前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[时间字段]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kafka
...费速率下降、系统响应时间增长等。这些问题可能会在咱们的数据处理流水线上形成拥堵,就像高峰期的马路一样,一旦堵起来,业务运作的流畅度自然会大打折扣,严重时,就有可能像多米诺骨牌效应那样,引发一场服务崩溃的大雪崩。 java // 例如,一个简单的消费者代码片段 Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { long latency = System.currentTimeMillis() - record.timestamp(); if (latency > acceptableLatencyThreshold) { // 如果延迟超过阈值,说明可能存在网络延迟问题 log.warn("High network latency detected: {}", latency); } // 进行数据处理... } } 3. 原因剖析 3.1 网络拓扑复杂性 复杂的网络架构,比如跨地域、跨数据中心的数据传输,或网络设备性能瓶颈,都可能导致较高的网络延迟。 3.2 配置不当 Kafka客户端配置不恰当也可能造成网络延迟升高,例如fetch.min.bytes和fetch.max.bytes参数设置不合理,使得消费者在获取消息时等待时间过长。 3.3 数据量过大 如果Kafka Topic中的消息数据量过大,导致网络带宽饱和,也会引起网络延迟上升。 4. 解决策略 4.1 优化网络架构 尽量减少数据传输的物理距离,合理规划网络拓扑,使用高速稳定的网络设备,并确保带宽充足。 4.2 调整Kafka客户端配置 根据实际业务需求,调整fetch.min.bytes和fetch.max.bytes等参数,以平衡网络利用率和消费速度。 java // 示例:调整fetch.min.bytes参数 props.put("fetch.min.bytes", "1048576"); // 设置为1MB,避免频繁的小批量请求 4.3 数据压缩与分片 对发送至Kafka的消息进行压缩处理,减少网络传输的数据量;同时考虑适当增加Topic分区数,分散网络负载。 4.4 监控与报警 建立完善的监控体系,实时关注网络延迟指标,一旦发现异常情况,立即触发报警机制,便于及时排查和解决。 5. 结语 面对Kafka服务器与外部系统间的网络延迟问题,我们需要从多个维度进行全面审视和分析,结合具体应用场景采取针对性措施。明白并能切实搞定网络延迟这个问题,那可不仅仅是对咱Kafka集群的稳定性和性能有大大的提升作用,更关键的是,它能像超级能量饮料一样,给整个数据处理流程注入活力,确保其高效顺畅地运作起来。在整个寻找答案、搞定问题的过程中,我们不停地动脑筋、动手尝试、不断改进,这正是技术进步带来的挑战与乐趣所在,让我们的每一次攻关都充满新鲜感和成就感。
2023-10-14 15:41:53
466
寂静森林
Netty
... // 记录消息入队时间 long enqueueTime = System.currentTimeMillis(); // 处理消息... // 记录消息出队时间 long dequeueTime = System.currentTimeMillis(); System.out.println("Message processed in " + (dequeueTime - enqueueTime) + " ms"); } } 3.2 使用Metrics Netty本身并不直接提供监控功能,但我们可以通过集成第三方库(如Micrometer)来实现这一目标。Micrometer让我们能轻松把应用的性能数据秀出来,这样后面分析和监控就方便多了。 java import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.Timer; // 初始化MeterRegistry MeterRegistry registry = new SimpleMeterRegistry(); // 在自定义Handler中使用Micrometer public class MicrometerMonitorHandler extends SimpleChannelInboundHandler { private final Timer timer; public MicrometerMonitorHandler() { this.timer = Timer.builder("message.processing") .description("Time taken to process messages") .register(registry); } @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { Timer.Sample sample = Timer.start(registry); // 处理消息 sample.stop(timer); } } 4. 总结与反思 通过上述步骤,我们已经成功地为Netty中的消息队列添加了基本的监控能力。然而,这只是一个起点。在实际操作中,你可能会遇到更多需要处理的事情,比如说怎么应对错误,怎么监控那些不正常的状况之类的。另外,随着系统变得越来越复杂,你可能得找一些更高级的工具来解决问题,比如说用分布式追踪系统(比如Jaeger或者Zipkin),这样你才能更好地了解整个系统的运行状况和性能表现。 最后,我想说的是,技术总是在不断进步的,保持学习的心态是非常重要的。希望这篇文章能够激发你对Netty和消息队列监控的兴趣,并鼓励你在实践中探索更多可能性! --- 这就是我们的文章,希望你喜欢这种更有人情味的叙述方式。如果你有任何疑问或想要了解更多细节,请随时提问!
2024-11-04 16:34:13
316
青春印记
Kotlin
...可能会增加应用的启动时间和内存消耗,特别是在大量对象实例化时。 4. 遇到“Lateinit Property Not Initialized Before Use”错误怎么办? 当遇到这个错误时,通常意味着你试图访问或使用了一个未初始化的lateinit属性。解决这个问题的方法通常是: - 检查初始化逻辑:确保在使用属性之前,确实调用了对应的初始化方法或进行了必要的操作。 - 代码重构:如果可能,将属性的初始化逻辑移至更合适的位置,比如构造函数、特定方法或事件处理程序中。 - 避免不必要的延迟初始化:考虑是否真的需要延迟初始化,有时候提前初始化可能更为合理和高效。 5. 实践中的应用案例 在实际项目中,lateinit属性特别适用于依赖于用户输入、网络请求或文件读取等不确定因素的数据加载场景。例如,在构建一个基于用户选择的配置文件加载器时: kotlin class ConfigLoader { lateinit var config: Map fun loadConfig() { // 假设这里通过网络或文件系统加载配置 config = loadFromDisk() } } fun main() { val loader = ConfigLoader() loader.loadConfig() println(loader.config) // 此时config已初始化 } 在这个例子中,config属性的加载逻辑被封装在loadConfig方法中,确保在使用config之前,其已经被正确初始化。 结论 lateinit属性是Kotlin中一个强大而灵活的特性,它允许你推迟属性的初始化直到运行时。然而,正确使用这一特性需要谨慎考虑其潜在的性能影响和错误情况。通过理解其工作原理和最佳实践,你可以有效地利用lateinit属性来增强你的Kotlin代码,使其更加健壮和易于维护。
2024-08-23 15:40:12
94
幽谷听泉
Nginx
...联网上摸爬滚打过一段时间,那你一定知道缓存的重要性。它就像家里的冰箱似的,帮我们存点常用的“干货”,这样就不用每次用的时候都从零开始折腾啦! Nginx作为一个高性能的HTTP服务器和反向代理服务器,它也提供了强大的缓存机制。通过缓存,我们可以显著提高网站的响应速度,减轻后端服务器的压力。但是,缓存也不是万能的。对了,有时候咱们可不能光顾着用缓存,还得先看看情况再决定是不是真的要用它,而不是一股脑儿地直接掏出缓存里的东西就完事了。这就是Nginx的proxy_cache_bypass指令出场的时候了。 想象一下,你正在吃一份昨天剩下的披萨,突然发现里面放了你讨厌的洋葱。哎,遇到这种情况你咋整?是硬着头皮吃完呢,还是直接倒掉重新来一份?说到这个,Nginx里的proxy_cache_bypass就有点像你嘴里的味蕾,专门负责挑三拣四——它会根据一些特定条件,决定到底是直接找后端服务器要新鲜数据,还是老老实实从缓存里拿现成的。 2. proxy_cache_bypass的基本概念 首先,让我们来搞清楚什么是proxy_cache_bypass。简单说啊,这个指令用来用来决定Nginx到底要不要走缓存,还是直接甩给后端服务器去处理。有点像你在点餐时是先看看菜单上的现成选项呢,还是直接跟厨师说“来点新鲜的”!你可以把它理解成一个开关,这个开关要么连着个变量,要么是一堆条件。只要这些条件一达成,Nginx就说:“好嘞,不走缓存了,咱们直接来!” 举个例子,假设你有一个电商网站,用户可以根据自己的偏好来筛选商品。要是用户点了个“只看最新商品”的选项,那这个请求就别用缓存了啊。为啥呢?因为它要的是刚出炉的数据,可不是什么昨天的老黄历!这时候,你就可以使用proxy_cache_bypass来告诉Nginx,这个请求不应该被缓存。 nginx location /products { proxy_cache my_cache; proxy_cache_bypass $http_x_update; proxy_pass http://backend_server; } 在这个配置中,$http_x_update是一个自定义的HTTP头,当你在请求头中添加这个头时,Nginx就会绕过缓存,直接向后端服务器发送请求。 3. 深入探讨proxy_cache_bypass的工作原理 现在,让我们更深入地探讨一下proxy_cache_bypass是如何工作的。哈哈,这玩意儿可机灵了!就像个老练的管家,能根据具体情况 deciding(做决定)要不要用缓存,该出手时就出手,不该用的时候绝不浪费资源~ 首先,Nginx会检查proxy_cache_bypass指令中指定的条件。如果条件成立,Nginx会跳过缓存,直接向后端服务器发送请求。如果条件不成立,Nginx则会尝试从缓存中获取响应。 举个例子,假设你正在开发一个新闻网站,用户可以选择查看“热门新闻”或者“最新新闻”。对于“最新新闻”,你可能希望每次请求都获取最新的数据,而不是使用缓存。你可以这样配置: nginx location /latest_news { proxy_cache my_cache; proxy_cache_bypass $arg_force_update; proxy_pass http://news_backend; } 在这个例子中,$arg_force_update是一个查询参数,当你在URL中添加?force_update=1时,Nginx就会绕过缓存。 4. 实际应用中的proxy_cache_bypass 好了,现在我们已经了解了proxy_cache_bypass的基本概念和工作原理,接下来让我们看看它在实际应用中的具体例子。 假设你正在运营一个在线教育平台,学生可以在平台上观看课程视频。为了提高用户体验,你决定为每个学生提供个性化的推荐视频。这种时候,你大概更想每次都拿到最新鲜的推荐列表,而不是老是翻那堆缓存里的东西吧? nginx location /recommendations { proxy_cache my_cache; proxy_cache_bypass $http_x_user_id; proxy_pass http://video_server; } 在这个配置中,$http_x_user_id是一个自定义的HTTP头,当你在请求头中添加这个头时,Nginx就会绕过缓存。 5. 总结与展望 总之,proxy_cache_bypass是Nginx缓存机制中一个非常有用的工具,它允许我们在特定条件下绕过缓存,直接向后端服务器发送请求。用好了这个指令啊,就好比给网站的缓存装了个聪明的小管家,让它该存啥不该存啥都安排得明明白白的。这样不仅能加快网页加载速度,还能让用户打开网站的时候感觉特别顺畅,那体验感直接拉满! 未来,随着互联网技术的不断发展,我相信proxy_cache_bypass会有更多的应用场景。说不定哪天啊,它就更聪明了,自己能分得清哪些请求得绕开缓存走,哪些直接就能用缓存搞定。不管咋说呢,咱们都得对新玩意儿保持那份好奇,老想着学点新鲜的,让自己一直进步才行啊! 最后,我想说的是,Nginx不仅仅是一个工具,它更像是一个伙伴,陪伴着我们一起成长。希望这篇文章能对你有所帮助,如果有任何问题或者想法,欢迎随时交流!
2025-04-18 16:26:46
97
春暖花开
SeaTunnel
...问题,感觉就像是在跟时间赛跑。咱们不急,一步步来,慢慢分析,看看怎么用Apache SeaTunnel(以前叫Dlink)搞定这个难题。 2. 数据库容量预警的重要性 首先,我们得明白为什么数据库容量预警这么重要。想象一下,如果你的数据库突然撑破了天花板,那可不只是系统要罢工了,搞不好你辛辛苦苦存的东西都会打水漂呢!要是真摊上这事,那你可有的忙了,不仅要拼命恢复数据,还得应付客户和老板的一堆问题。所以说,有个靠谱的预警系统能在数据库快要爆满时提前通知你,这真是太关键了。 3. 当前预警机制的不足 目前,很多公司依赖手动监控或者一些基本的告警工具。但是这些方法往往不够及时和准确。比如说吧,我以前就碰到过这么一回。有个表格的数据量突然像坐火箭一样猛增,结果我们没收到任何预警,存储空间就被塞得满满当当的了。结果就是,系统崩溃,用户投诉,还得加班加点解决问题。这让我意识到,必须找到一种更智能、更自动化的解决方案。 4. 使用SeaTunnel进行数据库容量预警 4. 1. 安装与配置 要开始使用SeaTunnel进行数据库容量预警,首先需要安装并配置好环境。假设你已经安装好了Java环境和Maven,那么接下来就是安装SeaTunnel本身。你可以从GitHub上克隆项目,然后按照官方文档中的步骤进行编译和打包。 bash git clone https://github.com/apache/incubator-seatunnel.git cd incubator-seatunnel mvn clean package -DskipTests 接着,你需要配置SeaTunnel的配置文件seatunnel-env.sh,确保环境变量正确设置: bash export SEATUNNEL_HOME=/path/to/seatunnel 4. 2. 创建任务配置文件 接下来,我们需要创建一个任务配置文件来定义我们的预警逻辑。比如说,我们要盯着MySQL里某个表的个头,一旦它长得太大,超出了我们定的界限,就赶紧发封邮件提醒我们。我们可以创建一个名为capacity_alert.conf的配置文件: yaml job { name = "DatabaseCapacityAlert" parallelism = 1 sources { mysql_source { type = "jdbc" url = "jdbc:mysql://localhost:3306/mydb" username = "root" password = "password" query = "SELECT table_schema, table_name, data_length + index_length AS total_size FROM information_schema.tables WHERE table_schema = 'mydb' AND table_name = 'my_table'" } } sinks { mail_sink { type = "mail" host = "smtp.example.com" port = 587 username = "alert@example.com" password = "alert_password" from = "alert@example.com" to = "admin@example.com" subject = "Database Capacity Alert" content = """ The database capacity is approaching the threshold. Please take necessary actions. """ } } } 4. 3. 运行任务 配置完成后,就可以启动SeaTunnel任务了。你可以通过以下命令运行: bash bin/start-seatunnel.sh --config conf/capacity_alert.conf 4. 4. 监控与调整 运行后,你可以通过日志查看任务的状态和输出。如果一切正常,你应该会看到类似如下的输出: [INFO] DatabaseCapacityAlert - Running task with parallelism 1... [INFO] MailSink - Sending email alert to admin@example.com... [INFO] MailSink - Email sent successfully. 如果发现任何问题,比如邮件发送失败,可以检查配置文件中的SMTP设置是否正确,或者尝试重新运行任务。 5. 总结与展望 通过这次实践,我发现SeaTunnel真的非常强大,能够帮助我们构建复杂的ETL流程,包括数据库容量预警这样的高级功能。当然了,这个过程也不是一路畅通的,中间遇到了不少坑,但好在最后都解决了。将来,我打算继续研究怎么把SeaTunnel和其他监控工具连起来,打造出一个更全面、更聪明的预警系统。这样就能更快地发现问题,省去很多麻烦。 希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎在评论区留言交流!
2025-01-29 16:02:06
73
月下独酌
Netty
...样,如果服务器在一段时间内没有回应这个“招呼”,那我们就推测可能是网络连接断开了,简单来说就是网络出小差了。 例如,我们可以使用以下代码来发送心跳包: java // 创建心跳包 ByteBuf heartbeat = Unpooled.buffer(); heartbeat.writeInt(HeartbeatMessage.HEARTBEAT); heartbeat.writerIndex(heartbeat.readableBytes()); // 发送心跳包 channel.writeAndFlush(heartbeat); 3. 使用重连机制 当网络中断后,我们需要尽快重新建立连接。为了实现这个功能,我们可以使用重连机制。换句话说,一旦网络突然掉线了,我们立马麻溜地开始尝试建立一个新的连接,并且持续密切关注着新的连接状态有没有啥变化。 例如,我们可以使用以下代码来重新建立连接: java // 重试次数 int retryCount = 0; while (retryCount < maxRetryCount) { try { // 创建新的连接 Bootstrap bootstrap = new Bootstrap(); ChannelFuture channelFuture = bootstrap.group(eventLoopGroup).channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, backlog) .childHandler(new ServerInitializer()) .connect(new InetSocketAddress(host, port)).sync(); // 监听新的连接状态变化 channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 新的连接建立成功 return; } // 新的连接建立失败,继续重试 if (future.cause() instanceof ConnectException || future.cause() instanceof UnknownHostException) { retryCount++; System.out.println("Failed to connect to server, will retry in " + retryDelay + "ms"); Thread.sleep(retryDelay); continue; } } }); // 连接建立成功,返回 return channelFuture.channel(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } 五、总结 在网络中断问题上,我们可以通过监听ChannelFuture的状态变化、使用心跳检测机制和重连机制来处理。这些方法各有各的好和不足,不过总的来说,甭管怎样,它们都能在关键时刻派上用场,就是在网络突然断开的时候,帮我们快速重新连上线,确保服务器稳稳当当地运行起来,一点儿不影响正常工作。 以上就是关于如何处理Netty服务器的网络中断问题的文章,希望能对你有所帮助。
2023-02-27 09:57:28
137
梦幻星空-t
Apache Atlas
...表或特定数据元素(如字段名、数据类型、创建日期等)的结构化信息。在Apache Atlas中,元数据管理涵盖了从数据源、数据管道到数据分析结果等各个环节,确保用户可以清晰地了解和追踪整个数据生命周期中的所有组件。 RESTful API , REST(Representational State Transfer)是一种软件架构风格,而RESTful API则是基于此风格设计的应用程序接口。在Apache Atlas中,服务端与客户端通过RESTful API进行通信,这意味着客户端可以通过HTTP方法(如GET、POST、PUT、DELETE)对资源进行操作,实现数据的获取、更新和删除等功能。在网络不稳定的情况下,尽管可能会遇到请求超时或失败的问题,但RESTful API的设计原则有助于简化网络交互并提高系统的可扩展性。 HTTP重试机制 , HTTP重试机制是网络编程中的一种容错策略,用于处理因网络波动导致的HTTP请求失败情况。在面对Apache Atlas客户端与服务器间的网络不稳定时,可以通过设置HTTP客户端库的重试参数,在请求失败后按照预设规则自动重新发起请求。例如,在Python requests库中,可以通过配置Retry对象来设定总重试次数、重试间隔以及针对特定HTTP状态码进行重试,以增加在不稳定网络环境下成功获取数据的概率。
2024-01-10 17:08:06
410
冬日暖阳
Kylin
...体中的各个分类轴,如时间、地区、产品类型等;度量则是需要计算的数值,如销售额、访问次数等。通过合理设计数据模型,可以显著提高查询效率和灵活性,满足不同业务场景下的分析需求。 Cube , Cube是Kylin中的一个重要概念,指的是预先计算好的多维数据结构。通过Cube,Kylin可以在大规模数据集上实现快速查询。Cube将所有可能的维度组合预先计算好,形成一个多维数组,当用户发起查询时,Kylin可以直接从Cube中检索结果,而无需实时计算,从而实现亚秒级的查询性能。在构建Cube时,可以选择不同的维度组合和度量方法,以平衡存储空间和查询速度的关系。Cube的这种预计算机制,特别适用于需要频繁进行多维度分析的场景。
2024-12-12 16:22:02
88
追梦人
Mongo
...这意味着它可以在同一时间对多个文档进行读写操作,极大地提高了并发性能,特别是在多用户环境和高并发场景下。 - 数据压缩:WiredTiger支持数据压缩功能,能够有效减少磁盘空间占用,这对于大规模数据存储和传输极为重要。 - 检查点与恢复机制:定期创建检查点以确保数据持久化,即使在系统崩溃的情况下也能快速恢复到一个一致的状态。 2. 如何查看MongoDB的存储引擎? 要确定您的MongoDB实例当前使用的存储引擎类型,可以通过运行Mongo Shell并执行以下命令: javascript db.serverStatus().storageEngine 这将返回一个对象,其中包含了存储引擎的名称和其他详细信息,如引擎类型是否为wiredTiger。 3. 指定MongoDB存储引擎 在启动MongoDB服务时,可以通过mongod服务的命令行参数来指定存储引擎。例如,若要明确指定使用WiredTiger引擎启动MongoDB服务器,可以这样做: bash mongod --storageEngine wiredTiger --dbpath /path/to/your/data/directory 这里,--storageEngine 参数用于设置存储引擎类型,而--dbpath 参数则指定了数据库文件存放的位置。 请注意,虽然InMemory存储引擎也存在,但它主要适用于纯内存计算场景,即所有数据仅存储在内存中且不持久化,因此不适合常规数据存储需求。 4. 探讨与思考 选择合适的存储引擎对于任何数据库架构设计都是至关重要的。随着MongoDB的不断成长和进步,核心团队慧眼识珠,挑中了WiredTiger作为默认配置。这背后的原因呢,可不光是因为这家伙在性能上表现得超级给力,更因为它对现代应用程序的各种需求“拿捏”得恰到好处。比如咱们常见的实时分析呀、移动应用开发这些热门领域,它都能妥妥地满足,提供强大支持。不过呢,每个项目都有自己独特的一套规矩和限制,摸清楚不同存储引擎是怎么运转的、适合用在哪些场合,能帮我们更聪明地做出选择,让整个系统的性能表现更上一层楼。 总结来说,MongoDB如今已经将WiredTiger作为其默认且推荐的存储引擎,但这并不妨碍我们在深入研究和评估后根据实际业务场景选择或切换存储引擎。就像一个经验老道的手艺人,面对各种不同的原料和工具,咱们得瞅准具体要干的活儿和环境条件,然后灵活使上最趁手的那个“秘密武器”,才能真正鼓捣出既快又稳、超好用的数据库系统来。
2024-01-29 11:05:49
202
岁月如歌
Mongo
...a区域,可以通过拖拽字段图标并填写字段名、数据类型(如String, Number, Date等),定义新的用户文档结构: { "_id": ObjectId(), "username": String, "email": {type: String, required: true}, "password": {type: String, required: true, min: 6}, "createdAt": Date, "updatedAt": Date } 2. 查询构建与执行 - 当我们需要从 new_users 集合中查找特定条件的记录时,MongoDB Studio的Query Builder功能大显身手。在 "Query Builder" 区域,选择 "Find" 操作,键入查询条件,例如找到邮箱地址包含 "@example.com" 的用户: db.new_users.find({"email": {$regex: /@example\.com$/} }) 3. 数据操作与管理 - 对于数据的增删改查操作,MongoDB Studio同样提供了便捷的操作界面。例如,在 "Data Editor" 中选择需要更新的文档,点击 "Update" 按钮,并设置新的属性值,如将用户名 "Alice" 更新为 "Alicia": db.new_users.updateOne( {"username": "Alice"}, {"$set": {"username": "Alicia"} } ) 4. 性能监控与调试 - 而对于数据库的整体性能指标,MongoDB Studio还集成了实时监控模块,包括CPU、内存、磁盘I/O、网络流量等各项指标,便于管理员快速发现潜在瓶颈,并针对性地进行优化调整。 四、结论与展望 MongoDB Studio作为一个集数据建模、查询构建、数据操作于一体的全面管理工具,极大地提升了用户在MongoDB环境下的工作效率。而且你知道吗,MongoDB这个大家庭正在日益壮大和成熟,那些聚合管道、索引优化、事务处理等高大上的功能,都将一步步被融入到MongoDB Studio里头去。这样一来,咱们管理数据库就能变得更聪明、更自动化,就像有个小助手在背后默默打理一切,轻松又省力!嘿,伙计们,咱们一起热血沸腾地站在技术革命的浪尖上,满怀期待地瞅瞅MongoDB Studio能给我们带来什么惊艳的新玩意儿吧!这货绝对会让广大的开发者小伙伴们更溜地驾驭MongoDB,让企业的数据战略发展如虎添翼,一路飙升!
2024-02-25 11:28:38
70
幽谷听泉-t
Tomcat
...查锁的顺序和持有锁的时间,防止出现死锁情况。 五、总结 java.lang.IllegalMonitorStateException 异常提醒我们在多线程编程中注意锁的使用,确保每次操作都处于安全的监视器状态。通过正确的锁管理实践,我们可以有效预防这类异常,并提高应用程序的稳定性和性能。哎呀,亲!在咱们做程序开发的时候,多线程编程那可是个大功臣!要想让咱们的系统跑得又快又稳,学好这个技术,不断摸索最佳实践,那简直就是必须的嘛!这不光能让程序运行效率翻倍,还能确保系统稳定,用户用起来也舒心。所以啊,小伙伴们,咱们得勤于学习,多加实践,让自己的技能库再添一把火,打造出既高效又可靠的神级系统!
2024-08-07 16:07:16
53
岁月如歌
CSS
...sses(类中的私有字段),它通过符号为类成员变量提供了真正意义上的封装,这无疑对理解和管理作用域提出了新的要求。 与此同时,为了提升代码质量和团队协作效率,遵循模块化编程理念愈发关键。Node.js生态下的CommonJS和ES6的import/export语法已成为主流模块加载方式,它们在很大程度上能够帮助开发者更好地组织代码结构,明确函数的作用域范围,从而有效避免“函数未定义”等问题的发生。 此外,对于大型项目或团队开发,Linting工具如ESLint不仅可以实时检测出潜在的函数未定义错误,还能强制执行编码规范,包括命名规则、作用域使用等,从而降低代码维护成本,提高整体项目的健壮性。 深入学习JavaScript运行机制,理解其背后的原型链、闭包以及异步编程模型,将有助于开发者更全面地应对各类函数调用异常,切实提升实际开发过程中的问题解决能力。同时,关注前端社区最新动态,紧跟技术发展趋势,也是每个前端开发者持续精进、防范类似“函数未定义”这类问题的有效途径。
2023-08-12 12:30:02
429
岁月静好_t
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 4、第四部分 (1) oname = ${patsubst %.c,%.o,${patsubst %.S,%.o,$(1)} } 自定义函数,$(1)表示调用oname这个函数的第一个参数,patsubst是make内置函数,即模式字符串替换函数。 oname函数实现的功能是: 将第一个参数中符合%.s模式的替换成%.o 再继续将上述结果中符合%.c模式的替换成%.o 也就是把所有 .s 和 .c文件名替换成 .o文件名。 这个函数的功能就是计算源文件名(c源文件,汇编源文件)所相对应的目标文件名(经过编译汇编后的文件)。 CONTIKI_OBJECTFILES = ${addprefix $(OBJECTDIR)/,${call oname, $(CONTIKI_SOURCEFILES)} }PROJECT_OBJECTFILES = ${addprefix $(OBJECTDIR)/,${call oname, $(PROJECT_SOURCEFILES)} } 定义CONTIKI_OBJECTFILES变量 首先用oname函数,将CONTIKI_SOURCEFILES所对应的源文件名,改为目标文件名,如process.c将会变为process.o 再在文件名前边加上前缀$(OBJECTDIR)/,前边我们知道这个变量为obj_native,故process.c会变为obj_native/process.o 这个变量应该是代表即将生成的Contiki操作系统的目标文件名 定义PROJECT_OBJECTFILES变量 功能同上 这个变量应该是代表即将生成的项目中的目标文件名 PROJECT_SOURCEFILES这个变量为空,所以PROJECT_OBJECTFILES也为空。 Provide way to create $(OBJECTDIR) if it has been removed by make clean$(OBJECTDIR):mkdir $@ $@是自动化变量,表示规则中的目标文件集。我们知道OBJECTDIR为obj_native,所以$@为obj_native。 mkdir $@生成obj_native目录。 但是这个依赖关系链,怎么会涉及到obj_native的? 调试了一下: 在生成CONTIKI_OBJECTFILES所代表的文件时,目录不存在,会先找依赖关系生成目录,再生成具体文件。 所以mkdir obj_native会被执行。 (2) ifdef APPSAPPDS = ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} \${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} \${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} \$(APPS)}APPINCLUDES = ${foreach APP, $(APPS), ${wildcard ${foreach DIR, $(APPDS), $(DIR)/Makefile.$(APP)} }}-include $(APPINCLUDES)APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)}DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)}CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES)endif The project's makefile can also define in the APPS variable a list of applications from the apps/ directory that should be included in the Contiki system. hello-world这个例子没有定义APPS变量,故这段不会执行。 我们假设定义了APPS变量,其值为APPS += antelope unit-test。 相关知识点: wildcard函数: 返回所有符合pattern的文件名,以空格隔开。 $(wildcard pattern) The argument pattern is a file name pattern, typically containing wildcard characters (as in shell file name patterns). The result of wildcard is a space-separated list of the names of existing files that match the pattern. foreach函数: The syntax of the foreach function is: $(foreach var,list,text) The first two arguments, var and list, are expanded before anything else is done; note that the last argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the variable named by the expanded value of var is set to that word, and text is expanded. Presumably text contains references to that variable, so its expansion will be different each time. The result is that text is expanded as many times as there are whitespace-separated words in list. The multiple expansions of text are concatenated, with spaces between them, to make the result of foreach. 每次从list中取出一个词(空格分隔),赋给var变量,然后text(一般有var变量)被拓展开来。 只要list中还有空格分隔符就会一直循环下去,每一次text返回的结果都会以空格分隔开。 ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} 先分析${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} } 其中DIR是变量(var),$(APPDIRS)是列表(list),这个例子中没有定义APPDIRS这个变量,估计是用于定义除了$CONTIKI/apps/之外的apps目录。 ${addprefix $(DIR)/, $(APPS)}是text。我们假设定义了APPDIRS为a b。 那么第一次:DIR 会被赋值为a,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为a/antelope a/unit-test。 DIR 会被赋值为b,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为b/antelope b/unit-test。 最终这两次结果会以空格分隔开,即a/antelope a/unit-test b/antelope b/unit-test ${wildcard a/antelope a/unit-test b/antelope b/unit-test} 返回空,因为找不到符合这样的目录。 所以最终这句语句,实现的功能是,返回$APPDIRS目录中,所有符合$APPS的目录。 ${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/apps/目录下所有符合$APPS的目录,即contiki-release-2-7/apps/antelope contiki-release-2-7/apps/unit-test ${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/platform/$(TARGET)/apps/目录下所有$APPS的目录,即contiki-release-2-7/platform/native/apps/antelope contiki-release-2-7/platform/native/apps/unit-test。 在contiki-release-2-7/platform/native目录下,并没有apps目录,后边有差错处理机制。 $(APPS) 在当前目录下的所有$APPS目录,即antelope unit-test。 在hello-world例子中,并没有这些目录。 所以APPDS变量是包含所有与$APPS有关的目录。 APPINCLUDES变量是所有需要导入的APP Makefile文件。 在所有APPDS目录下,所有Makefile.$(APPS)文件。 在我们的假设条件APPS = antelope unit-test, APPDIRS = 只会导入contiki-release-2-7/apps/antelope/Makefile.antelope contiki-release-2-7/apps/unit-test/Makefile.unit-test 其余的均不存在,所以在include指令前要有符号-,即出错继续执行后续指令。 contiki-release-2-7/apps/antelope/Makefile.antelope: 分别定义了两个变量,antelope_src用于保存antelope这个app的src文件,antelope_dsc用于保存antelope这个app的dsc文件。 contiki-release-2-7/apps/unit-test/Makefile.unit-test: 分别定义了两个变量,unit-test_src用于保存unit-test这个app的src文件,unit-tes_dsc用于保存unit-test这个app的dsc文件。 变量APP_SOURCES APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)} 取出所有APPS中的src文件变量,这个例子是$(antelope_src) 和$(unit-test_src) 变量APP_SOURCES DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)} 取出所有APPS中的dsc文件变量,这个例子是$(antelope_dsc) 和$(unit-test_dsc) CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES) 这段话的最终目的: 将$APPS相关的所有源文件添加进CONTIKI_SOURCEFILES变量中。 (3) target_makefile := $(wildcard $(CONTIKI)/platform/$(TARGET)/Makefile.$(TARGET) ${foreach TDIR, $(TARGETDIRS), $(TDIR)/$(TARGET)/Makefile.$(TARGET)}) Check if the target makefile exists, and create the object directory if necessary.ifeq ($(strip $(target_makefile)),)${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)}elseifneq (1, ${words $(target_makefile)})${error More than one TARGET Makefile found: $(target_makefile)}endifinclude $(target_makefile)endif 这断代码主要做的就是,找到在所有TAGET目录下找到符合的Makefile.$(TARGET)文件,放到target_makefile变量中。 再检查是否存在或者重复。并做相应的错误提示信息。 ${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)} ${error More than one TARGET Makefile found: $(target_makefile)} 我们这个例子中 TARGET = native 并且 TARGETDIRS为空 所以最后会导入$(CONTIKI)/platform/native/Makefile.native 接下去要开始分析target和cpu的makefile文件了。 转载于:https://www.cnblogs.com/songdechiu/p/6012718.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34399060/article/details/94095820。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 09:49:23
282
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 2017-08-22 17:25:53 浏览量:3346 win7 64位系统什么样的电脑可以安装呢?我们知道win7分为32位(x86)和64位(x64)两种,其中32位几乎是什么电脑都可以安装,不过win7 64位对电脑配置要求比较高,并不是什么电脑都可以安装,除此之外,即便电脑可以装win7 64位,也并不能保证能流畅运行,下面系统城小编跟大家介绍安装win7 64位需要什么配置的电脑。 2018-04-20 17:15:29 浏览量:7894 电脑都可以装64位系统吗?相信大家都看到,现在新买的电脑都是自带64位系统,这时候就有部分用户产生了疑惑,是不是所有电脑都能装64位系统?其实不然!操作系统分32位和64位,就说明了有些电脑不能装64位,只能装32位,是不是能装64位这个需要看硬件是否支持。下面系统城小编跟大家介绍怎么看电脑能不能装64位系统的方法。 2020-08-14 16:30:00 浏览量:1430 一些朋友在买了小米电脑后,想要装回win7系统,因为win7系统的兼容性和稳定性深受广大网友的喜爱。那么小米笔记本能装win7吗?当然可以,接下来小编就给大家带来小米电脑装win7的教程。 2017-03-05 21:11:22 浏览量:1075 台式电脑是使用比较广泛的机型,尤其是家庭或办公室,台式电脑的硬件配置相对而言会比较强,不过有少数台式机的配置确实很差,很多用户对电脑配置不了解,经常提出“台式电脑能装win7系统吗”、“台式机可以装win7系统吗”之类的问题,其实大部分的台式机安装win7系统毫无压力,下面小编跟大家介绍台式电脑能不能装win7系统以及怎么安装win7系统的方法。 2017-07-27 18:27:21 浏览量:542 u盘和光盘一样都是存储工具,我们都知道光盘是安装系统非常重要的工具,那么U盘可以装系统吗?U盘能用来装系统吗?事实上U盘已经取代光盘成为安装系统最流行的工具,通过大白菜、UltraISO等工具可以将U盘制作成启动盘,然后就可以用U盘给电脑装系统,下面系统城小编跟大家介绍用U盘安装系统的方法。 2018-01-27 16:02:10 浏览量:1469 win7的电脑能不能装win8系统?虽然大部分用户都喜欢win7系统,但是也是有一些人钟爱win8系统。win8是一款具备划时代的操作系统,因为改变了常规的操作方式,大部分操作方式是全新的,追求新颖的用户自然不放过体验的机会。现在问题来了,win7的电脑可不可以装win8系统,据说win8是uefi全新引导?其实只要电脑能装win7,就能装win8下面小编跟大家讲解win7系统可不可以装win8的问题。 2017-11-25 18:15:36 浏览量:2373 能用普通U盘来装系统吗?我们知道光盘是安装系统最传统的工具,普通U盘和光盘一样都是存储工具,那么能将普通U盘制作成装系统的U盘,然后用U盘装系统吗?答案是肯定,因为现在U盘装系统已经取代光盘成为最主流的方法,通过大白菜、ultraiso等工具可以将普通U盘制作成启动U盘。下面系统城小编以装w7系统纯净版为例跟大家介绍普通U盘装系统教程。 2018-02-27 16:42:21 浏览量:3501 3g内存能不能装win7系统?虽然现在内存容量都很大,但那些都是新电脑,老旧电脑内存没有很大,比如大部分老电脑内存都是2G左右。有用户电脑时3g内存,想要装win7系统,那么3g内存能装win7系统吗?64位win7系统也能装?关于这个问题,需要使用专门的工具来检测,下面跟系统城小编一起来学习下3g内存能否装win7系统的问题。 2017-01-14 18:19:33 浏览量:2868 很多人处于工作需要会选择上网本,上网本体积小,非常轻薄,是一种微型笔记本电脑,上网本硬件配置一般很低,大部分的上网本默认只能满足日常办公需要,很多人买来上网本默认装的是Linux或xp系统,但是用户比较喜欢win7系统,那么上网本能装win7系统吗?上网本怎么装win7系统?下面系统城小编跟大家介绍上网本装win7系统的方法。 2018-02-22 14:00:59 浏览量:1261 win7 32位系统可以用优盘装64位系统吗?现在电脑硬件越来越强大,32位系统远远不能满足硬件的发挥,现在64位系统是主流,所以不少用户纷纷将32位系统装成64位系统,那么可以用优盘装64位系统吗?必须是可以的,这边以安装win7旗舰版64位为例,教大家win7 32位系统优盘装64位系统方法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39837139/article/details/119130243。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 09:18:56
109
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 4.2创建自定义Spring Boot自动配置Starter 这个章节,我们将会创建我们自己的Spring Bootstarter,这个starter会包含一个自动依赖在我们的项目中。 在第二章节中, 我们已经知道如何去创建数据库属性对象。让我们创建一个简单的starter,这个starter会创建另外一个CommandLineRunner,然后收集Repository的实例并且打印所有的实例。 4.2.1代码实现 1.首先我们创建一人新文件夹db-count-starter在项目根目录下。 2.在文件夹db-count-starter下创建一份settings.grale文件,添加以下内容。 include 'db-count-starter' 3.在db-count-starter文件夹下创建build.gradle的文件,然后添加如下的代码。 apply plugin: 'java' repositories { mavenCentral() maven { url "https://repo.spring.io/snapshot" } maven { url "https://repo.spring.io/milestone" } } d ependencies { compile("org.springframework.boot:spring-boot:1.2.3.RELEASE") compile("org.springframework.data:spring-data-commons:1.9.2.RELEASE") } 4.接着,我们在fb-count-starter下创建这个目录结构src/main/java/org/test/bookpubstarter/dbcount 5.在新创建的文件下面,让我们添加实现接口CommandLineRunner文件,名称叫做DbCountRunner.java. public class DbCountRunner implements CommandLineRunner { protected final Log logger = LogFactory.getLog(getClass()); private Collection<CrudRepository> repositories; public DbCountRunner(Collection<CrudRepository> repositories) { this.repositories = repositories; } @Override public void run(String... args) throws Exception { repositories.forEach(crudRepository -> logger.info(String.format( "%s has %s entries", getRepositoryName(crudRepository.getClass()), crudRepository.count()))); } private static String getRepositoryName(Class crudRepositoryClass) { for (Class repositoryInterface : crudRepositoryClass.getInterfaces()) { if (repositoryInterface.getName().startsWith( "org.test.bookpub.repository")) { return repositoryInterface.getSimpleName(); } } return "UnknownRepository"; } } 6.我们创建一个DbCountAutoConfiguration.java来实现DbCountRunner。 @Configuration public class DbCountAutoConfiguration { @Bean public DbCountRunner dbCountRunner(Collection<CrudRepository> repositories) { return new DbCountRunner(repositories); } } 7.我们需要告诉Spring Boot我们新创建的JAR包含自动装配的类。我们需要在db-count-starter/src/main下创建resources/META-INF文件夹。 8.在resources/META-INF下创建spring.factories文件,添加如下内容。 org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.test .bookpubstarter.dbcount.DbCountAutoConfiguration 9.在主项目的build.gradle下添加如下代码 compile project(':db-count-starter') 10.启动项目,你将会看到控制台的信息下: 2020-04-05 INFO org.test.bookpub.StartupRunner : Welcome to the Book Catalog System! 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : AuthorRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : PublisherRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : BookRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner :ReviewerRepository has 0 entries 2020-04-05 INFO org.test.bookpub.BookPubApplication : Started BookPubApplication in 8.528 seconds (JVM running for 9.002) 2020-04-05 INFO org.test.bookpub.StartupRunner : Number of books: 1 4.2.2代码说明 因为Spring Boot的starter是分隔的,独立的包,仅仅是添加更多的类到我们已经存在的项目资源中,而不会控制更多。为了独立技术,我们的选择很少,创建分开的配置在我们项目中或创建完全分开的项目。更好的方法是通过创建项目文件夹去转换们的项目到Gradel Multi-Project Build和子项目依赖于根目录到build.gradle。Gradle实际是创建JAR的包,但是我们不需要放入到任何地方,仅仅通过compile project(‘:db-count-starter’)来包含。 Spring Boot Auto-Configuration Starter并没有做什么,而是Spring Java Configuration类注释了@Configuration和代表性的spring.factories文件在META-INF的文件夹下。 当应用启动时,Spring Boot使用SpringFactoriesLoader,这个类是Spring Core中的,目的是为了获得Spring Java Configuration,这些配置给了org.springframework.boot.autoconfigure.EnableAutoConfiguration。这样之下,这些调用会收集spring.factories文件下的所有jar包或其它调用的路径和成分到应用的上下文的配置中。除此之了EnableAutoConfiguration,我们可以定义其它的关键接口使用,这些可以自动初始化在启动期间与如下的调用相似: org.springframework.context.ApplicationContextInitializer org.springframework.context.ApplicationListener org.springframework.boot.SpringApplicationRunListener org.springframework.boot.env.PropertySourceLoader org.springframework.boot.autoconfigure.template.TemplateAvailabilityProvider org.springframework.test.contex.TestExecutionListener 具有讽刺的是,Spring Boot Starter并不需要依赖Spring Boot的包,因为它编译时间上的依赖。如果我们看DbCountAutoConfiguation类,我们不会看到任何来自org.springframework.book的包。这仅仅的原因是我们的DbCountRunner实现了接口org.sprigframework.boot.CommandLineRunner. 本篇文章为转载内容。原文链接:https://blog.csdn.net/owen_william/article/details/107867328。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 20:49:04
269
转载
Dubbo
...化界面展示请求的执行时间、服务间调用关系等信息,有助于提升系统的可观测性和可维护性。
2024-11-16 16:11:57
54
山涧溪流
MyBatis
...释放数据库连接所需的时间,让咱们的应用程序跑得更溜、更快。 二、MyBatis 如何处理数据库连接的打开与关闭 在 MyBatis 中,我们可以使用两种方式来处理数据库连接的打开与关闭。一种是手动管理,另一种是自动管理。 1. 手动管理 手动管理是指我们在应用程序中直接控制数据库连接的打开与关闭。这是最原始的方式,也是最直观的方式。我们可以通过 JDBC API 来实现数据库连接的打开与关闭。比如,我们可以想象一下这样操作:先用 DriverManager.getConnection() 这个神奇的小功能打开通往数据库的大门,然后呢,当我们不需要再跟数据库“交流”的时候,就用 Statement.close() 或 PreparedStatement.close() 这两个小工具把门关上,这样一来,我们就完成了数据库连接的开启和关闭啦。这种方式的好处就是超级灵活,就像你定制专属T恤一样,我们可以根据应用程序的独特需求,随心所欲地调整数据库连接的表现,让它更听话、更好使。缺点是工作量大,容易出错,而且无法充分利用数据库连接池的优势。 2. 自动管理 自动管理是指 MyBatis 在内部自动管理数据库连接的打开与关闭。这种方式的优点是可以避免手动管理数据库连接的繁琐工作,提高应用程序的性能。不过呢,这种方式有个小缺憾,就是不够灵活,咱们没法随心所欲地掌控数据库连接的具体表现。另外,想象一下这个场景哈,如果我们开发的小程序里,好几个线程兄弟同时挤进去访问数据库的话,就很可能碰上并发问题这个小麻烦。 三、MyBatis 的自动管理机制 为了实现自动管理,MyBatis 提供了一个名为“StatementExecutor”的类,它负责处理 SQL 查询请求。StatementExecutor 使用一个名为“PreparedStatementCache”的缓存来存储预编译的 SQL 查询语句。每当一个新的 SQL 查询请求到来时,StatementExecutor 就会在 PreparedStatementCache 中查找是否有一个匹配的预编译的 SQL 查询语句。如果有,就直接使用这个预编译的 SQL 查询语句来执行查询请求;如果没有,就先使用 JDBC API 来编译 SQL 查询语句,然后再执行查询请求。在这个过程中,StatementExecutor 将会自动打开和关闭数据库连接。当StatementExecutor辛辛苦苦执行完一个SQL查询请求后,它会像个聪明的小助手那样,主动判断一下是否有必要把这个SQL查询语句存放到PreparedStatementCache这个小仓库里。当SQL查询语句被执行的次数蹭蹭蹭地超过了某个限定值时,StatementExecutor这个小机灵鬼就会把SQL查询语句悄悄塞进PreparedStatementCache这个“备忘录”里头,这样一来,下次再遇到同样的查询需求,咱们就可以直接从“备忘录”里拿出来用,省时又省力。 四、总结 总的来说,MyBatis 是一个强大的持久层框架,它可以方便地管理数据库连接,提高应用程序的性能。然而,在使用 MyBatis 时,我们也需要注意一些问题。首先,我们应该合理使用数据库连接,避免长时间占用数据库连接。其次,我强烈建议大家伙尽可能多用 PreparedStatement 类型的 SQL 查询语句,为啥呢?因为它比 Statement 那种类型的 SQL 查询语句可安全多了。就像是给你的查询语句戴上了防护口罩,能有效防止SQL注入这类安全隐患,让数据处理更稳当、更保险。最后,我强烈推荐你们在处理预编译的 SQL 查询语句时,用上 PreparedStatementCache 这种缓存技术。为啥呢?因为它能超级有效地提升咱应用程序的运行速度和性能,让整个系统更加流畅、响应更快,就像给程序装上了涡轮增压器一样。
2023-01-11 12:49:37
97
冬日暖阳_t
Apache Lucene
...读效率,还能有效节省时间。想象一下,如果你能在搜索引擎里输入关键词后,直接看到每篇文章的重点内容,那该有多爽啊!在Lucene里实现这个功能,就意味着我们能让信息的处理和展示变得更聪明、更贴心。 思考过程: 当我们处理大量文本时,手动编写摘要显然是不现实的。因此,开发一种自动化的方法就显得尤为重要了。这不仅仅是技术上的挑战,更是提升用户体验的关键所在。 4. 实现文本自动摘要 策略与技巧 实现文本自动摘要主要涉及两个方面:选择合适的摘要生成算法,以及如何将这些算法集成到Lucene中。 摘要生成算法: - TF-IDF:一种统计方法,用来评估一个词在一个文档或语料库中的重要程度。 - TextRank:基于PageRank算法的思想,用于提取文本中的关键句子。 代码示例(使用TextRank): java import com.huaban.analysis.jieba.JiebaSegmenter; import com.huaban.analysis.jieba.SegToken; public class TextRankSummary { private static final int MAX_SENTENCE = 5; // 最大句子数 public static String generateSummary(String text) { JiebaSegmenter segmenter = new JiebaSegmenter(); List segResult = segmenter.process(text, JiebaSegmenter.SegMode.INDEX); // 这里简化处理,实际应用中需要构建图结构并计算TextRank值 return "这是生成的摘要,简化处理..."; // 真实实现需根据具体算法调整 } } 注意:上述代码仅作为示例,实际应用中需要完整实现TextRank算法逻辑,并将其与Lucene的搜索结果结合。 5. 集成到Lucene 让摘要成为搜索的一部分 为了让摘要功能更加实用,我们需要将其整合到现有的搜索流程中。这就意味着每当用户搜东西的时候,除了给出相关的资料,还得给他们一个简单易懂的内容概要,这样他们才能更快知道这些资料是不是自己想要的。 代码示例: java public class LuceneSearchWithSummary { public static void main(String[] args) throws IOException { Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("搜索关键词"); TopDocs topDocs = searcher.search(query, 10); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document doc = searcher.doc(scoreDoc.doc); System.out.println("文档标题:" + doc.get("title")); System.out.println("文档内容摘要:" + TextRankSummary.generateSummary(doc.get("content"))); } reader.close(); directory.close(); } } 这段代码展示了如何在搜索结果中加入文本摘要的功能。每次搜索时,都会调用TextRankSummary.generateSummary()方法生成文档摘要,并显示给用户。 6. 结论 展望未来,无限可能 通过本文的学习,相信你已经掌握了在Lucene中实现全文检索文本自动摘要的基本思路和技术。当然,这只是开始,随着技术的发展,我们还有更多的可能性去探索。无论是优化算法性能,还是提升用户体验,都值得我们不断努力。让我们一起迎接这个充满机遇的时代吧! --- 希望这篇文章对你有所帮助,如果有任何问题或想了解更多细节,请随时联系我!
2024-11-13 16:23:47
86
夜色朦胧
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 在如今互联网的架构趋势下,微服务已经成为一个不可或缺的服务架构了。将一个大的服务拆分若干子服务,然后远程调用,已应对大流量、高并发的系统场景,如今开源的优秀RPC框架很多,例如 thrift、dubbo 、grpc等 本人公司也有两套自主研发的RPC框架,通读之后受益匪浅,下面分享一下,远程调用第三方服务超时中断机制的实现。在调用第三方服务时,如果服务提供方处理过于缓慢,会拖垮调用方,使调用方夯住,所以调用超时中断机制很有必要,是保证服务的可用性的重要手段 典型的微服务项目,一次用户请求,可能在后台的调用流程会历经多个服务,每个服务的可靠性是整个调用流程的前提 客户端调用服务端流程: 本文不再过多的讲解RPC调用流程,直接讲解客户端调用超时中断的代码实现。 原理也不复杂,利用ReentrantLock的Condition进行等待阻塞,等待相应的超时时间后,发现依然没有收到服务端的响应结果后,判断为超时! 代码实现: 首先定义一个netty客户端,用于请求服务端,获取返回结果 public class InvokerClient {private static Channel channel;public void init() throws Exception {Bootstrap bootstrap = new Bootstrap();bootstrap.group(new NioEventLoopGroup()).channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true).handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel socketChannel) throws Exception {// 处理来自服务端的返回结果socketChannel.pipeline().addLast(new ReceiveHandle());} });ChannelFuture cf = bootstrap.connect("127.0.0.1", 3344).sync();channel = cf.channel();}//请求服务端public Object call(Request request) {//此类是保证调用超时中断的核心类RequestTask requestTask = new RequestTask();//将请求放入请求工厂,使用请求唯一标识seq,用于辨识服务端返回的对应的响应结果RequestFactory.put(request.getSeq(), requestTask);channel.writeAndFlush("hello");//此步是返回response,超时即中断return requestTask.getResponse(request.getTimeOut());} } 其中Request是请求参数,里面有timeout超时时间,以及向服务端请求的参数 public class Request {private static final UUID uuid = UUID.randomUUID();private String seq = uuid.toString();private Object object;private long timeOut;public Object getObject() {return object;}public Request setObject(Object object) {this.object = object;return this;}public String getSeq() {return seq;}public long getTimeOut() {return timeOut;}public Request setTimeOut(long timeOut) {this.timeOut = timeOut;return this;} } 核心的RequestTask类,用于接受服务端的返回结果,超时中断 public class RequestTask {private boolean isDone = Boolean.FALSE;private ReentrantLock lock = new ReentrantLock();private Condition condition = lock.newCondition();Object response;//客户端请求服务端后,立即调用此方法获取返回结果,timeout为超时时间public Object getResponse(long timeOut) {if (!isDone) {try {lock.lock();//此步等待timeout时间,阻塞,时间达到后,自动执行,此步是超时中断的关键步骤if (condition.await(timeOut, TimeUnit.MILLISECONDS)) {if (!isDone) {return new TimeoutException();}return response;} } catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();} }return response;}public RequestTask setResponse(Object response) {lock.lock();try{//此步是客户端收到服务端的响应结果后,写入responsethis.response = response;//并唤起上面方法的阻塞状态,此时阻塞结束,结果正常返回condition.signal();isDone = true;}finally{lock.unlock();}return this;}public boolean isDone() {return isDone;}public RequestTask setDone(boolean done) {isDone = done;return this;} } ReceiveHandle客户端接收到服务端的响应结果处理handle public class ReceiveHandle extends SimpleChannelInboundHandler {protected void channelRead0(ChannelHandlerContext channelHandlerContext, Object o) throws Exception {Response response = (Response) o;//通过seq从请求工厂找到请求的RequestTaskRequestTask requestTask = RequestFactory.get(response.getSeq());//将响应结果写入RequestTaskrequestTask.setResponse(response);} } RequestFactory请求工厂 public class RequestFactory {private static final Map<String, RequestTask> map = new ConcurrentHashMap<String, RequestTask>();public static void put(String uuid, RequestTask requestTask) {map.put(uuid, requestTask);}public static RequestTask get(String uuid) {return map.get(uuid);} } 注: 本人利用业余时间手写了一套轻量级的rpc框架,里面有用到 https://github.com/zhangta0/bigxiang 本篇文章为转载内容。原文链接:https://blog.csdn.net/CSDNzhangtao5/article/details/103075755。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:28:16
83
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 Git下载及基本使用https://www.bootcss.com/p/git-guide/ 文章目录 Git下载及基本使用[https://www.bootcss.com/p/git-guide/](https://www.bootcss.com/p/git-guide/) 一、下载 二、基本命令 1.初始化本地库 2、设置签名 3.将文件/目录从工作区追加到暂存区 4.查看状态 5.把暂存区的文件移除 6.把文件从暂存区上传到本地库 7.将文件变为未暂存状态 8.创建远程仓库并推送 9.删除远程仓库 10.拉取远程仓库 三、其他命令 1.查看命令信息指令 2.查看版本的提交记录 3.进入不同版本 4.分支操作 5.比较文件 四、遇到的错误 一、下载 用于 Windows 安装程序的 32 位 Git。 用于 Windows 安装程序的 64 位 Git。 二、基本命令 git命令和linux的命令基本相同,大部分linux命令在git中都可以使用。 1.初始化本地库 a.首先新建一个文件夹,进入文件夹,点击鼠标右键,找到菜单中的 Git Bash Here,点击进入命令界面。 b.输入命令 git init 初始化本地仓库 你会发现你的文件夹内多出一个 .git文件证明你的本地仓库初始化成功。 有的电脑可能会隐藏后缀名的文件,无法看到 .git文件,你需要去电脑设置可查看隐藏文件。方法:进入此电脑,点击上方查看,勾选隐藏的项目即可查看被隐藏的文件。 2、设置签名 签名主要是设置用户名和email地址,有两种级别:一种是项目级别 git config user.name 用户名, git config user.email邮箱地址;另一种是系统用户级别 git config --global user.name 用户名, git config --global user.email 邮箱地址。项目级别是优先于系统级别的,但二者至少设置一个。一般只用项目级别就行。 用 cat .git/config可以查看设置的项目签名。 3.将文件/目录从工作区追加到暂存区 命令 :git add 文件/目录 4.查看状态 命令:git status。 第一行信息告诉我们,目前正处于master分支; 第二行信息告诉我们,本地库还没有上传任何文件; 第三、四、五行信息告诉我们,可以用以下命令把暂存区的文件(绿色文件)上传到本地库。 5.把暂存区的文件移除 代码:git rm --cached 文件名。注意文件只是从暂存区中移除,并没有在目录中被删除。 未追加在暂存区的文件显示红色。 6.把文件从暂存区上传到本地库 命令:git commit -m "注释内容" 文件名。 这是查看状态可以看到暂存区已经没有文件可以上传到本地库,说明你上传成功。 7.将文件变为未暂存状态 命令:git rest HEAD 文件名。对在暂存区的文件进行操作。 8.创建远程仓库并推送 a.首先我们要有一个github或gitee账号: github官网:https://github.com/ gitee官网:https://gitee.com/ b.然后在里面创建一个远程仓库(以gihub为例): 登录进入主页面,找到并点击右上角的加号,点击 New repository,然后填写仓库信息。或者找到点击左方的 New选项。进入创建界面,填入信息。 下面三个选项可根据需要勾选。点击 Create...就创建号一个仓库了。 c.复制仓库地址 找到左上方导航Code选项,点击进入该选项 有两个地址:HTTP地址和SSH地址。我一般用HTTP地址(简单)。 如果你创建远程仓库时选择了下面的三个选项,可能你的Code界面会有所差别,点击右方的 Code即可查看仓库地址。 然后进入git命令界面:输入命令 git remote add origin(别名) 地址为你复制的地址创建别名并储存。命令 git remote -v查看你设置过的地址。 d.最后进行推送操作,将本地仓库推送到远程仓库。 命令 git push -u origin(你要推送到的远程仓库地址) master(你要推送的分支).在第一次推送是用上 -u选项,之后就可以不用。 该界面为成功推送,你再刷新你的github或gitee仓库,这是你上传的文件将出现在远程仓库表明推送成功。 注意:1.如果创建远程仓库时勾选了下面的三个选项,则可能你刷新时没发现有新文件推送到仓库,这是先找到红色划线位置,查看当前分支是否自己推送的分支,找到正确分支再看是否正确推送。 2.如果你是第n次推送,必须要在和远程仓库版本一样的条件下进行修改后推送,否则无法推送(不能跨多个版本推送)。 3.如果推送不成功,可能是你修改前的版本和远程库的版本不一致造成,先进行拉取,在修改推送。 9.删除远程仓库 首先进入要删除的远程仓库,点击上方导航条中的 Settings选项 然后找到进入左边菜单栏中的 Options选项,鼠标划到最下面找到 点击Delete this repository选项 最后按指示输入github用户名和密码进行删除即可。 10.拉取远程仓库 命令:git pull origin master。 在打算更新远程库时,先拉取远程库然后修改或添加,否则可能报错。 表明拉取成功。 注意:若你的本地仓库进行了修该导致无法拉去成功,则尝试用 git pull --rebase命令进行拉取。 三、其他命令 1.查看命令信息指令 命令:git help 2.查看版本的提交记录 命令:git log 以每条版本日志显示一行:git log --pretty=oneline 简写哈希值的方式:git log --oneline 可以看到前进后退步数:git reflog 3.进入不同版本 先用 git reflog命令查看哈希值 a.命令:git reset --hard 哈希值(索引) b.命令:git reset --hard HEAD^,该命令只能后退(查看当前版本之前的版本),后面几个 ^ 则后退几步。 c.命令:git reset --hard~,该命令只能后退(查看当前版本之前的版本),后退 (数值) 步; 4.分支操作 命令:git branch -v,查看所有分支 命令:git branch 分支名,创建分支 命令:git checkout 分支名,切换分支 5.比较文件 命令:git diff 文件名,工作区和暂存区比较 命令:git diff HEAD 文件名,当前版本比较 命令:git diff HEAD^ 文件名,历史版本比较 四、遇到的错误 git config --global http.sslVerify false 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_56180999/article/details/117634968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-18 13:38:15
75
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 一、什么是离线安装? 二、安装步骤 1.安装nginx所需依赖 1.1 安装gcc和gcc-c++ 1.1.1 下载依赖包 1.1.2 上传依赖包 1.1.3 安装依赖 1.1.4 验证安装 1.2 安装pcre 1.2.1 下载pcre 1.2.2 上传解压安装包 1.2.3 编译安装 1.3 下载安装zlib 1. 3.1 下载zlib 1.3.2 上传解压安装包 1.3.3 配置 1.3.4 编译安装 1.4 下载安装openssl 1.4.1 下载 1.4.2 上传解压安装包 1.4.3 配置 1.4.4 编译安装 1.4.5 验证 2. 下载安装nginx 2.1 下载nginx安装包 2.2 上传解压安装包 2.3 配置 2.4 编译 2.5 安装 2.6 检查并启动 2.6.1 检查 2.6.2 启动 2.7 访问 2.8 设置开启自启动 总结 一、什么是离线安装? 使用离线安装包进行软件安装的方式就叫离线安装。 离线安装包又叫做完整安装包,包含所有的安装文件。与其相对的是在线安装,即在条件允许且网络良好的条件下采用网络安装的方式。在线安装方式的缺点是在不太好的网络状况下容易出现长时间等待或安装失败的情况,这种情况下只能进行离线安装。 二、安装步骤 1.安装nginx所需依赖 1.1 安装gcc和gcc-c++ 1.1.1 下载依赖包 gcc依赖下载镜像地址: 官网:https://gcc.gnu.org/releases.html 阿里云镜像站:http://mirrors.aliyun.com/centos/7/os/x86_64/Packages/ CentOS 镜像站点:https://vault.centos.org/7.5.1804/os/x86_64/Packages/ 只需下载如下依赖即可:cpp-4.8.5-44.el7.x86_64.rpmgcc-4.8.5-44.el7.x86_64.rpmglibc-devel-2.17-317.el7.x86_64.rpmglibc-headers-2.17-317.el7.x86_64.rpmkernel-headers-3.10.0-1160.el7.x86_64.rpmlibmpc-1.0.1-3.el7.x86_64.rpmmpfr-3.1.1-4.el7.x86_64.rpm----------------------------------------------gcc-c++-4.8.5-44.el7.x86_64.rpmlibstdc++-4.8.5-44.el7.x86_64.rpmlibstdc++-devel-4.8.5-44.el7.x86_64.rpm 1.1.2 上传依赖包 下载完成后,将依赖包上传到服务器,若权限不足不能上传,可以通过 sudo chmod -R 777 文件夹路径名命令增加权限 1.1.3 安装依赖 进入上传目录,输入rpm -Uvh .rpm --nodeps --forc命令进行批量安装,出现下图则说明安装成功 1.1.4 验证安装 使用gcc-v和g++ -v命令查看版本,若出现版本详情则说明离线安装成功,如下图示: 1.2 安装pcre 1.2.1 下载pcre 下载地址:http://www.pcre.org/ 1.2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压,解压命令tar -xvf pcre-8.45.tar.gz 1.2.3 编译安装 进入解压目录,依次执行以下命令: ./configure make make install 1.3 下载安装zlib 1. 3.1 下载zlib 下载地址:http://www.zlib.net/ 1.3.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.3.3 配置 进入解压目录输入 ./configure 1.3.4 编译安装 进入解压目录输入make && make install 1.4 下载安装openssl tips:检查是否已安装openssl,输入命令openssl version,若出现版本信息,则无需安装;若没有安装则继续安装 1.4.1 下载 地址:https://www.openssl.org/source/ 1.4.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 1.4.3 配置 进入解压目录输入 ./configure 1.4.4 编译安装 进入解压目录输入 make && make install 1.4.5 验证 安装完成后,控制台输入openssl version,出现版本信息则说明安装成功 2. 下载安装nginx 2.1 下载nginx安装包 下载地址:https://nginx.org/en/download.html 2.2 上传解压安装包 将下载好的安装包上传到服务器,并解压 2.3 配置 进入解压目录进行配置安装地址:./configure --prefix=/home/develop/nginx 2.4 编译 make 2.5 安装 make install 2.6 检查并启动 2.6.1 检查 进入安装目录下的sbin文件夹,输入./nginx -t,如下图则说明安装成功: 2.6.2 启动 启动nginx,命令:./nginx 2.7 访问 浏览器访问nginx,前提是80端口可以访问 2.8 设置开启自启动 tips:此步骤为可选项 将nginx的sbin目录添加到rc.local文件中: 编辑rc.local文件 vim /etc/rc.local 在最后一行加入如下内容 /home/develop/nginx/sbin/nginx 总结 以上就是离线安装nginx的详细步骤,希望可以帮到有需要的小伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Shiny_boy_/article/details/126965658。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 08:28:14
107
转载
SpringBoot
...记方法,使其在特定的时间间隔内自动执行。开发者可以配置注解的属性,如执行频率(固定延迟或固定速率)和cron表达式,以实现定时任务的功能。 Redis分布式锁 , 一种在分布式系统中实现锁机制的方法,通过在Redis中存储一个键值对来标识锁的状态。当多个节点尝试获取同一把锁时,只有最先成功设置键值对的节点获得锁,其他节点等待。这在处理并发任务时确保了任务的执行顺序和一致性。 RabbitMQ , 一个开源的消息队列系统,用于在分布式系统中实现异步通信。通过将任务发布到队列中,多个消费者可以按照消息的到达顺序进行处理,从而实现了任务的解耦和高可用性。 Zookeeper , 一个分布式协调服务,常用于配置管理、服务发现和分布式锁等场景。它允许多个节点之间共享状态信息,确保任务在多节点环境中的正确执行和同步。 Consul , 一个开源的服务发现和配置平台,帮助管理分布式系统的节点和服务。通过Consul,SpringBoot应用可以动态注册和注销自己,确保服务发现的可靠性。 微服务化 , 一种软件开发模式,将单一大型应用拆分成一组小的、独立的服务,每个服务运行在其自己的进程中,通过API接口互相通信。这种模式有利于扩展性、容错性和独立部署。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。在微服务环境中,Kubernetes可以帮助管理和调度定时任务服务的容器实例。 Prometheus , 一个开源的监控系统,用于收集、存储和查询时间序列数据。在微服务架构中,它有助于追踪和分析定时任务的性能指标。 Jaeger , 一个分布式追踪系统,用于收集和展示服务间调用链路的信息。在微服务环境中,Jaeger有助于诊断和优化服务间的通信性能。
2024-06-03 15:47:34
46
梦幻星空_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
du -sh *
- 查看当前目录下所有文件及目录占用的空间大小(以人类可读格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"