性和性能之间的关系。 6. 结语 通过今天的讨论,希望大家对Iris框架中的数据库锁类型配置有了更深入的理解。虽然设置锁类型会让事情变得稍微复杂一点,但这样做真的能帮我们更好地应对多任务同时进行时可能出现的问题,确保系统稳稳当当的不掉链子。 最后,我想说的是,技术的学习是一个不断积累的过程。有时候,我们会觉得某些概念很难理解,但这都是正常的。只要我们保持好奇心和探索精神,总有一天会豁然开朗。希望你们能够持续学习,不断进步! 谢谢大家!
2025-02-23 16:37:04
76
追梦人
Hadoop
... 2. YARN配置文件错误 YARN的运行依赖于一系列的配置文件,包括conf/hadoop-env.sh、core-site.xml、mapred-site.xml、yarn-site.xml等。要是这些配置文件里头有语法错误,或者设置得不太合理,就可能导致YARN ResourceManager启动时栽跟头,初始化失败。此时需要检查并修复配置文件。 3. YARN环境变量设置不当 YARN的运行还需要一些环境变量的支持,例如JAVA_HOME、HADOOP_HOME等。如果这些环境变量设置不当,也会导致YARN ResourceManager初始化失败。此时需要检查并设置正确的环境变量。 4. YARN服务未正确启动 在YARN环境中,还需要启动一些辅助服务,例如NameNode、DataNode、Zookeeper等。如果这些服务未正确启动,也会导致YARN ResourceManager初始化失败。此时需要检查并确保所有服务都已正确启动。 如何解决“YARN ResourceManager初始化失败”? 了解了问题的原因后,接下来就是如何解决问题。根据上述提到的各种可能的原因,我们可以采取以下几种方法进行尝试: 1. 增加集群资源 对于因为集群资源不足而导致的问题,最直接的解决办法就是增加集群资源。这可以通过添加新的服务器,或者升级现有的服务器硬件等方式实现。 2. 修复配置文件 对于因为配置文件错误而导致的问题,我们需要仔细检查所有的配置文件,找出错误的地方并进行修复。同时,咱也得留意一下,改动配置文件这事儿,就像动了机器的小神经,可能会带来些意想不到的“副作用”。所以呢,在动手修改前,最好先做个全面体检——也就是充分测试啦,再给原来的文件留个安全备份,这样心里才更有底嘛。 3. 设置正确的环境变量 对于因为环境变量设置不当而导致的问题,我们需要检查并设置正确的环境变量。如果你不清楚环境变量到底该怎么设置,别担心,这里有两个实用的解决办法。首先呢,你可以翻阅一下Hadoop官方网站的官方文档,那里面通常会有详尽的指导步骤;其次,你也可以尝试在互联网上搜一搜相关的教程或者攻略,网上有很多热心网友分享的经验,总有一款适合你。 4. 启动辅助服务 对于因为辅助服务未正确启动而导致的问题,我们需要检查并确保所有服务都已正确启动。要是服务启动碰到状况了,不妨翻翻相关的文档资料,或者找专业的高手来帮帮忙。 总结 总的来说,解决“YARN ResourceManager初始化失败”这个问题需要我们具备一定的专业知识和技能。但是,只要我们有足够多的耐心和敏锐的观察力,就可以按照上面提到的办法,一步一步地把各种可能性都排查个遍,最后稳稳地找到那个真正能解决问题的好法子。最后,我想说的是,虽然这是一个比较棘手的问题,但我们只要有足够的信心和毅力,就一定能迎刃而解!
2024-01-17 21:49:06
568
青山绿水-t
Tornado
... 2. 监控与日志记录 - 可以利用Tornado的日志功能,详细记录握手过程中发生的错误及其原因,便于后续排查与优化: python logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) async def open(self, args, kwargs): try: await super().open(args, kwargs) except WebSocketHandshakeError as e: logger.error("WebSocket handshake failed:", exc_info=True) self.close() 3. 通知客户端错误信息 - 当服务器检测到握手失败时,应告知客户端具体问题以便其采取相应措施: python try: await super().open(args, kwargs) except WebSocketHandshakeError as e: message = f"WebSocket handshake failed: {str(e)}" self.write_message(message) self.close() 四、总结 WebSocket握手失败对于实时应用而言是一个重大挑战,但通过以上针对错误检查、重试机制、日志监控及客户端反馈等方面的处理策略,我们可以确保Tornado WebSocket服务具备高度健壮性和容错能力。当碰上WebSocket握手不成功这类状况时,别忘了结合实际的业务环境,活学活用这些小技巧。这样一来,咱的WebSocket服务肯定能变得更扎实、更靠谱,妥妥地提升稳定性。
2024-02-03 10:48:42
133
清风徐来-t
Tornado
...待I/O操作(如读写文件或网络通信)完成时继续执行其他任务,而不需要阻塞等待。在本文的上下文中,Tornado库采用了异步I/O机制,使得即使在单线程环境下也能高效并发处理多个网络请求,极大地提升了Web应用的服务能力和响应速度。 TCP连接 , Transmission Control Protocol(传输控制协议)是一种面向连接、可靠的基于字节流的传输层通信协议。在网络编程中,TCP连接是两个网络节点之间建立的一种稳定、双向的数据交换通道。当网络连接不稳定或中断时,TCP连接可能会因超时、丢包等问题断开。文中提到,Tornado通过自动重连机制来应对TCP连接可能遇到的问题,确保在连接断开后能够尝试重新建立连接,提高网络服务的可用性和可靠性。 WebSocket , WebSocket是一种在单个TCP连接上进行全双工通信的协议,允许客户端和服务器之间进行实时、双向的数据传输。与HTTP等传统请求-响应模型不同,WebSocket能够在同一个连接上持久保持打开状态,并且支持实时推送数据。在Tornado库中,开发人员可以利用WebSocket功能构建实时Web应用,实现聊天室、实时股票报价、在线游戏等场景,即使在网络环境波动时,也能够更好地维持连接稳定性,提供流畅的用户体验。
2023-05-20 17:30:58
169
半夏微凉-t
Beego
...数据库服务器资源消耗过大,影响整体性能;而设置过低,则可能无法满足高并发场景下的连接需求,造成请求排队等待,降低响应速度。因此,根据实际业务负载情况合理设置最大开放连接数是优化数据库连接池性能的关键因素之一。 最大空闲连接数 , 同样作为数据库连接池的一个重要配置项,最大空闲连接数指在没有数据库操作时,连接池中保持的最大空闲连接数量。这些空闲连接能够在新的数据库请求到达时立即投入使用,从而减少建立新连接的时间成本。然而,如果空闲连接过多,也可能导致资源浪费。因此,在保证系统响应速度的前提下,适当限制最大空闲连接数,既能有效利用资源,又能防止过度占用数据库连接资源。
2023-12-11 18:28:55
528
岁月静好-t
MyBatis
...MyBatis的配置文件中设置了不恰当的事务隔离级别,比如说将隔离级别设为Read Uncommitted,那么就可能会遇到一些预料之外的问题。比如说,有个人正打算把东西加到购物车里,结果这时候另一个人正在更新商品信息,而且这更新还没完呢。这时候,第一个用户可能会发现购物车里多了不该有的东西,或者是商品数量莫名其妙增加了,这样一来,数据就乱套了。 4. 如何正确设置事务隔离级别 为了避免上述问题的发生,我们应该根据具体的应用场景选择合适的事务隔离级别。对于大多数Web应用来说,推荐使用Read Committed作为默认的隔离级别。这个隔离级别刚刚好,既能确保数据一致,又不会拖系统并发性能的后腿。 下面,我将通过一个简单的MyBatis配置示例来展示如何设置事务隔离级别: xml 在这个配置中,我们通过标签指定了事务隔离级别为READ_COMMITTED。这样一来,就算你应用里的并发事务多到像是菜市场一样热闹,数据依然能稳得跟老牛一样,不会乱套。 5. 结语 通过今天的分享,我希望你已经对MyBatis中的事务隔离级别有了更深的理解,并且学会了如何正确设置它们来避免潜在的问题。记得啊,在搞数据库操作的时候,给事务隔离级别整得合适特别重要,这样能让咱们的系统变得更稳当、更靠谱。当然啦,这只是一个开始嘛。等你对MyBatis和数据库事务机制越来越熟悉之后,你就会发现更多的窍门来提升系统的性能和保证数据的一致性了。希望你在未来的编程旅程中不断进步,享受每一次技术探索的乐趣! --- 以上就是我为你准备的文章。如果你有任何疑问或想要了解更多关于MyBatis的知识,请随时告诉我!
2024-11-12 16:08:06
33
烟雨江南
Datax
...FS,还是要从CSV文件导入数据库,咱们总是得找条又快又稳的路子,确保数据完好无损。DataX就是一个神器,用它我们可以轻松搞定不同平台之间的数据同步。嘿,你知道吗?DataX 其实还能用多线程来处理呢,这样能大大加快数据同步的速度!嘿,今天咱们一起来搞点好玩的!我要教你如何用DataX的多线程功能让你的数据同步快到飞起! 2. DataX的基本概念 在深入多线程之前,我们先来了解一下DataX的基础知识。DataX是一个开源项目,由阿里巴巴集团开发并维护。它的核心功能是实现异构数据源之间的高效同步。简单来说,DataX可以让你在各种不同的数据存储之间自由迁移数据,而不用担心数据丢失或损坏。 举个例子,假设你有一个MySQL数据库,里面保存了大量的用户信息。现在你想把这些数据迁移到Hadoop集群中,以便进行大数据分析。这时候,DataX就能派上用场了。你可以配置一个任务,告诉DataX从MySQL读取数据,并将其写入HDFS。是不是很神奇? 3. 多线程处理的必要性 在实际工作中,我们经常会遇到数据量非常大的情况。比如说,你可能得把几百GB甚至TB的数据从这个系统倒腾到另一个系统。要是用单线程来做,恐怕得等到猴年马月才能搞定!所以,咱们得考虑用多线程来加快速度。多线程可以在同一时间内执行多个任务,从而大大缩短处理时间。 想象一下,如果你有一大堆文件需要上传到服务器,但你只有一个线程在工作。那么每次只能上传一个文件,速度肯定慢得让人抓狂。用了多线程,就能同时传好几个文件,效率自然就上去了。同理,在数据同步领域,多线程处理也能显著提升性能。 4. 如何配置DataX的多线程处理 现在,让我们来看看如何配置DataX以启用多线程处理。首先,你需要创建一个JSON配置文件。在这份文件里,你要指明数据从哪儿来、要去哪儿,还得填一些关键设置,比如说线程数量。 json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "123456", "connection": [ { "jdbcUrl": ["jdbc:mysql://localhost:3306/testdb"], "table": ["user_info"] } ] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://localhost:9000", "fileType": "text", "path": "/user/datax/user_info", "fileName": "user_info.txt", "writeMode": "append", "column": [ "id", "name", "email" ], "fieldDelimiter": "\t" } } } ], "setting": { "speed": { "channel": 4 } } } } 在这段配置中,"channel": 4 这一行非常重要。它指定了DataX应该使用多少个线程来处理数据。这里的数字可以根据你的实际情况调整。比如说,如果你的电脑配置比较高,内存和CPU都很给力,那就可以试试设大一点的数值,比如8或者16。 5. 实战演练 为了更好地理解DataX的多线程处理,我们来看一个具体的实战案例。假设你有一个名为 user_info 的表,其中包含用户的ID、姓名和邮箱信息。现在你想把这部分数据同步到HDFS中。 首先,你需要确保已经安装并配置好了DataX。接着,按照上面的步骤创建一个JSON配置文件。这里是一些关键点: - 数据库连接:确保你提供的数据库连接信息(用户名、密码、JDBC URL)都是正确的。 - 表名:指定你要同步的表名。 - 字段列表:列出你要同步的字段。 - 线程数:根据你的需求设置合适的线程数。 保存好配置文件后,就可以运行DataX了。打开命令行,输入以下命令: bash python datax.py /path/to/your/config.json 注意替换 /path/to/your/config.json 为你的实际配置文件路径。运行后,DataX会自动启动指定数量的线程来处理数据同步任务。 6. 总结与展望 通过本文的介绍,你应该对如何使用DataX实现数据同步的多线程处理有了初步了解。多线程不仅能加快数据同步的速度,还能让你在处理海量数据时更加得心应手,感觉轻松不少。当然啦,这仅仅是DataX功能的冰山一角,它还有超多酷炫的功能等你来探索呢! 希望这篇文章对你有所帮助!如果你有任何问题或建议,欢迎随时留言交流。我们一起探索更多有趣的技术吧!
2025-02-09 15:55:03
76
断桥残雪
Kafka
...长。 3.3 数据量过大 如果Kafka Topic中的消息数据量过大,导致网络带宽饱和,也会引起网络延迟上升。 4. 解决策略 4.1 优化网络架构 尽量减少数据传输的物理距离,合理规划网络拓扑,使用高速稳定的网络设备,并确保带宽充足。 4.2 调整Kafka客户端配置 根据实际业务需求,调整fetch.min.bytes和fetch.max.bytes等参数,以平衡网络利用率和消费速度。 java // 示例:调整fetch.min.bytes参数 props.put("fetch.min.bytes", "1048576"); // 设置为1MB,避免频繁的小批量请求 4.3 数据压缩与分片 对发送至Kafka的消息进行压缩处理,减少网络传输的数据量;同时考虑适当增加Topic分区数,分散网络负载。 4.4 监控与报警 建立完善的监控体系,实时关注网络延迟指标,一旦发现异常情况,立即触发报警机制,便于及时排查和解决。 5. 结语 面对Kafka服务器与外部系统间的网络延迟问题,我们需要从多个维度进行全面审视和分析,结合具体应用场景采取针对性措施。明白并能切实搞定网络延迟这个问题,那可不仅仅是对咱Kafka集群的稳定性和性能有大大的提升作用,更关键的是,它能像超级能量饮料一样,给整个数据处理流程注入活力,确保其高效顺畅地运作起来。在整个寻找答案、搞定问题的过程中,我们不停地动脑筋、动手尝试、不断改进,这正是技术进步带来的挑战与乐趣所在,让我们的每一次攻关都充满新鲜感和成就感。
2023-10-14 15:41:53
467
寂静森林
ActiveMQ
...何利用其特有的分区和日志结构设计来应对高吞吐量场景,可以启发我们思考如何将相似策略应用于ActiveMQ架构的改良。 因此,在深入排查与调优ActiveMQ的同时,关注行业前沿动态和技术趋势,对比分析各类消息队列解决方案的特点与适用场景,有助于我们在实际工作中更好地运用ActiveMQ解决高并发问题,从而确保分布式系统的稳定高效运行。
2023-03-30 22:36:37
602
春暖花开
Netty
...试试在处理方法里加点日志记录,这样就能随时掌握每条消息的动态啦。 java public class MonitorHandler extends SimpleChannelInboundHandler { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); // 记录消息入队时间 long enqueueTime = System.currentTimeMillis(); // 处理消息... // 记录消息出队时间 long dequeueTime = System.currentTimeMillis(); System.out.println("Message processed in " + (dequeueTime - enqueueTime) + " ms"); } } 3.2 使用Metrics Netty本身并不直接提供监控功能,但我们可以通过集成第三方库(如Micrometer)来实现这一目标。Micrometer让我们能轻松把应用的性能数据秀出来,这样后面分析和监控就方便多了。 java import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.Timer; // 初始化MeterRegistry MeterRegistry registry = new SimpleMeterRegistry(); // 在自定义Handler中使用Micrometer public class MicrometerMonitorHandler extends SimpleChannelInboundHandler { private final Timer timer; public MicrometerMonitorHandler() { this.timer = Timer.builder("message.processing") .description("Time taken to process messages") .register(registry); } @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { Timer.Sample sample = Timer.start(registry); // 处理消息 sample.stop(timer); } } 4. 总结与反思 通过上述步骤,我们已经成功地为Netty中的消息队列添加了基本的监控能力。然而,这只是一个起点。在实际操作中,你可能会遇到更多需要处理的事情,比如说怎么应对错误,怎么监控那些不正常的状况之类的。另外,随着系统变得越来越复杂,你可能得找一些更高级的工具来解决问题,比如说用分布式追踪系统(比如Jaeger或者Zipkin),这样你才能更好地了解整个系统的运行状况和性能表现。 最后,我想说的是,技术总是在不断进步的,保持学习的心态是非常重要的。希望这篇文章能够激发你对Netty和消息队列监控的兴趣,并鼓励你在实践中探索更多可能性! --- 这就是我们的文章,希望你喜欢这种更有人情味的叙述方式。如果你有任何疑问或想要了解更多细节,请随时提问!
2024-11-04 16:34:13
317
青春印记
Go Iris
... 其他未知错误,记录日志并返回500状态码 log.Printf("Unexpected error: %v", err) ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Internal Server Error.") } return } // 查询成功,继续处理业务逻辑... // ... }) app.Listen(":8080") } 4. 深入思考与讨论 面对SQL查询错误,我们应该首先确保它被正确捕获并分类处理。就像刚刚提到的例子那样,面对各种不同的错误类型,我们完全能够灵活应对。比如说,可以选择扔出合适的HTTP状态码,让用户一眼就明白是哪里出了岔子;还可以提供一些既友好又贴心的错误提示信息,让人一看就懂;甚至可以细致地记录下每一次错误的详细日志,方便咱们后续顺藤摸瓜,找出问题所在。 在实际项目中,我们不仅要关注错误的处理方式,还要注重设计良好的错误处理策略,例如使用中间件统一处理数据库操作异常,或者在ORM层封装通用的错误处理逻辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
459
月下独酌
Kotlin
...用户输入、网络请求或文件读取等不确定因素的数据加载场景。例如,在构建一个基于用户选择的配置文件加载器时: kotlin class ConfigLoader { lateinit var config: Map fun loadConfig() { // 假设这里通过网络或文件系统加载配置 config = loadFromDisk() } } fun main() { val loader = ConfigLoader() loader.loadConfig() println(loader.config) // 此时config已初始化 } 在这个例子中,config属性的加载逻辑被封装在loadConfig方法中,确保在使用config之前,其已经被正确初始化。 结论 lateinit属性是Kotlin中一个强大而灵活的特性,它允许你推迟属性的初始化直到运行时。然而,正确使用这一特性需要谨慎考虑其潜在的性能影响和错误情况。通过理解其工作原理和最佳实践,你可以有效地利用lateinit属性来增强你的Kotlin代码,使其更加健壮和易于维护。
2024-08-23 15:40:12
95
幽谷听泉
Netty
...用中,结合监控告警、日志分析等手段,能实时发现并定位网络故障,进而触发自动化的故障转移或自愈流程,也是提升系统稳定性和用户体验的重要一环。开发者可以通过学习Kubernetes等容器编排工具中的网络策略以及服务发现机制,将这些理念融入到基于Netty构建的服务架构设计之中,以应对更为复杂的网络环境挑战。 综上所述,理解并有效处理Netty服务器的网络中断问题只是实现高可靠网络服务的第一步,关注前沿网络协议和技术趋势,结合实际业务场景进行技术创新和实践,才能在瞬息万变的互联网环境下持续提供优质的网络服务。
2023-02-27 09:57:28
137
梦幻星空-t
Maven
...名为pom.xml的文件来管理项目的配置和依赖关系。这个文件就像是Java项目的“大脑”,控制着整个构建过程。让我们先来看看一个简单的pom.xml示例: xml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 com.example my-app 1.0-SNAPSHOT junit junit 4.12 test org.apache.maven.plugins maven-compiler-plugin 3.8.1 1.8 1.8 在这个例子中,我们定义了一个简单的Java项目,它依赖于JUnit,并且指定了编译器版本为Java 8。这样一来,不管是你在自己的电脑上搞开发,还是把东西搬到服务器上去跑,我们都能确保整个项目稳稳当当,每次都能得到一样的结果。 3. npm之旅 Node.js的魔法盒 与Maven类似,npm(Node Package Manager)是Node.js生态系统中的一个核心组件,它负责管理JavaScript库和模块。npm通过package.json文件来记录项目的依赖和配置信息。下面是一个基本的package.json示例: json { "name": "my-app", "version": "1.0.0", "description": "A simple Node.js application", "main": "index.js", "scripts": { "start": "node index.js" }, "author": "Your Name", "license": "ISC", "dependencies": { "express": "^4.17.1" } } 在这个例子中,我们创建了一个使用Express框架的简单Node.js应用。用npm,我们就能超级方便地装和管这些依赖,让项目的维护变得简单多了。 4. 跨平台部署的挑战与解决方案 尽管Maven和npm各自在其领域内表现出色,但在跨平台部署时,我们仍然会遇到一些挑战。例如,不同操作系统之间的差异可能会导致构建失败。为了应对这些问题,我们可以采取以下几种策略: - 标准化构建环境:确保所有开发和生产环境都使用相同的工具版本和配置。 - 容器化技术:利用Docker等容器技术来封装整个应用及其依赖,从而实现真正的跨平台一致性。 - 持续集成/持续部署(CI/CD):通过Jenkins、GitLab CI等工具实现自动化的构建和部署流程,减少人为错误。 5. 结语 拥抱变化,享受技术带来的乐趣 在这次旅程中,我们不仅了解了Maven和npm的基本概念和使用方法,还探讨了如何利用它们进行跨平台部署。技术这东西啊,变化莫测,但只要你保持好奇心,愿意不断学习,就能一步步往前走,还能从中找到不少乐子呢!不管是搞Java的小伙伴还是喜欢Node.js的朋友,都能用上这些给力的工具,让你的项目管理技能更上一层楼!希望这篇分享能够激发你对技术的好奇心,让我们一起在编程的海洋中畅游吧! --- 通过这样的结构和内容安排,我们不仅介绍了Maven和npm的基本知识,还穿插了个人思考和实际操作的例子,力求让文章更加生动有趣。希望这样的方式能让你感受到技术背后的温度和乐趣!
2024-12-07 16:20:37
31
青春印记
转载文章
...储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
258
转载
Datax
...er.tar.gz”文件哈。 bash wget https://datax.apache.org/releases/datax-最新版本-number.tar.gz 3. 解压DataX 使用tar命令解压下载的DataX压缩包: bash tar -zxvf apache-datax-最新版本-number.tar.gz cd apache-datax-最新版本-number 四、DataX环境配置 1. 配置DataX主目录 DataX默认将bin目录下的脚本添加至系统PATH环境变量中,以便于在任何路径下执行DataX命令。根据上述解压后的目录结构,设置如下环境变量: bash export DATAX_HOME=绝对路径/to/datax-最新版本-number/bin export PATH=$DATAX_HOME:$PATH 2. 配置DataX运行时依赖 在conf目录下找到runtime.properties文件,配置JVM参数及Hadoop、Spark等运行时依赖。以下是一份参考样例: properties JVM参数配置 设置内存大小为1G yarn.appMaster.resource.memory.mb=1024 yarn.appMaster.heap.memory.mb=512 executor.resource.memory.mb=512 executor.heap.memory.mb=256 executor.instances=1 如果有Hadoop环境 hadoop.home.dir=/path/to/hadoop hadoop.security.authentication=kerberos hadoop.conf.dir=/path/to/hadoop/conf 如果有Spark环境 spark.master=local[2] spark.executor.memory=512m spark.driver.memory=512m 3. 配置DataX任务配置文件 在conf目录下创建一个新的XML配置文件,例如my_data_sync.xml,用于定义具体的源和目标数据源、数据传输规则等信息。以下是简单的配置示例: xml 0 0 五、启动DataX任务 配置完成后,我们可以通过DataX CLI命令行工具来启动我们的数据同步任务: bash $ ./bin/datax job submit conf/my_data_sync.xml 此时,DataX会按照my_data_sync.xml中的配置内容,定时从MySQL数据库读取数据,并将其写入到HDFS指定的路径上。 六、总结 通过本文的介绍,相信您已经对DataX的基本安装及配置有了初步的认识和实践。在实际操作的时候,你可能还会碰到需要根据不同的业务情况,灵活调整DataX任务配置的情况。这样一来,才能让它更好地符合你的数据传输需求,就像是给它量身定制了一样,更加贴心地服务于你的业务场景。不断探索和实践,DataX将成为您数据处理与迁移的强大助手!
2024-02-07 11:23:10
362
心灵驿站-t
转载文章
...所有 .s 和 .c文件名替换成 .o文件名。 这个函数的功能就是计算源文件名(c源文件,汇编源文件)所相对应的目标文件名(经过编译汇编后的文件)。 CONTIKI_OBJECTFILES = ${addprefix $(OBJECTDIR)/,${call oname, $(CONTIKI_SOURCEFILES)} }PROJECT_OBJECTFILES = ${addprefix $(OBJECTDIR)/,${call oname, $(PROJECT_SOURCEFILES)} } 定义CONTIKI_OBJECTFILES变量 首先用oname函数,将CONTIKI_SOURCEFILES所对应的源文件名,改为目标文件名,如process.c将会变为process.o 再在文件名前边加上前缀$(OBJECTDIR)/,前边我们知道这个变量为obj_native,故process.c会变为obj_native/process.o 这个变量应该是代表即将生成的Contiki操作系统的目标文件名 定义PROJECT_OBJECTFILES变量 功能同上 这个变量应该是代表即将生成的项目中的目标文件名 PROJECT_SOURCEFILES这个变量为空,所以PROJECT_OBJECTFILES也为空。 Provide way to create $(OBJECTDIR) if it has been removed by make clean$(OBJECTDIR):mkdir $@ $@是自动化变量,表示规则中的目标文件集。我们知道OBJECTDIR为obj_native,所以$@为obj_native。 mkdir $@生成obj_native目录。 但是这个依赖关系链,怎么会涉及到obj_native的? 调试了一下: 在生成CONTIKI_OBJECTFILES所代表的文件时,目录不存在,会先找依赖关系生成目录,再生成具体文件。 所以mkdir obj_native会被执行。 (2) ifdef APPSAPPDS = ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} \${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} \${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} \$(APPS)}APPINCLUDES = ${foreach APP, $(APPS), ${wildcard ${foreach DIR, $(APPDS), $(DIR)/Makefile.$(APP)} }}-include $(APPINCLUDES)APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)}DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)}CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES)endif The project's makefile can also define in the APPS variable a list of applications from the apps/ directory that should be included in the Contiki system. hello-world这个例子没有定义APPS变量,故这段不会执行。 我们假设定义了APPS变量,其值为APPS += antelope unit-test。 相关知识点: wildcard函数: 返回所有符合pattern的文件名,以空格隔开。 $(wildcard pattern) The argument pattern is a file name pattern, typically containing wildcard characters (as in shell file name patterns). The result of wildcard is a space-separated list of the names of existing files that match the pattern. foreach函数: The syntax of the foreach function is: $(foreach var,list,text) The first two arguments, var and list, are expanded before anything else is done; note that the last argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the variable named by the expanded value of var is set to that word, and text is expanded. Presumably text contains references to that variable, so its expansion will be different each time. The result is that text is expanded as many times as there are whitespace-separated words in list. The multiple expansions of text are concatenated, with spaces between them, to make the result of foreach. 每次从list中取出一个词(空格分隔),赋给var变量,然后text(一般有var变量)被拓展开来。 只要list中还有空格分隔符就会一直循环下去,每一次text返回的结果都会以空格分隔开。 ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} 先分析${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} } 其中DIR是变量(var),$(APPDIRS)是列表(list),这个例子中没有定义APPDIRS这个变量,估计是用于定义除了$CONTIKI/apps/之外的apps目录。 ${addprefix $(DIR)/, $(APPS)}是text。我们假设定义了APPDIRS为a b。 那么第一次:DIR 会被赋值为a,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为a/antelope a/unit-test。 DIR 会被赋值为b,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为b/antelope b/unit-test。 最终这两次结果会以空格分隔开,即a/antelope a/unit-test b/antelope b/unit-test ${wildcard a/antelope a/unit-test b/antelope b/unit-test} 返回空,因为找不到符合这样的目录。 所以最终这句语句,实现的功能是,返回$APPDIRS目录中,所有符合$APPS的目录。 ${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/apps/目录下所有符合$APPS的目录,即contiki-release-2-7/apps/antelope contiki-release-2-7/apps/unit-test ${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/platform/$(TARGET)/apps/目录下所有$APPS的目录,即contiki-release-2-7/platform/native/apps/antelope contiki-release-2-7/platform/native/apps/unit-test。 在contiki-release-2-7/platform/native目录下,并没有apps目录,后边有差错处理机制。 $(APPS) 在当前目录下的所有$APPS目录,即antelope unit-test。 在hello-world例子中,并没有这些目录。 所以APPDS变量是包含所有与$APPS有关的目录。 APPINCLUDES变量是所有需要导入的APP Makefile文件。 在所有APPDS目录下,所有Makefile.$(APPS)文件。 在我们的假设条件APPS = antelope unit-test, APPDIRS = 只会导入contiki-release-2-7/apps/antelope/Makefile.antelope contiki-release-2-7/apps/unit-test/Makefile.unit-test 其余的均不存在,所以在include指令前要有符号-,即出错继续执行后续指令。 contiki-release-2-7/apps/antelope/Makefile.antelope: 分别定义了两个变量,antelope_src用于保存antelope这个app的src文件,antelope_dsc用于保存antelope这个app的dsc文件。 contiki-release-2-7/apps/unit-test/Makefile.unit-test: 分别定义了两个变量,unit-test_src用于保存unit-test这个app的src文件,unit-tes_dsc用于保存unit-test这个app的dsc文件。 变量APP_SOURCES APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)} 取出所有APPS中的src文件变量,这个例子是$(antelope_src) 和$(unit-test_src) 变量APP_SOURCES DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)} 取出所有APPS中的dsc文件变量,这个例子是$(antelope_dsc) 和$(unit-test_dsc) CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES) 这段话的最终目的: 将$APPS相关的所有源文件添加进CONTIKI_SOURCEFILES变量中。 (3) target_makefile := $(wildcard $(CONTIKI)/platform/$(TARGET)/Makefile.$(TARGET) ${foreach TDIR, $(TARGETDIRS), $(TDIR)/$(TARGET)/Makefile.$(TARGET)}) Check if the target makefile exists, and create the object directory if necessary.ifeq ($(strip $(target_makefile)),)${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)}elseifneq (1, ${words $(target_makefile)})${error More than one TARGET Makefile found: $(target_makefile)}endifinclude $(target_makefile)endif 这断代码主要做的就是,找到在所有TAGET目录下找到符合的Makefile.$(TARGET)文件,放到target_makefile变量中。 再检查是否存在或者重复。并做相应的错误提示信息。 ${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)} ${error More than one TARGET Makefile found: $(target_makefile)} 我们这个例子中 TARGET = native 并且 TARGETDIRS为空 所以最后会导入$(CONTIKI)/platform/native/Makefile.native 接下去要开始分析target和cpu的makefile文件了。 转载于:https://www.cnblogs.com/songdechiu/p/6012718.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34399060/article/details/94095820。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 09:49:23
283
转载
转载文章
....首先我们创建一人新文件夹db-count-starter在项目根目录下。 2.在文件夹db-count-starter下创建一份settings.grale文件,添加以下内容。 include 'db-count-starter' 3.在db-count-starter文件夹下创建build.gradle的文件,然后添加如下的代码。 apply plugin: 'java' repositories { mavenCentral() maven { url "https://repo.spring.io/snapshot" } maven { url "https://repo.spring.io/milestone" } } d ependencies { compile("org.springframework.boot:spring-boot:1.2.3.RELEASE") compile("org.springframework.data:spring-data-commons:1.9.2.RELEASE") } 4.接着,我们在fb-count-starter下创建这个目录结构src/main/java/org/test/bookpubstarter/dbcount 5.在新创建的文件下面,让我们添加实现接口CommandLineRunner文件,名称叫做DbCountRunner.java. public class DbCountRunner implements CommandLineRunner { protected final Log logger = LogFactory.getLog(getClass()); private Collection<CrudRepository> repositories; public DbCountRunner(Collection<CrudRepository> repositories) { this.repositories = repositories; } @Override public void run(String... args) throws Exception { repositories.forEach(crudRepository -> logger.info(String.format( "%s has %s entries", getRepositoryName(crudRepository.getClass()), crudRepository.count()))); } private static String getRepositoryName(Class crudRepositoryClass) { for (Class repositoryInterface : crudRepositoryClass.getInterfaces()) { if (repositoryInterface.getName().startsWith( "org.test.bookpub.repository")) { return repositoryInterface.getSimpleName(); } } return "UnknownRepository"; } } 6.我们创建一个DbCountAutoConfiguration.java来实现DbCountRunner。 @Configuration public class DbCountAutoConfiguration { @Bean public DbCountRunner dbCountRunner(Collection<CrudRepository> repositories) { return new DbCountRunner(repositories); } } 7.我们需要告诉Spring Boot我们新创建的JAR包含自动装配的类。我们需要在db-count-starter/src/main下创建resources/META-INF文件夹。 8.在resources/META-INF下创建spring.factories文件,添加如下内容。 org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.test .bookpubstarter.dbcount.DbCountAutoConfiguration 9.在主项目的build.gradle下添加如下代码 compile project(':db-count-starter') 10.启动项目,你将会看到控制台的信息下: 2020-04-05 INFO org.test.bookpub.StartupRunner : Welcome to the Book Catalog System! 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : AuthorRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : PublisherRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : BookRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner :ReviewerRepository has 0 entries 2020-04-05 INFO org.test.bookpub.BookPubApplication : Started BookPubApplication in 8.528 seconds (JVM running for 9.002) 2020-04-05 INFO org.test.bookpub.StartupRunner : Number of books: 1 4.2.2代码说明 因为Spring Boot的starter是分隔的,独立的包,仅仅是添加更多的类到我们已经存在的项目资源中,而不会控制更多。为了独立技术,我们的选择很少,创建分开的配置在我们项目中或创建完全分开的项目。更好的方法是通过创建项目文件夹去转换们的项目到Gradel Multi-Project Build和子项目依赖于根目录到build.gradle。Gradle实际是创建JAR的包,但是我们不需要放入到任何地方,仅仅通过compile project(‘:db-count-starter’)来包含。 Spring Boot Auto-Configuration Starter并没有做什么,而是Spring Java Configuration类注释了@Configuration和代表性的spring.factories文件在META-INF的文件夹下。 当应用启动时,Spring Boot使用SpringFactoriesLoader,这个类是Spring Core中的,目的是为了获得Spring Java Configuration,这些配置给了org.springframework.boot.autoconfigure.EnableAutoConfiguration。这样之下,这些调用会收集spring.factories文件下的所有jar包或其它调用的路径和成分到应用的上下文的配置中。除此之了EnableAutoConfiguration,我们可以定义其它的关键接口使用,这些可以自动初始化在启动期间与如下的调用相似: org.springframework.context.ApplicationContextInitializer org.springframework.context.ApplicationListener org.springframework.boot.SpringApplicationRunListener org.springframework.boot.env.PropertySourceLoader org.springframework.boot.autoconfigure.template.TemplateAvailabilityProvider org.springframework.test.contex.TestExecutionListener 具有讽刺的是,Spring Boot Starter并不需要依赖Spring Boot的包,因为它编译时间上的依赖。如果我们看DbCountAutoConfiguation类,我们不会看到任何来自org.springframework.book的包。这仅仅的原因是我们的DbCountRunner实现了接口org.sprigframework.boot.CommandLineRunner. 本篇文章为转载内容。原文链接:https://blog.csdn.net/owen_william/article/details/107867328。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 20:49:04
270
转载
Hadoop
...Google的GFS文件系统的分布式文件系统。HDFS这小家伙可机灵了,它知道大文件是个难啃的骨头,所以就耍了个聪明的办法,把大文件切成一块块的小份儿,然后把这些小块分散存到不同的服务器上,这样一来,不仅能储存得妥妥当当,还能同时在多台服务器上进行处理,效率杠杠滴!这种方式可以大大提高数据的读取速度和写入速度。 3.2 MapReduce MapReduce是Hadoop的另一个核心组件,它是用于处理大量数据的一种编程模型。MapReduce的运作方式就像这么回事儿:它先把一个超大的数据集给剁成一小块一小块,然后把这些小块分发给一群计算节点,大家一起手拉手并肩作战,同时处理各自的数据块。最后,将所有结果汇总起来得到最终的结果。 下面是一段使用MapReduce计算两个整数之和的Java代码: java import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } 在这个例子中,我们首先定义了一个Mapper类,它负责将文本切分成单词,并将每个单词作为一个键值对输出。然后呢,我们捣鼓出了一个Reducer类,它的职责就是把所有相同的单词出现的次数统统加起来。 以上就是Hadoop的一些基本信息以及它的主要组件介绍。如果你对此还有任何疑问或者想要深入了解,欢迎留言讨论!
2023-12-06 17:03:26
410
红尘漫步-t
转载文章
...装包,包含所有的安装文件。与其相对的是在线安装,即在条件允许且网络良好的条件下采用网络安装的方式。在线安装方式的缺点是在不太好的网络状况下容易出现长时间等待或安装失败的情况,这种情况下只能进行离线安装。 二、安装步骤 1.安装nginx所需依赖 1.1 安装gcc和gcc-c++ 1.1.1 下载依赖包 gcc依赖下载镜像地址: 官网:https://gcc.gnu.org/releases.html 阿里云镜像站:http://mirrors.aliyun.com/centos/7/os/x86_64/Packages/ CentOS 镜像站点:https://vault.centos.org/7.5.1804/os/x86_64/Packages/ 只需下载如下依赖即可:cpp-4.8.5-44.el7.x86_64.rpmgcc-4.8.5-44.el7.x86_64.rpmglibc-devel-2.17-317.el7.x86_64.rpmglibc-headers-2.17-317.el7.x86_64.rpmkernel-headers-3.10.0-1160.el7.x86_64.rpmlibmpc-1.0.1-3.el7.x86_64.rpmmpfr-3.1.1-4.el7.x86_64.rpm----------------------------------------------gcc-c++-4.8.5-44.el7.x86_64.rpmlibstdc++-4.8.5-44.el7.x86_64.rpmlibstdc++-devel-4.8.5-44.el7.x86_64.rpm 1.1.2 上传依赖包 下载完成后,将依赖包上传到服务器,若权限不足不能上传,可以通过 sudo chmod -R 777 文件夹路径名命令增加权限 1.1.3 安装依赖 进入上传目录,输入rpm -Uvh .rpm --nodeps --forc命令进行批量安装,出现下图则说明安装成功 1.1.4 验证安装 使用gcc-v和g++ -v命令查看版本,若出现版本详情则说明离线安装成功,如下图示: 1.2 安装pcre 1.2.1 下载pcre 下载地址:http://www.pcre.org/ 1.2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压,解压命令tar -xvf pcre-8.45.tar.gz 1.2.3 编译安装 进入解压目录,依次执行以下命令: ./configure make make install 1.3 下载安装zlib 1. 3.1 下载zlib 下载地址:http://www.zlib.net/ 1.3.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.3.3 配置 进入解压目录输入 ./configure 1.3.4 编译安装 进入解压目录输入make && make install 1.4 下载安装openssl tips:检查是否已安装openssl,输入命令openssl version,若出现版本信息,则无需安装;若没有安装则继续安装 1.4.1 下载 地址:https://www.openssl.org/source/ 1.4.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.4.3 配置 进入解压目录输入 ./configure 1.4.4 编译安装 进入解压目录输入 make && make install 1.4.5 验证 安装完成后,控制台输入openssl version,出现版本信息则说明安装成功 2. 下载安装nginx 2.1 下载nginx安装包 下载地址:https://nginx.org/en/download.html 2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 2.3 配置 进入解压目录进行配置安装地址:./configure --prefix=/home/develop/nginx 2.4 编译 make 2.5 安装 make install 2.6 检查并启动 2.6.1 检查 进入安装目录下的sbin文件夹,输入./nginx -t,如下图则说明安装成功: 2.6.2 启动 启动nginx,命令:./nginx 2.7 访问 浏览器访问nginx,前提是80端口可以访问 2.8 设置开启自启动 tips:此步骤为可选项 将nginx的sbin目录添加到rc.local文件中: 编辑rc.local文件 vim /etc/rc.local 在最后一行加入如下内容 /home/develop/nginx/sbin/nginx 总结 以上就是离线安装nginx的详细步骤,希望可以帮到有需要的小伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Shiny_boy_/article/details/126965658。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 08:28:14
108
转载
SpringBoot
...微服务环境下,监控和日志管理变得更为重要。Prometheus和Jaeger这类工具能够帮助追踪定时任务的性能瓶颈,而Zipkin等服务可以提供详细的链路跟踪,便于问题排查。 总的来说,微服务化是SpringBoot定时任务服务演进的一个重要方向,它需要开发者具备更全面的技能集,包括服务设计、容器化部署、微服务治理等。随着技术的不断迭代,微服务化的定时任务服务将成为企业数字化转型的基石。
2024-06-03 15:47:34
47
梦幻星空_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
free -h
- 显示内存使用情况。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"