前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JavaScript文档操作与事件处理机...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Go Gin
...允许系统在单位时间内处理的请求数量不超过某个阈值。哎呀,你瞧这招儿挺机灵的!它能帮咱们解决一个大难题——就是那些疯了似的并发请求,就像一群蚂蚁围攻面包,瞬间就把服务器给淹没了。这样不仅能让我们的服务器喘口气,不至于被这些请求给累趴下,还能给那些没权没份的家伙们上上锁,别让他们乱用咱们的API,搞得咱们这边乱七八糟的。这招儿,既保护了服务器,又守住了规矩,真是一举两得啊! gin-contrib/ratelimit 提供了一种简单且灵活的方式来配置和应用速率限制规则。它支持多种存储后端,包括内存、Redis 和数据库等,以适应不同的应用场景需求。 三、安装与初始化 首先,确保你的 Go 环境已经配置好,并且安装了 gin-contrib/ratelimit 库。可以通过以下命令进行安装: bash go get github.com/gin-contrib/ratelimit 接下来,在你的 Gin 应用中引入并初始化 ratelimit 包: go import ( "github.com/gin-contrib/ratelimit" "github.com/gin-gonic/gin" ) func main() { r := gin.Default() // 配置限流器 limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, // 允许每分钟最多5次请求 Duration: time.Minute, }) // 将限流器应用于路由 r.Use(limiter) // 定义路由 r.GET("/api", func(c gin.Context) { c.JSON(200, gin.H{"message": "Hello, World!"}) }) r.Run(":8080") } 四、高级功能与自定义 除了基本的速率限制配置外,gin-contrib/ratelimit 还提供了丰富的高级功能,允许开发者根据具体需求进行定制化设置。 - 基于 IP 地址的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByIP, }) - 基于 HTTP 请求头的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitByHeader("X-User-ID"), }) - 基于用户会话的限制: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 5, Duration: time.Minute, PermitsBy: ratelimit.PermitBySessionID, }) 这些高级功能允许你更精细地控制哪些请求会被限制,从而提供更精确的访问控制策略。 五、实践案例 基于 IP 地址的限流 假设我们需要限制某个特定 IP 地址的访问频率: go limiter := ratelimit.New(ratelimit.Config{ AllowedRequests: 10, // 每小时最多10次请求 Duration: time.Hour, PermitsBy: ratelimit.PermitByIP, }) // 在路由上应用限流器 r.Use(limiter) 六、性能考量与优化 在实际部署时,考虑到速率限制的性能影响,合理配置限流参数至关重要。哎呀,你得注意了,设定安全防护的时候,这事儿得拿捏好度才行。要是设得太严,就像在门口挂了个大锁,那些坏人进不来,可合法的访客也被挡在外头了,这就有点儿不地道了。反过来,如果设置的门槛太松,那可就相当于给小偷开了个后门,让各种风险有机可乘。所以啊,找那个平衡点,既不让真正的朋友感到不便,又能守住自家的安全,才是王道!因此,建议结合业务场景和流量预测进行参数调整。 同时,选择合适的存储后端也是性能优化的关键。哎呀,你知道的,在处理那些超级多人同时在线的情况时,咱们用 Redis 来当存储小能手,那效果简直不要太好!它就像个神奇的魔法箱,能飞快地帮我们处理各种数据,让系统运行得又顺溜又高效,简直是高并发环境里的大救星呢! 七、结论 通过集成 gin-contrib/ratelimit,我们不仅能够有效地管理 API 访问频率,还能够在保障系统稳定运行的同时,为用户提供更好的服务体验。嘿,兄弟!业务这玩意儿,那可是风云变幻,快如闪电。就像你开车,路况不一,得随时调整方向,对吧?API安全性和可用性这事儿,就跟你的车一样重要。所以,咱们得像老司机一样,灵活应对各种情况,时不时地调整和优化限流策略。这样,不管是高峰还是低谷,都能稳稳地掌控全局,让你的业务顺畅无阻,安全又高效。别忘了,这可是保护咱们业务不受攻击,保证用户体验的关键!希望本文能够帮助你更好地理解和应用 gin-contrib/ratelimit,在构建强大、安全的 API 时提供有力的支持。
2024-08-24 16:02:03
109
山涧溪流
转载文章
...性极差,硬件留给你的操作空间极小,很离谱,很想跟戴尔绕着走 这个结论的出现就得从我的G15说起了:当时买的时候只有一个固态硬盘,想加装一个,然后就买了当时的PCIE4.0协议的三星980pro,后来发现硬盘口只有原厂硬盘的硬盘口支持4.0协议,这还没完。硬盘装上去之后,暂时看不出什么异常,但是电脑经常会卡死,就是屏幕亮着啥也点不动,B站也一堆改装翻车的,后来把三星980pro换到了3.0的口,问题就没在发生过了。从此Dell的不兼容性就给我留下了深深的印象。 最近,我们办公室的服务器噪音巨大,从开机键按下的一刻起就是飞机起飞状态。一看牌子:好家伙,Dell的!!!那没事了…Giao~ 还是抱有一丝希望地去网上搜了一下,果然是因为硬件设备的原因,T640无法识别3090,进而无法自适应调整风扇转速。Dell,不愧是你! 经过较为漫长的搜索调试,最后终于对风扇转速实现了较为方便的手动控制,下面对这个过程进行一下梳理。 -------------------------------------------------------------------------------------分界线------------------------------------------------------------------------------------- 1.首先是参考了这一篇文章:https://zhuanlan.zhihu.com/p/336990051 主要介绍了两种方式解决这个问题: 使用racadm温度调控,但是配置教程是Ubuntu16.04下的,过程中有些linux语句在18.04中运行报错,本身对linux就不是很熟,然后我果断放弃。 更新BIOS 和IDRAC,他2022年3月3日通过更新版本,实现了风扇转速的控制,但是我2022年6月,按照他给的下载版本,更新了,发现没用啊??!!回退版本没用,更新版本也没用,就很离谱,难道因为他是2080ti,我是3090的问题??操作步骤如下: 参考该博客对服务器IDRAC配置 https://www.dell.com/support/kbdoc/zh-cn/000177212,查看解决方案中的开机自检期间为F2进行配置 配置好后,在服务器后后面有个IDRAC的网线插口,用网线与笔记本连接,连接成功后会显示未识别网络(如果是红叉的话是没有连接成功,检查上一步,尝试关机重启等),修改IP地址,跟上一步设置的服务器IP在同一网段,不是同一IP!!,比如服务器是192.168.0.120,笔记本可以设置192.168.0.100。(https://new.qq.com/omn/20210119/20210119A01ROV00.html) IE浏览器打开192.168.0.100网址,提示不安全,然后忽略掉,输入账号密码就可以进去了 进去后在下图位置,上传更新文件进行安装。 2.后面又看到一篇博客:https://blog.csdn.net/qq_36810544/article/details/115734795这篇博客比上边那篇早,应该是有参考吧,说是更新版本就行了,然并卵啊,可能是因为他是Ubuntu20.04,我是18.04的原因? 3.最后没招了,用IPMITOOL手动调节吧,参考了博客:https://blog.51cto.com/u_15072918/4392813 这篇博客也是更新后仍然无法识别3090(实际上我下的新版本的IDRAC是可以识别出有GPU的,但是还是显示不可用哇),所以就把IDRAC的版本回退到3.30以下使用IPMITOOL进行行手动调节转速了。 具体步骤如下: 将IDRAC回退到3.30版本,下载地址:https://www.dell.com/support/home/zh-cn/drivers/driversdetails 有的版本IDRAC可能需要把IMPI取消禁用,就在笔记本访问的IP地址的网页里修改即可,应该是在IDRAC设置中,没找到的话应该是不需要操作。 下载IPMITOOLWIN版本程序后解压,终端cd进入该文件夹,然后运行ipmitool命令: 关闭自动控制:ipmitool -I lanplus -U 用户名 -P 密码 -H 服务器地址 raw 0x30 0x30 0x01 0x00 设置风扇转速:ipmitool -I lanplus -U 用户名 -P 密码 -H 192.168.0.120 raw 0x30 0x30 0x02 0xff 0x64 ,最后两位对应16进制的风扇转速。64对应100%。 3.转速现在是可以手动调节了,但是每次都要执行终端命令太麻烦了,然后我写了一个小的gui界面,可以更方便地对风扇转速进行调节。界面如下,可以通过+和-增加和降低风速,也可以设定数值进行Set。 为了防止过热,最低风扇转速设置成了30%。需要注意:这个文件中IDRAC的IP必须是192.168.0.120才可以。 本文就先写到这里了,调节软件如果有需求的话可以后续上传,我在程序中也放了IPMITOOLWIN的文件,不需要再进行下载。有更好的解决方法也欢迎评论区分享。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42686221/article/details/125478351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 14:29:07
172
转载
转载文章
...应聘者专业技能和实际操作能力的一种面试方式。文中提到的技术面试,是在校园招聘流程中的一个关键环节,主要针对应聘者的专业知识、编程能力、项目经验等方面进行深入考察,以评估其是否具备胜任相关职位所需的技术水平。 人事面试 , 人事面试是指由人力资源部门或相关人员对求职者进行的面试,主要关注应聘者的性格特征、沟通能力、团队协作精神、职业规划以及与企业文化匹配度等方面的综合评价。在本次武汉校园招聘活动中,人事面试安排在技术面试之后,旨在从非技术角度全面了解并筛选出符合公司软性要求的候选人。 企业工程化 , 企业工程化是指将学术研究和技术开发成果转化为可应用于实际生产环境中的产品和服务的过程。文中提及许多学生对课题项目的理解未能有效转向企业工程化的要求,意味着他们在理论学习的基础上,缺乏将所学知识应用到解决实际问题,以及适应企业产品研发和管理流程的能力。这一名词强调的是学术与实践相结合的素质,在招聘软件工程师等岗位时尤其看重。
2024-02-02 13:16:24
524
转载
转载文章
...中,且通过轻量级通信机制相互协作。在文章中,架构师可能会设计微服务架构来实现系统的高扩展性和灵活性。 持续集成/持续部署(CI/CD) , 一种软件开发实践,通过自动化的构建和测试流程,确保代码修改后能够迅速、频繁地构建、测试和部署,从而加快软件迭代速度和减少错误。技术经理可能会关注团队如何采用CI/CD工具提高开发效率。
2024-05-10 13:13:48
755
转载
转载文章
...经验和成长来源于实践操作,20%来自与他人的交流和反馈,剩下的10%则通过阅读书籍、参加培训等方式获得。这一法则强调了实践在个人能力提升中的核心地位。 matplotlib , matplotlib是Python编程语言中一个强大的数据可视化库,它能够创建各种静态、动态、交互式的图表,包括直方图、散点图、线图、饼图等。在本文中,作者使用matplotlib来绘制展示721法则的饼状图,直观地呈现了实践、交流与反馈、培训与学习之间的比例关系。 Python全套学习资料 , 这里指的是为了帮助初学者或进阶者更好地掌握Python编程技能而提供的系列学习资源集合,包含了视频教程、实战案例、源代码、课件、面试真题以及电子书籍等多种形式的学习材料。这些资料覆盖了Python入门到高阶的各种知识点,并结合实际应用场景,旨在全方位提升学习者的理论知识和实践经验。文章末尾,作者提供了免费领取这些Python全套学习资料的方式,以支持更多人通过实践来提升Python编程能力。
2023-06-04 23:38:21
105
转载
转载文章
...停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
483
转载
转载文章
...0页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
转载文章
...x、macOS等其他操作系统上的兼容性和性能优化。例如,Microsoft Research团队合作推出的Open MPI项目,旨在提供一个高度可扩展且跨平台的MPI实现,为开发者提供更多选择和灵活性。 此外,对于希望深入了解MPI编程原理及其实战技巧的读者,可以参考《Using MPI - 3rd Edition》这本书,作者详细解析了MPI的各种函数用法,并提供了大量实例代码,是MPI编程入门到精通的绝佳教程资源。 综上所述,无论是从MPI技术的最新进展、云计算环境下的并行计算解决方案,还是深入学习MPI编程的专业书籍推荐,都为那些想要在并行计算领域持续探索和实践的读者提供了丰富的延伸阅读内容。
2023-04-09 11:52:38
113
转载
转载文章
...及其在JVM中的运作机制后,我们可以进一步关注与之相关的前沿技术和实践应用。近期,随着JDK 17的发布,对Class文件格式的支持和优化有了新的进展。例如,JEP 391(密封类)引入了新的类声明语法,允许限制哪些其他类或模块可以继承或实现一个密封类或接口,这种特性在编译阶段会生成更为精确的符号引用,有助于增强类型安全性和提升性能。 同时,随着JIT即时编译器的发展,如GraalVM项目,其先进的动态编译技术能更高效地将字节码转换为机器码,使得Java应用程序执行效率大幅提升。对于Class文件内部结构的理解,有助于我们更好地利用这些新特性和工具进行优化配置。 此外,随着微服务、容器化和云原生架构的普及,Class文件在服务启动速度和资源占用上的优化也显得尤为重要。例如,通过提前解析和验证Class文件以减少运行时开销,或者采用Ahead-of-Time(AOT)编译技术将部分Class文件直接编译成本地代码,从而提升系统启动速度和降低内存使用。 另外,对于安全领域,深入理解Class文件结构有助于分析恶意字节码攻击手段,以及如何通过虚拟机层面的安全防护措施来避免有害类文件的加载执行。例如,最新的Java版本不断强化类加载验证机制,防止非法或恶意篡改的Class文件危害系统安全。 综上所述,随着Java技术栈的持续演进,Class文件这一基础而又关键的概念,在实际开发和运维过程中仍具有极高的研究价值和实战意义,值得开发者们密切关注和深入探索。
2024-01-09 17:46:36
645
转载
转载文章
...针的原理以及在多线程操作中需要注意的细节。 智能指针的由来 在远古时代,C++发明了指针这把双刃剑,既可以让程序员精确地控制堆上每一块内存,也让程序更容易发生crash,大大增加了使用指针的技术门槛。因此,从C++98开始便推出了auto_ptr,对裸指针进行封装,让程序员无需手动释放指针指向的内存区域,在auto_ptr生命周期结束时自动释放,然而,由于auto_ptr在转移指针所有权后会产生野指针,导致程序运行时crash,如下面示例代码所示: auto_ptr<int> p1(new int(10));auto_ptr<int> p2 = p1; //转移控制权p1 += 10; //crash,p1为空指针,可以用p1->get判空做保护 因此在C++11又推出了unique_ptr、shared_ptr、weak_ptr三种智能指针,慢慢取代auto_ptr。 unique_ptr的使用 unique_ptr是auto_ptr的继承者,对于同一块内存只能有一个持有者,而unique_ptr和auto_ptr唯一区别就是unique_ptr不允许赋值操作,也就是不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Mahout
...析成为了解决海量数据处理的关键技术之一。哎呀,你听说过Mahout这个玩意儿没?这家伙可是个开源的机器学习宝库,专治大数据这事儿。它那分发式计算的能力啊,就像魔法一样,能让你的数据处理起来轻松又高效。用Mahout做分析,就像是给一堆乱糟糟的数据整了套华丽丽的整理术,让它们变得井井有条,还能从中找出各种有价值的信息和模式。这玩意儿一出手,数据处理界的难题就被它玩转得飞起,简直是个大数据时代的超级英雄呢!而Apache Spark Streaming,则是为实时数据流提供高性能处理的框架。哎呀,兄弟!把这两样技术给整到一块儿用,那效果简直不要太棒!不仅能快速消化那些源源不断的数据洪流,还能帮咱们做出超明智的决定,简直就是开挂的存在嘛!本文旨在探索Mahout与Spark Streaming如何协同工作,为实时流数据分析提供强大的解决方案。 2. Mahout概述 Mahout是一个基于Hadoop的机器学习库,旨在利用分布式计算资源来加速大规模数据集上的算法执行。哎呀,这个家伙可真厉害!它能用上各种各样的机器学习魔法,比如说分门别类的技巧(就是咱们说的分类)、把相似的东西归到一块儿的本事(聚类)还有能给咱们推荐超棒东西的神奇技能(推荐系统)。而且,它最擅长的就是对付那些海量的数据,就像大鱼吃小鱼一样,毫不费力就能搞定!通过Mahout,我们可以构建复杂的模型来挖掘数据中的模式和关系,从而驱动业务决策。 3. Spark Streaming简介 Apache Spark Streaming是Spark生态系统的一部分,专为实时数据流处理设计。哎呀,这个玩意儿简直就是程序员们的超级神器!它能让咱这些码农兄弟们轻松搞定那些超快速、高效率的实时应用,你懂的,就是那种分秒必争、数据飞速流转的那种。想象一下,一秒钟能处理几千条数据,那感觉简直不要太爽啊!就像是在玩转数据的魔法世界,每一次点击都是对速度与精准的极致追求。这不就是我们程序员的梦想吗?在数据的海洋里自由翱翔,每一刻都在创造奇迹!Spark Streaming的精髓就像个魔术师,能把连续不断的水流(数据流)变换成小段的小溪(微批次)。这小溪再通过Spark这个强大的分布式计算平台,就像是在魔法森林里跑的水车,一边转一边把水(数据)处理得干干净净。这样一来,咱们就能在实时中捕捉到信息的脉动,做出快速反应,既高效又灵活! 4. Mahout与Spark Streaming的集成 为了将Mahout的机器学习能力与Spark Streaming的实时处理能力结合起来,我们需要创建一个流水线,使得Mahout可以在实时数据流上执行分析任务。这可以通过以下步骤实现: - 数据接入:首先,我们需要将实时数据流接入Spark Streaming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
转载文章
...S 7系统上进行实际操作后,我们不妨进一步探讨数据库管理与运维的最新趋势和技术动态。近期,MariaDB发布了10.7版本,引入了一系列性能优化和新特性,如原生支持Temporal Tables、JSONTABLES等,对于数据库开发者和管理员来说,熟悉这些新功能将有助于提升数据管理效率并保障业务系统的稳定运行。 此外,随着云服务的普及与发展,越来越多的企业选择将数据库部署在云端,阿里云等服务商也推出了针对MariaDB的高可用集群解决方案,用户不仅可以享受到一键部署、自动备份恢复、弹性伸缩等便捷服务,还能通过精细权限管理和日志审计等功能确保数据安全合规。因此,了解和研究云环境下的数据库运维策略,对于提升企业IT基础设施水平至关重要。 同时,在数据库主从复制领域,MySQL 8.0及MariaDB的新版本中增强了GTID(全局事务标识符)功能,简化了主从配置流程,并提高了数据同步的一致性和可靠性。结合最新的数据库监控工具如Prometheus和Grafana,可以实时监测主从复制状态,及时发现并解决潜在问题,这对于构建高性能、高可用的分布式数据库架构具有重要意义。 综上所述,紧跟数据库技术发展潮流,关注MariaDB等开源数据库软件的更新动态,探索云端数据库运维实践与高可用性设计,无疑将助力企业在数字化转型过程中更好地利用数据库这一关键基础设施,以支撑更加复杂多变的业务场景需求。
2023-07-12 10:11:01
310
转载
转载文章
...静止初始化,不做其他处理。featureCallback:接收双目特征,进行后端处理。利用IMU进行EKF Propagation,利用双目特征进行EKF Update。静止初始化(initializeGravityAndBias):将前200帧加速度和角速度求平均, 平均加速度的模值g作为重力加速度, 平均角速度作为陀螺仪的bias, 计算重力向量(0,0,-g)和平均加速度之间的夹角(旋转四元数), 标定初始时刻IMU系与world系之间的夹角. 因此MSCKF要求前200帧IMU是静止不动的 sudo apt-get install libsuitesparse-devcd ~/catkin_ws/srcgit clone KumarRobotics/msckf_viocd ..catkin_make --pkg msckf_vio --cmake-args -DCMAKE_BUILD_TYPE=Release激活环境变量很关键source /devel/setup.bashroslaunch msckf_vio msckf_vio_euroc.launch注意文件路径rosrun rviz rviz -d rviz/rviz_euroc_config.rviz (改成你自己的rviz文件)rosbag play ~/data/euroc/MH_04_difficult.bag(改成你自己的rosbag文件) 可以看到,s_msckf的输出是没有轨迹的,可以增加如下脚本,将/odom存为/path,在rviz订阅即可可视化轨迹 脚本来自其issue:https://github.com/KumarRobotics/msckf_vio/issues/13 !/usr/bin/env pythonimport rospyfrom nav_msgs.msg import Odometry, Pathfrom geometry_msgs.msg import PoseStampedclass OdomToPath:def __init__(self):self.path_pub = rospy.Publisher('/slz_path', Path, latch=True, queue_size=10)self.odom_sub = rospy.Subscriber('/firefly_sbx/vio/odom', Odometry, self.odom_cb, queue_size=10)self.path = Path()def odom_cb(self, msg):cur_pose = PoseStamped()cur_pose.header = msg.headercur_pose.pose = msg.pose.poseself.path.header = msg.headerself.path.poses.append(cur_pose)self.path_pub.publish(self.path)if __name__ == '__main__':rospy.init_node('odom_to_path')odom_to_path = OdomToPath()rospy.spin() 或者增加一个draw_path的功能包: cpp为: include <stdio.h>include <stdlib.h>include <unistd.h>include <ros/ros.h>include <ros/console.h>include <nav_msgs/Path.h>include <std_msgs/String.h>include <nav_msgs/Odometry.h>include <geometry_msgs/Quaternion.h>include <geometry_msgs/PoseStamped.h>nav_msgs::Path path;ros::Publisher path_pub;ros::Subscriber odomSub;ros::Subscriber odom_raw_Sub;void odomCallback(const nav_msgs::Odometry::ConstPtr& odom){geometry_msgs::PoseStamped this_pose_stamped;this_pose_stamped.header= odom->header;this_pose_stamped.pose = odom->pose.pose;//this_pose_stamped.pose.position.x = odom->pose.pose.position.x;//this_pose_stamped.pose.position.y = odom->pose.pose.position.y;//this_pose_stamped.pose.orientation = odom->pose.pose.orientation;//this_pose_stamped.header.stamp = ros::Time::now();//this_pose_stamped.header.frame_id = "world";//frame_id 是消息中与数据相关联的参考系id,例如在在激光数据中,frame_id对应激光数据采集的参考系 path.header= this_pose_stamped.header;path.poses.push_back(this_pose_stamped);//path.header.stamp = ros::Time::now();//path.header.frame_id= "world";path_pub.publish(path);//printf("path_pub ");//printf("odom %.3lf %.3lf\n",odom->pose.pose.position.x,odom->pose.pose.position.y);}int main (int argc, char argv){ros::init (argc, argv, "showpath");ros::NodeHandle ph;path_pub = ph.advertise<nav_msgs::Path>("/trajectory",10, true);odomSub = ph.subscribe<nav_msgs::Odometry>("/firefly_sbx/vio/odom", 10, odomCallback);//ros::Rate loop_rate(50);while (ros::ok()){ros::spinOnce(); // check for incoming messages//loop_rate.sleep();}return 0;} cmakelists.txt cmake_minimum_required(VERSION 2.8.3)project(draw) Compile as C++11, supported in ROS Kinetic and newer add_compile_options(-std=c++11) Find catkin macros and libraries if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) is used, also find other catkin packagesfind_package(catkin REQUIRED COMPONENTSgeometry_msgsroscpprospystd_msgsmessage_generation)catkin_package( INCLUDE_DIRS include LIBRARIES learning_communicationCATKIN_DEPENDS geometry_msgs roscpp rospy std_msgs message_runtime DEPENDS system_lib) Build include_directories(include${catkin_INCLUDE_DIRS})add_executable(draw_path draw.cpp)target_link_libraries(draw_path ${catkin_LIBRARIES}) package.xml <?xml version="1.0"?><package><name>draw</name><version>0.0.0</version><description>The learning_communication package</description><!-- One maintainer tag required, multiple allowed, one person per tag --><!-- Example: --><!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --><maintainer email="hcx@todo.todo">hcx</maintainer><!-- One license tag required, multiple allowed, one license per tag --><!-- Commonly used license strings: --><!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --><license>TODO</license><!-- Url tags are optional, but multiple are allowed, one per tag --><!-- Optional attribute type can be: website, bugtracker, or repository --><!-- Example: --><!-- <url type="website">http://wiki.ros.org/learning_communication</url> --><!-- Author tags are optional, multiple are allowed, one per tag --><!-- Authors do not have to be maintainers, but could be --><!-- Example: --><!-- <author email="jane.doe@example.com">Jane Doe</author> --><!-- The _depend tags are used to specify dependencies --><!-- Dependencies can be catkin packages or system dependencies --><!-- Examples: --><!-- Use build_depend for packages you need at compile time: --><!-- <build_depend>message_generation</build_depend> --><!-- Use buildtool_depend for build tool packages: --><!-- <buildtool_depend>catkin</buildtool_depend> --><!-- Use run_depend for packages you need at runtime: --><!-- <run_depend>message_runtime</run_depend> --><!-- Use test_depend for packages you need only for testing: --><!-- <test_depend>gtest</test_depend> --><buildtool_depend>catkin</buildtool_depend><build_depend>geometry_msgs</build_depend><build_depend>roscpp</build_depend><build_depend>rospy</build_depend><build_depend>std_msgs</build_depend><run_depend>geometry_msgs</run_depend><run_depend>roscpp</run_depend><run_depend>rospy</run_depend><run_depend>std_msgs</run_depend><build_depend>message_generation</build_depend><run_depend>message_runtime</run_depend><!-- The export tag contains other, unspecified, tags --><export><!-- Other tools can request additional information be placed here --></export></package> vins_fusion: 双目vio等多系统 mkdir -p vins-catkin_ws/srccd vins-catkin_ws/srcgit clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.gitcd ..catkin_makesource devel/setup.bash按照readme 3.1 Monocualr camera + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.2 Stereo cameras + IMUroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag 3.3 Stereo camerasroslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/euroc.gif" width = 430 height = 240 /> 4. KITTI Example 4.1 KITTI Odometry (Stereo)Download [KITTI Odometry dataset](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) to YOUR_DATASET_FOLDER. Take sequences 00 for example,Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)roslaunch vins vins_rviz.launch(optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yamlrosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 4.2 KITTI GPS Fusion (Stereo + GPS)Download [KITTI raw dataset](http://www.cvlibs.net/datasets/kitti/raw_data.php) to YOUR_DATASET_FOLDER. Take [2011_10_03_drive_0027_synced](https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_10_03_drive_0027/2011_10_03_drive_0027_sync.zip) for example.Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.roslaunch vins vins_rviz.launchrosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ rosrun global_fusion global_fusion_node<img src="https://github.com/HKUST-Aerial-Robotics/VINS-Fusion/blob/master/support_files/image/kitti.gif" width = 430 height = 240 /> 5. VINS-Fusion on car demonstrationDownload [car bag](https://drive.google.com/open?id=10t9H1u8pMGDOI6Q2w2uezEq5Ib-Z8tLz) to YOUR_DATASET_FOLDER.Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.roslaunch vins vins_rviz.launchrosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml rosbag play YOUR_DATASET_FOLDER/car.bag 本篇文章为转载内容。原文链接:https://blog.csdn.net/slzlincent/article/details/104364909。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-13 20:38:56
310
转载
转载文章
...重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...据结构、计网、计组、操作系统等(不用复习的特别深入),有的学校有笔试,大多数在面试时会问到一些基础知识(如果老师问到的基础知识都答上来,老师对你的印象肯定会特别好!)。 信息搜集:各学校/学院官网(研招网);学长学姐;保研论坛,微信公众号(后保研、保研人、保研论坛等);QQ群等。同时也要多与同学交流,互相交换信息。 搜集你想去并且基本能去的学校的要求和特点(南京大学夏令营对机考特别看重,难度也比较大,可以在大三就多刷题好好准备),进行一定的准备,可以在网上搜索相关的经验贴。 个人定位:了解你们学校学长学姐的保研去处,最好多跟本校已经保研的学长学姐交流,根据他们的经历以及自己的实力和研究生规划来对自己进行定位。 方向和选择: 人工智能?CV? NLP? 数据库?分布式系统?其他? 硕士?直博? 小老师?大牛老师? 以上这些选择因人而异,最好自己多了解、多与老师学长学姐交流,根据自己的兴趣、目前的发展以及自己未来的规划进行抉择。 夏令营(4-7月):从四月份开始就有的学校开始了夏令营申请,5-6月是夏令营申请的集中时间;参加夏令营基本都在6-7月份。夏令营的好处:老师名额多;时间比较充裕,可以较好的了解学校以及方向等;大多学校夏令营安排住宿。参加夏令营最重要的是专业排名(这是大多数学校初筛的最重要的依据,科研经历/比赛等都是次要的。当然顶会和ACM大牛除外)。 预推免(7-9月):有的学校夏令营开始后马上就开始预推免的报名与进行(例如哈工大从7月份开始到9月份有四批预推免的面试);大多数学校集中在9月中旬。如果夏令营已经有offer了可以在预推免时冲击更好的offer;如果夏令营没有拿到offer,建议此时以稳重为好。 九推:9月28号在推免系统正式填报推免志愿,录取。 个人简历:建议在寒假期间就把自己大学的经历都整理一遍,写好简历的初始版本;然后再找老师、学长学姐帮忙完善。 个人陈述:包括自己的情况介绍、科研经历、研究生期间的规划等,1000-1500字。网上有模板可以借鉴。 老师推荐信:基本都是自己写好找老师签字,如果老师能帮你手写的话,那太好不过了。 联系老师邮件:建议提前写好一个大概的模板,注意格式、内容以及邮件的标题等(例如XX大学-XXX-保研申请)。建议夏令营前或者初审过了及时联系自己喜欢的老师。 以上只是对各方面的简单介绍,每个方面详细的注意点网上好多资料,多多搜集就好。 PS:以上个人简历/个人陈述/老师推荐信模板如果有需要的私信我分享给你! 建议把以上材料都提前收集整理好,保研结束后发现我的材料文件夹3个多G...... 一年多来整理的保研资料 四、上科大信息学院夏令营(7.3-7.6) 本来没有打算报名上科大,一个同学把上科大宣传单给了我一份,看后感觉上科大实力比较强(虽然不是982/211)就报名了。 校园环境 上科大3号报到,4号-6号有开营活动、参观、自己联系老师面试(后来才知道即使拿到优营九月份也要再来面试,也就是说上科大夏令营拿到优营只是免去了九月预推免面试的初审,但是如果你足够优秀,老师比较中意,九月份就是来走一下过场。) 我参加了三个老师的面试。YY老师只是简单问了几个问题,有点水;HXM老师有一轮笔试(考的概率论比较多,编译原理、操作系统、计网也有涉及)+面试;YJY老师的一轮面试是课题组的学长学姐面的(自我介绍+项目),二轮面试和老师聊。 上科大给我的感觉就是学校小而精;老师比较好(比如YJY/GSH/TKW)、科研氛围浓厚、硬件设施完善(双人宿舍,独立卫浴,中央空调;学校地下全是停车场,下雨不用打伞可以直接走地下),但是由于建立才几年的时间,知名度不高。 学生宿舍 五、北理计算机夏令营(7.8-7.10) 北理今年入营的基本都是985和顶尖211,夏令营去了基本都能拿到优营!入营290+,夏令营参营240+,优营220+。 在北理主楼俯瞰 8号报到,领取宿舍钥匙、校园卡(北理夏令营包括食宿,每人发了一张100元的校园卡,可以在食堂、超市消费)。北理校园比较小、路比较窄;研究生宿舍三栋高层,有电梯,四人间,宿舍空间小、比较挤,大多数宿舍有空调(据说是宿舍的同学自己买或者租的),每一层有一个公共洗澡间。 9号上午宣讲,下午机试。机试两道题目难度不大,老师手动输入三个样例给分(4+3+3,每道题目满分10分)。下午机试结束我找到提前联系的LX老师聊了一个小时,老师人很nice,专心学术(据说她的研究生大都有一篇顶会论文)。 10号上午自己找老师面试。我又参加了院长实验室的面试,比较简单。下午正式面试,分了十多个组一起面试,总共四个小时。面试包括英文自我介绍、项目、研究生规划、是否打算读博、基础知识等,每人大概5-7分钟。面试结束就可以离校了。 六、北航计算机夏令营(7.11-7.14) 北航是不包含食宿的,所以入营人数较多,有600+。北航7.11上午报到+宣讲,下午机试分两组。北航机试类似CSP,可以多次提交,以最后一次为准,但是提交后不能实时出成绩。机试两个小时,包括两道题目,第一道题目比较简单,第二道题目稍微难一些,我第二道题目没有写完但是也过了机试,第二道题目即使没有写完也要能写多少写多少,把代码的思路写出来(有可能会人工判)。北航机试可以用CSP成绩代替,基本250分及以上就没问题,每年具体的情况不一样。11号晚上出机试通过名单(大概500+进340+)。 12号分组面试,每人20分钟,从上午八点一直面试到下午三点。面试包括抽取一道政治题谈看法、抽取一段英文读并翻译、基础知识(数学知识+计算机知识)、项目。政治题和英文翻译感觉大家都差不多(除非你英语特别差),主要的是基础知识面试,北航比较爱问数学问题线代、概率论、离散、高数;如果你的项目比较好的话,老师会着重问你的项目。问到我的问题有梯度、可微和可导、大数定理+中心极限定理等。12号晚上出优营名单,大概340+进180。北航是根据夏令营面试排名来定学硕和专硕的,大概有40个学硕的名额,其他都是专硕,不过北航学硕和专硕培养方式没有区别。 这是在我前面面试同学被问到的部分问题 13号领导师意向表,找导师签字,如果没有找到暑假期间或者九月份也可以再联系老师。 14号校医院体检,夏令营结束。 七、计算所(7.13-7.16) 计算所入营还是比较有难度的,但是即使没入营也可以自己联系老师,如果老师同意可以来参加面试,只是夏令营包括食宿,没入营的不包括食宿。计算所是分实验室面试的,可以参加多个实验室的面试,我参加了网数和智信的笔试+机试+面试。 智信12号笔试,14号机试+面试。笔试包括英文论文理解翻译、概率论题、计算机基础知识题目(操作系统,计网等)、CV题目(智信主要是做CV)。机试五道题目,一个小时,题目代码已经写好了,只需你补全,类似LeetCode,在学长的电脑上完成,有C++和Python可选,两种编程语言题目不同。C++用的是VS2017,会由人给你记每道题目完成的时间,会让你演示调试,结束后打包发送到一个邮箱里。 网数只有机试和面试,13号上午机试,15号面试。机试一个小时七道题目,在自己电脑上写然后拷到老师的优盘上。考察了包括链表、二叉树、图等,偏向于工程,据说今年的题目是计算所一个工程博士出的。机试70人,进入面试60人。面试每人15分钟,包括自我介绍,专业知识,是否读博,项目等。 计算所环境 八、一些建议和感想 一些建议: 提前准备,给自己定位,有针对性的准备,多在网上找经验贴;多和本校保研的学长学姐交流,多和同学交流,多搜集信息; 4月份前把简历、推荐信、个人陈述等写好,再不断修改完善; 最好能提前联系一个老师,以免拿到优营而没有找到好老师; 准备好专业知识,线代、概率论、数据结构、计网、计组、操作系统等; 如果编程能力不是特别强,最好大三开始就刷题,LeetCode的中档题难度基本就够用了; 一些体会与感想: 机会是留给有准备的人的,越努力越幸运! 做最坏的打算,做最好的准备。 保研是一场马拉松,坚持到底就是胜利。 遵道而行,但到半途需努力;会心不远,欲登绝顶莫辞劳。 也送给自己一句话:流年笑掷,未来可期! 以上仅代表个人观点与感想,如果对你有帮助记得点赞哦~如有问题,可以关注我的公主号【驭风者小窝】,我会尽我最大的努力帮助你! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-02 23:03:36
120
转载
转载文章
...式发布了国产通用型云操作系统安超OS,这是一款具有应用创新特性的轻量级云创新平台,拥有全栈、安全、创新、无厂商锁定的特性,能够真正让政府和企业客户通过简单便捷的操作实现云部署和数字化转型。 更为关键的是,安超OS还是构建于生态开放基础之上的云操作系统,这让更多的合作伙伴也能借助这一创新的平台,和华云数据一起赋能数字中国,共同走向成功。因此,国产通用型云操作系统安超OS的发布,对于中国政府和企业更好的实现上云、应用云、管理云、优化云,无疑具有十分重要的价值和意义。 从这个角度来说,安超OS的“一小步”,也正是中国云的“一大步”。 安超OS应运而生背后 众所周知,随着数据量的不断增长和对IT系统安全性、可控性要求的不断提升,越来越多的企业发现无法通过单一的公有云或者私有云服务,满足其所有的工作负载和业务创新需求,特别是在中国这种情况更加的明显。 华云数据集团董事长、总裁许广彬 一方面,目前中国企业现有的IT基础设施架构,让他们很难“一步上公有云”,这也决定了私有云仍然会成为众多政府和企业在未来相当长一段时间采用云服务的主流模式。 来自IDC的数据从一个侧面也证实了这一现状,数据显示仅2018年中国的私有云IT基础设施架构市场的相关支出就增长了49.2%,同时过去6年中国在这方面支出的增长速度更是远高于全球市场,预测2023年中国将成为全球最大的私有云IT基础架构市场。 另一方面,无论是传统的私有云还是公有云厂商的专有云,同样也很难满足中国企业的具体需求。比如,传统私有云的定制化尽管满足了行业企业客户复杂的IT环境和利旧的需求,但存在碎片化、不可进化的问题,也无法达到公有云启用便捷、功能不断进化、统一运维、按需付费的消费级体验,成为传统私有云规模化增长的掣肘。 当然,过去几年国内外公有云巨头也纷纷推出面向私有云市场的专有云产品,但其设计思路是以公有云为核心,其价值更多在于公有云服务在防火墙内的延伸,其初衷是“将数据迁移到中心云上”,这同样不适合,更难以匹配中国企业希望“将云移动到数据上”的最终目标。 正是源于这些客户“痛点”和市场现状,让华云数据产生了打造一款通用型云操作系统的想法。今年3月1日,华云数据宣布对超融合软件厂商Maxta全部资产完成了合法合规收购。至此,华云数据将独家拥有Maxta的包括产品技术、专利软著、品牌、市场在内的全球范围的资产所有权。 在此基础上,华云数据又把Maxta与华云自身的优势产品相融合,正式推出了安超OS国产通用型云操作系统,并在国产化与通用型方向做了三个方面的重要演进: 首先,兼容国产服务器、CPU、操作系统。安超OS对代码进行了全新的架构扩展,创建并维护新的一套代码分支,从源码级完成众多底层的对国产服务器、CPU、操作系统的支持。 其次,扩展通用型云操作系统的易用性。安超OS以VM为核心做为管理理念,以业务应用的视觉管理基础设施,为云操作系统开发了生命周期管理系统(LCM),提供像服务器操作系统的光盘ISO安装方式,可以30分钟完成云操作系统的搭建,并具备一键集群启停、一键日志收集、一键运维巡检业务等通用型云操作系统所必备的易用性功能。 最后,增强国内行业、企业所需的安全性。安超OS的所有源代码都通过了相关部门的安全检查,确保没有“后门”等漏洞,杜绝安全隐患,并且通过了由中国数据中心联盟、云计算开源产业联盟组织,中国信息通信研究院(工信部电信研究院)测试评估的可信云认证。 不难看出,安超OS不仅具有全球领先的技术,同时又充分满足中国市场和中国客户的需求。正如华云数据集团董事长、总裁许广彬所言:“唯改革者进,唯创新者强,华云数据愿意用全球视野推动中国云计算发展,用云创新驱动数字经济挺进新纵深,植根中国,奉献中国,引领中国,腾飞中国。” 五大维度解读安超OS 那么,什么是云操作系统?安超OS通用型云操作系统又有什么与众不同之处呢? 华云数据集团联席总裁、首席技术官谭瑞忠 在华云数据集团联席总裁、首席技术官谭瑞忠看来,云操作系统是基于服务器操作系统,高度的融合了基础设施的资源,实现了资源弹性伸缩扩展,以及具备运维自动化智能化等云计算的特点。同时,云操作系统具有和计算机操作系统一样的高稳定性,高性能,高易用性等特征。 但是,相比计算机操作系统,云计算的操作系统会更为复杂,属于云计算后台数据中心的整体管理运营系统,是构架于服务器、存储、网络等基础硬件资源和PC操作系统、中间件、数据库等基础软件之上的、管理海量的基础硬件、软件资源的云平台综合管理系统。 更为关键的是,和国内外很多基础设备厂商基于自已的产品与理解推出了云操作系统不同,安超OS走的是通用型云操作系统的技术路线,它不是采用软硬件一体的封闭或半封闭的云操作系统平台,所以这也让安超OS拥有安全稳定、广泛兼容、业务优化、简洁运维、高性价比方面的特性,具体而言: 一是,在安全稳定方面,安超OS采用全容错架构设计,从数据一致性校验到磁盘损坏,从节点故障到区域性灾难,提供端到端的容错和灾备方案,为企业构筑高可用的通用型云环境,为企业的业务运营提供坚实与安全可靠的基础平台。 二是,在广泛兼容方面,安超OS所有产品技术、专利软著、品牌都拥有国内自主权,符合国家相关安全自主可信的规范要求,无服务器硬件锁定,支持国内外主流品牌服务器,同时适配大多数芯片、操作系统和中间件,支持利旧与升级,更新硬件时无需重新购买软件,为企业客户提供显著的投资保护,降低企业IT成本。 三是,在业务优化方面,安超OS具备在同一集群内提供混合业务负载的独特能力,可在一套安超OS环境内实现不同业务的优化:为每类应用定制不同的存储数据块大小,优化应用读写效率,提供更高的业务性能;数据可按组织架构逻辑隔离,部门拥有独立的副本而无需新建一套云环境,降低企业IT的成本与复杂度;数据重构优先级保证关键业务在故障时第一时间恢复,也能避免业务链启动错误的场景出现。 四是,在简捷运维方面,安超OS是一款轻量级云创新平台,其所有管理策略以虚拟机和业务为核心,不需要配置或管理卷、LUN、文件系统、RAID等需求,从根本上简化了云操作系统的管理。通过标准ISO安装,可实现30分钟平台极速搭建,1分钟业务快速部署,一键集群启停与一键运维巡检。降低企业IT技术门槛,使IT部门从技术转移并聚焦于业务推进和变革,助力企业实现软件定义数据中心。 五是,在高性价比方面,安超OS在设计之初,华云数据就考虑到它是一个小而美、大而全的产品,所以给客户提供组件化授权,方便用户按需购买,按需使用,避免一次性采购过度,产生配置浪费。并且安超OS提供在线压缩等容量优化方案,支持无限个数无损快照,无硬件绑定,支持License迁移。 由此可见,安超OS通用型云操作系统的本质,其实就是一款以安全可信为基础,以业务优化为核心的轻量级云创新平台,能够让中国政府和企业在数字化转型中,更好的发挥云平台的价值,同时也能有效的支持他们的业务创新。 生态之上的云操作系统 纵观IT发展的过程,每个时代都离不开通用型操作系统:在PC时代,通用型操作系统是Windows、Linux;在移动互联时代,通用型操作系统是安卓(Android),而这些通用型操作系统之所以能够成功,背后其实也离不开生态的开放和壮大。 如果以此类比的话,生态合作和生态开放同样也是华云安超OS产品的核心战略,这也让安超OS超越了传统意义上的云创新平台,是一款架构于生态开放之上的云操作系统。 华云数据集团副董事长、执行副总裁马杜 据华云数据集团副董事长、执行副总裁马杜介绍,目前华云数据正与业内众多合作伙伴建立了生态合作关系,覆盖硬件、软件、芯片、应用、方案等多个领域,通过生态合作,华云数据希望进一步完善云数据中心的产业链生态,与合作伙伴共建云计算生态圈。 其中,在基础架构方面,华云数据与飞腾、海光、申威等芯片厂商以及中标麒麟、银河麒麟等国产操作系统实现了互认证,与VMware、Dell EMC、广达、浪潮、曙光、长城、Citrix、Veeam、SevOne、XSKY、锐捷网络、上海仪电、NEXIFY等多家国内外知名IT厂商达成了战略合作,共同为中国政企用户提供基于云计算的通用行业解决方案与垂直行业解决方案,助推用户上云实现创新加速模式。 同时,在解决方案方面,华云数据也一直在完善自身的产业链,建立最广泛的生态体系。例如,PaaS平台领域的合作伙伴包括灵雀云、Daocloud、时速云、优创联动、长城超云、蓝云、星环科技、华夏博格、时汇信息、云赛、热璞科技、思捷、和信创天、酷站科技、至臻科技达成合作关系;数据备份领域有金蝶、爱数、Veeam、英方云、壹进制;安全领域有亚信安全、江南安全、绿盟、赛亚安全、默安科技;行业厂商包括善智互联、蓝美视讯、滴滴、天港集团、航天科工等合作伙伴,由此形成了非常有竞争力的整体解决方案。 不仅如此,华云数据与众多生态厂家共同完成了兼容性互认证测试,构建了一个最全面的基础架构生态体系,为推出的国产通用型云操作系统提供了一个坚实的基础。也让该系统提高了其包括架构优化能力、技术研发能力、资源整合能力、海量运营能力在内的综合能力,为客户提供稳定、可靠的上云服务,赋能产业变革。 值得一提的是,华云数据还发布了让利于合作伙伴的渠道合作策略,通过和合作伙伴的合作共赢,华云数据希望将安超OS推广到国内的全行业,让中国企业都能用上安全、放心的国产通用型云操作系统,并让安超OS真正成为未来中国企业上云的重要推手。 显而易见,数字化的转型与升级,以及数字经济的落地和发展,任重而道远,艰难而伟大,而华云数据正以安超OS云操作系统为核心构建的新生态模式和所释放的新能力,不仅会驱动华云数据未来展现出更多的可能性,激发出更多新的升维竞争力,更将会加速整个中国政府和企业的数字化转型步伐。 全文总结,在云计算落地中国的过程中,华云数据既是早期的探索者,也是落地的实践者,更是未来的推动者。特别是安超OS云操作系统的推出,背后正是华云凭借较强的技术驾驭能力,以及对中国企业用户痛点的捕捉,使得华云能够走出一条差异化的创新成长之路,也真正重新定义了“中国云”未来的发展壮大之路。 申耀的科技观察,由科技与汽车跨界媒体人申斯基(微信号:shenyao)创办,16年媒体工作经验,拥有中美两地16万公里自驾经验,专注产业互联网、企业数字化、渠道生态以及汽车科技内容的观察和思考。 本篇文章为转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-16 21:41:38
302
转载
转载文章
...阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
在当前Linux操作系统应用愈发广泛的背景下,硬件设备的兼容性和优化配置显得尤为重要。近期,开源社区对Linux声卡驱动程序PulseAudio进行了重大更新,增加了对更多新型声卡的支持,并提升了音质和延迟性能。同时,显卡领域也有新动态,Mesa 3D图形库已实现对最新一代GPU的初步支持,为Linux用户带来更流畅、高效的图形体验。 随着网络技术的发展,内核开发者正不断强化Linux系统对各种网卡芯片组的支持,特别是针对无线网卡和高速以太网卡的驱动程序更新频繁,确保用户在网络环境中的稳定连接与高效传输。 此外,针对Linux下多媒体播放方面,VLC团队宣布其跨平台媒体播放器将在下一个版本中增强对高清视频流和蓝光盘的支持,进一步丰富了Linux用户的娱乐选择。 对于那些热衷于Linux游戏的用户来说,Steam Proton项目持续取得突破,使得越来越多Windows原生游戏能够在Linux环境下无缝运行,这一进展无疑极大增强了Linux作为游戏平台的吸引力。 总之,无论是从底层硬件驱动到上层应用软件,Linux生态系统都在快速发展和进化中,为用户提供更为友好和全面的使用体验。而了解并掌握这些最新的设置技巧和功能更新,将有助于广大Linux爱好者及专业用户更好地发挥系统的潜能,享受更加便捷、高效的工作与娱乐环境。
2023-10-27 09:27:49
255
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
traceroute baidu.com
- 追踪到目标主机的网络路由路径。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"