前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[多用户场景 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MemCache
...过期时间,可以在某些场景下帮助我们更好地控制缓存生命周期。 python mc.touch('key', 60) 更新key的过期时间为60秒后 5. 结语 总的来说,Memcached过期时间未按预期生效并非其本身缺陷,而是其基于LRU策略及自身实现机制的结果。在日常开发过程中,我们需要深入了解并适应这些特性,以便更高效地利用Memcached进行缓存管理。而且,通过灵活巧妙的设置和实际编码操作,我们完全可以成功避开这类问题引发的影响,让Memcached变成我们提升系统性能的好帮手,就像一位随时待命、给力的助手一样。在捣鼓技术的道路上,能够理解、深入思考,并且灵活机动地做出调整,这可是我们不断进步的关键招数,也是编程世界让人欲罢不能的独特趣味所在。
2023-06-17 20:15:55
122
半夏微凉
Go Gin
...于在API请求中验证用户身份,通过中间件处理,确保只有授权的用户才能访问特定资源。 高并发请求 , 指在短时间内有大量的客户端同时向服务器发送请求的情况。Go Gin因其高性能和并发处理能力,使得它在处理高并发场景下表现出色,能够有效地响应大量请求,保证服务的稳定和响应速度。 API速率限制器 , 一种机制,用来控制特定时间段内对API的调用频率,防止滥用或恶意攻击。在Go Gin中,通过中间件实现API速率限制,有助于保护API资源,维持服务的正常运行。 自动路由发现 , 在微服务架构中,通过注册与发现服务的方式,使得客户端能够自动找到并连接到正确的服务实例。Go Gin结合服务发现工具(如Consul、Eureka等),实现了服务间的路由自动管理。 Gin Swagger , 一种用于生成Go Gin API文档的工具,通过注解和配置,自动生成清晰、格式化的API文档,有助于开发者理解和使用API,提高开发效率。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。与Go Gin结合,Kubernetes能够帮助管理微服务的生命周期和负载均衡,确保服务的高可用性。
2024-04-12 11:12:32
502
梦幻星空
Golang
...问题,也能及时反馈给用户或程序,而不是让程序陷入未知的状态。 5. 结语 --- 总之,编写健壮的Golang应用程序的关键在于,时刻关注并妥善处理代码中的异常情况。虽然Go语言没有那种直接内置的异常处理功能,但是它自个儿独创的一种错误处理模式可厉害了,能更好地帮我们写出既清晰又易于掌控的代码,让编程变得更有逻辑、更靠谱。只有当我们真正把那些藏起来的风险点都挖出来,然后对症下药,妥妥地处理好,才能保证咱们的程序在面对各种难缠复杂的场景时,也能稳如老狗,既表现出强大的实力,又展现无比的靠谱。所以,甭管你是刚摸Go语言的小白,还是已经身经百战的老鸟,都得时刻记在心里:每一个错误都值得咱好好对待,这可是对程序生命力的呵护和尊重呐!
2024-01-14 21:04:26
530
笑傲江湖
Redis
...来看看几种常见的应用场景以及对应的最优数据结构选择。 1. 缓存 对于频繁读取但不需要持久化存储的数据,使用字符串类型最为合适。因为字符串类型操作简单,速度快,而且占用空间小。 2. 键值对 对于只需要查找和更新单个字段的数据,使用哈希类型最为合适。因为哈希类型可以快速地定位到具体的字段,而且可以通过字段名进行更新。 3. 序列 对于需要维护元素顺序且不关心重复数据的情况,使用列表或者有序集合类型最为合适。因为这两种类型都支持插入和删除元素,且可以通过索引来访问元素。 4. 记录 对于需要记录用户行为或者日志的数据,使用集合类型最为合适。你知道吗,集合这种类型超级给力的!它只认独一无二的元素,这样一来,重复的数据就会被轻松过滤掉,一点儿都不费劲儿。而且呢,你想确认某个元素有没有在集合里,也超方便,一查便知,简直不要太方便! 四、数据结构与可扩展性的关系 数据结构的选择也直接影响了Redis的可扩展性。下面我们就来看看如何根据不同的需求选择合适的数据结构。 1. 数据存储需求 根据需要存储的数据类型和大小,选择最适合的数据类型。比如,假如你有大量的数字信息要存起来,这时候有序集合类型就是个不错的选择;而如果你手头有一大堆字符串数据需要存储的话,那就挑字符串类型准没错。 2. 性能需求 根据业务需求和性能指标,选择最合适的并发模型和算法。比如说,假如你想要飞快的读写速度,内存数据结构就是个好选择;而如果你想追求超快速的写入同时又要求几乎零延迟的读取体验,那么磁盘数据结构绝对值得考虑。 3. 可扩展性需求 根据系统的可扩展性需求,选择最适合的分片策略和分布模型。比如,假如你想要给你的数据库“横向发展”,也就是扩大规模,那么选用键值对分片的方式就挺合适;而如果你想让它“纵向生长”,也就是提升处理能力,哈希分片就是个不错的选择。 五、总结 综上所述,数据结构的选择对Redis的性能和可扩展性有着至关重要的影响。在实际操作时,咱们得瞅准具体的需求和场景,然后挑个最对口、最合适的数据结构来用。另外,咱们也得时刻充电、不断摸爬滚打尝试新的数据结构和算法,这样才能应对业务需求和技术挑战的瞬息万变。 六、参考文献 [1] Redis官方文档 [2] Redis技术内幕
2023-06-18 19:56:23
274
幽谷听泉-t
Element-UI
...,既不占地方,还能让用户用起来特别顺手,感觉特好。 不过,在开始之前,我们得先确保你已经安装并引入了ElementUI库。如果你还没这样做,别急,我马上带你过一遍基础步骤。 安装ElementUI 首先,你需要通过npm或yarn来安装ElementUI: bash npm install element-ui -S 或者 bash yarn add element-ui 接下来,在你的项目入口文件中(通常是main.js),引入ElementUI: javascript import Vue from 'vue'; import ElementUI from 'element-ui'; import 'element-ui/lib/theme-chalk/index.css'; Vue.use(ElementUI); 现在,我们的环境准备好了,可以正式开启我们的Collapse折叠组件之旅了! 第二章:Collapse折叠组件的基本用法 Collapse折叠组件的核心在于它的可折叠特性。想象一下,当你有一个长长的FAQ列表时,如果全部展开,页面会变得非常臃肿,而使用Collapse组件,你可以让这些内容按需显示,多好啊! 基本结构 最基础的Collapse组件由el-collapse标签包裹着几个el-collapse-item标签构成。每个el-collapse-item就是一个可以折叠起来的部分,你可以用title属性来给它起个名字,这样大家一眼就能看出哪些部分是可以点开来瞧瞧的。 示例代码 让我们来看一个简单的例子: html 这里是隐藏的内容。 更多隐藏的内容... 这里我们定义了一个activeNames变量,用来控制哪些el-collapse-item是展开状态。在上面的例子中,默认展开了第一个折叠项。 第三章:进阶玩法——动态控制与样式调整 掌握了基本操作之后,是不是觉得还不够?别急,接下来我们要深入一点,看看如何更加灵活地使用这个组件。 动态控制 有时候,我们可能需要根据某些条件来动态控制某个折叠项的状态。这时,我们可以用Vue的数据绑定功能,把v-model绑在一个数组上,这个数组里放的都是我们想让一开始就是打开状态的折叠项的名字。 html 切换折叠状态 这里增加了一个按钮,点击它可以切换折叠项的展开状态。 样式调整 ElementUI提供了丰富的自定义选项,包括颜色、边框等。你可以通过换换主题或者直接调整CSS样式,轻松整成自己喜欢的折叠组件样子。 css 第四章:真实场景应用与最佳实践 了解了这么多,你可能会问:“那我在实际开发中怎么用呢?”其实,Collapse折叠组件的应用场景非常广泛,比如FAQ页面、商品详情页的规格参数展示等等。关键是找到合适的地方使用它,让用户体验更佳。 最佳实践 1. 保持一致性 无论是在标题的设计还是内容的呈现上,都要保持整体的一致性。 2. 合理规划 不要一次性展开过多内容,避免信息过载。 3. 响应式设计 考虑不同设备下的表现,确保在小屏幕上也能良好工作。 最后,别忘了不断尝试和改进。技术总是在进步,我们的理解和运用也会随之提高。希望今天的分享能帮助你在实际项目中更好地利用ElementUI的Collapse折叠组件! --- 这就是我对你提问的回答,希望能对你有所帮助。如果你有任何问题或想要了解更多细节,请随时告诉我!
2024-10-29 15:57:21
77
心灵驿站
ActiveMQ
...进一步提升服务效率和用户体验。例如,阿里云推出的“通义千问”不仅能够自动回答客户常见问题,还能够根据客户的具体需求提供定制化的解决方案。这一技术的应用大大减少了人工客服的工作负担,提高了响应速度和准确性。此外,亚马逊也推出了基于其AWS平台的Amazon Connect服务,该服务结合了机器学习算法,能够智能识别客户情绪,并据此调整客服策略,从而更好地满足客户需求。 与此同时,随着大数据技术的不断进步,企业也开始更加重视数据的收集和分析。通过对历史客户交互数据的深度挖掘,企业可以更好地理解客户需求和行为模式,进而优化产品和服务。例如,腾讯云推出的智能客服系统,不仅可以根据客户的历史行为预测其潜在需求,还可以通过数据分析提前发现并解决问题,从而避免客户不满。 这些技术的发展不仅为企业提供了更多可能性,也为客户带来了更好的体验。未来,随着5G、物联网等新技术的普及,实时客户服务系统将进一步升级,变得更加智能化和个性化。因此,对于企业和开发者而言,持续关注这些前沿技术,并将其应用于实际场景中,将是提升竞争力的关键。
2025-01-16 15:54:47
85
林中小径
JSON
...SON线段格式的应用场景也在不断拓宽。 就在最近,Apache Kafka等分布式流处理平台开始广泛采用JSON线段格式进行消息传输,有效解决了传统单一JSON文档可能导致的数据读取瓶颈问题。例如,在实时日志分析系统中,通过将每条日志事件以JSON线段格式发布至Kafka主题,消费者可以实现逐行、实时地解析和处理数据,显著提升了系统的吞吐量和响应速度。 不仅如此,一些前沿的云原生数据库服务也开始支持JSON线段格式作为导入导出数据的方式,用户能够便捷地将大量JSON对象分割存储并按需查询,大大降低了数据迁移和备份的复杂度。 此外,学术界和开源社区也正积极研究和完善针对JSON线段格式的优化算法和工具,如simdjson项目利用现代CPU的SIMD指令集加速JSON解析,对于JSON线段格式的数据同样能发挥显著性能提升效果。 总之,JSON线段格式作为数据序列化的重要手段,不仅为海量数据处理提供了新的解决方案,而且随着技术生态的持续发展,其价值和影响力将在更多实际应用场景中得到验证和体现。对于开发者而言,掌握并灵活运用JSON线段格式,无疑会是提升自身数据处理能力,应对未来挑战的关键技能之一。
2023-03-08 13:55:38
497
断桥残雪
Kylin
...例如,在销售数据分析场景中,多维立方体可以预先计算出不同日期、地区、产品类别下的总销售额,当用户进行相关查询时,系统可以直接从立方体中获取结果,而无需实时扫描原始明细数据。 维度模型 , 在数据建模领域,维度模型是为满足决策支持系统快速查询需求而设计的一种模型结构。它以业务过程为核心,围绕事实表(如销售行为)构建一系列描述性维度(如时间、地点、产品等),这些维度提供了对事实表数据进行观察和分析的角度。在Kylin中,维度模型定义了实体的各种详细信息,以便于后续基于维度进行数据切片、切块和汇总查询。 事实模型 , 事实模型是维度建模中的一个重要概念,通常表现为数据仓库中的事实表。它记录了业务过程的具体事件或交易,包含了可量化或可计数的度量值,如销售额、交易数量等。在Kylin中,事实模型专门用来记录实体的行为表现,与维度模型相结合,构成了多维分析的基础,通过与维度属性的关联,可以快速生成满足复杂查询需求的数据视图。
2023-05-03 20:55:52
112
冬日暖阳-t
Mahout
...互联网公司在处理海量用户行为数据时,采用了Mahout进行机器学习任务,显著提升了数据分析的效率。该公司通过调整Mahout中的Job Scheduling和Resource Allocation Policies,成功地优化了数据处理流程,实现了资源的最大化利用。此外,另一家大型电商企业也在其推荐系统中引入了Mahout,通过对用户历史购买记录进行深度分析,提高了个性化推荐的准确率,从而增加了销售额。 在技术层面,近期的研究表明,通过结合使用先进的调度算法和动态资源分配策略,可以进一步提升Mahout的性能。例如,一项发表在《IEEE Transactions on Parallel and Distributed Systems》上的研究指出,利用智能调度算法,可以根据实时负载情况动态调整作业优先级,从而提高系统的整体吞吐量。此外,有专家建议,在实际应用中,应根据具体业务场景灵活调整Mahout的各项配置参数,以达到最优效果。 总之,Mahout作为一种成熟的开源工具,在大数据处理领域展现出巨大的潜力。通过不断优化其内部机制,可以使其在更多场景下发挥重要作用,帮助企业更好地理解和利用海量数据。未来,随着技术的进步,我们期待看到更多创新性的解决方案出现,进一步推动大数据技术的发展。
2025-03-03 15:37:45
66
青春印记
转载文章
...97。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 报错信息: org.apache.ibatis.binding.BindingException: Type interface com.itcase.dao.UserDao is not known to the MapperRegistry.at org.apache.ibatis.binding.MapperRegistry.getMapper(MapperRegistry.java:47)at org.apache.ibatis.session.Configuration.getMapper(Configuration.java:779)at org.apache.ibatis.session.defaults.DefaultSqlSession.getMapper(DefaultSqlSession.java:291)at com.itcase.dao.UserDaoTest.test1(UserDaoTest.java:18)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke(Method.java:498)at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)at org.junit.runners.ParentRunner.run(ParentRunner.java:309)at org.junit.runner.JUnitCore.run(JUnitCore.java:160)at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70) 一般这总情况就是 > Mybatis的config文件忘记在<configuration></configuration>> 里加上以下代码了,下边的UserMapper.xml换成你们报错的文件 <mappers><mapper resource="com/itcase/dao/UserMapper.xml"/></mappers> 要是加了mapper依然报错,如果是以下错误的话:点我看另一篇博客 Caused by: org.apache.ibatis.exceptions.PersistenceException: Error building SqlSession. The error may exist in com/itcase/dao/UserMapper.xml Cause: org.apache.ibatis.builder.BuilderException: Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find resource com/itcase/dao/UserMapper.xmlat org.apache.ibatis.exceptions.ExceptionFactory.wrapException(ExceptionFactory.java:30)at org.apache.ibatis.session.SqlSessionFactoryBuilder.build(SqlSessionFactoryBuilder.java:80)at org.apache.ibatis.session.SqlSessionFactoryBuilder.build(SqlSessionFactoryBuilder.java:64)at com.itcase.util.MybatisUtil.<clinit>(MybatisUtil.java:20)... 23 moreCaused by: org.apache.ibatis.builder.BuilderException: Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find resource com/itcase/dao/UserMapper.xmlat org.apache.ibatis.builder.xml.XMLConfigBuilder.parseConfiguration(XMLConfigBuilder.java:121)at org.apache.ibatis.builder.xml.XMLConfigBuilder.parse(XMLConfigBuilder.java:98)at org.apache.ibatis.session.SqlSessionFactoryBuilder.build(SqlSessionFactoryBuilder.java:78)... 25 moreCaused by: java.io.IOException: Could not find resource com/itcase/dao/UserMapper.xmlat org.apache.ibatis.io.Resources.getResourceAsStream(Resources.java:114)at org.apache.ibatis.io.Resources.getResourceAsStream(Resources.java:100)at org.apache.ibatis.builder.xml.XMLConfigBuilder.mapperElement(XMLConfigBuilder.java:372)at org.apache.ibatis.builder.xml.XMLConfigBuilder.parseConfiguration(XMLConfigBuilder.java:119)... 27 more 本篇文章为转载内容。原文链接:https://blog.csdn.net/kaikai_gege/article/details/109730197。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 12:10:23
129
转载
Apache Solr
...项目,但大致思路是将用户输入转换为潜在的地理坐标,然后进行精确匹配: java // 假设有一个预训练模型 NeuralSearchService neuralService = ...; double[] neuralCoordinates = neuralService.transform("New York City"); query.setParam("nn", "location:" + Arrays.toString(neuralCoordinates)); 7. 结论与展望 Apache Solr的地理搜索功能使得地理位置信息的索引和检索变得易如反掌。开发者们可以灵活运用各种Solr组件和拓展功能,像搭积木一样拼接出适应于五花八门场景的智能搜索引擎,让搜索变得更聪明、更给力。不过呢,随着科技的不断进步,Solr这个家伙肯定还会持续进化升级,没准儿哪天它就给我们带来更牛掰的功能,比如实时地理定位分析啊、预测功能啥的。这可绝对能让我们的搜索体验蹭蹭往上涨,变得越来越溜! 记住,Solr的强大之处在于它的可扩展性和社区支持,因此在实际应用中,持续学习和探索新特性是保持竞争力的关键。现在,你已经掌握了Solr地理搜索的基本原理,剩下的就是去实践中发现更多的可能性吧!
2024-03-06 11:31:08
406
红尘漫步-t
转载文章
...43。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本系列文章,主要是总结我对Android开发过程中内存优化的理解,很多东西都是平常的习惯和一些细节问题,重在剖析优化的原理,养成一种良好的代码习惯。 概述 既然谈优化,就绕不开Android三个内存相关的经典问题: OOM 内存泄漏 频繁GC卡顿 导致这三个问题的原因: OOM App在启动时会从系统分配一个默认的堆内存,同时拥有一个堆内存最大值(可以动态申请这个大小),这个Max Heap Size的大小,决定了软件运行时可以申请的最大运行内存。App软件内存分配是个不断创建和GC回收的过程,就像一个水池拥有注入和排出水的通道,当注入过快,排出不足时,水池满了溢出,Out of Memory,即我们常说的OOM。 内存泄漏 当我们在代码中创建对象,会申请内存空间,同时包含一个对象的引用,当我们长时间不使用该引用时,JVM GC操作时会根据这个引用去释放内存。但是,对象的回收可能有点差错,如果这个对象A被另一个线程B所引用,当我们不再使用A,可A却处于B的hold状态,那么我们每次创建的A都得不到回收,这个时候就会发生内存泄漏了。 频繁GC卡顿 上面说了,App的堆内存有最大值,是有限的,那么如果我们频繁的创建,当运行内存不断上升,为了维持App的运行,GC回收也会频繁操作,软件运行资源有些,必然导致卡顿问题。 JAVA的GC机制,非常的复杂和精辟,不可一言概论之,在看过许多blog之后,给出一点自己的总结。 简述JVM GC 我们都知道Java语言非常的方便,不像C语言,申请和释放内存都是自己操作,java有虚拟机帮忙。Android 的每个应用程序都会使用一个专有的Dalvik虚拟机实例来运行,即使内存泄漏也只是kill当前App. Java虚拟机有一套完整的GC方案,只是简单理解的话就是,它维持着一个对象关系树,当开始GC操作时,它会从GC Roots开始扫描整个Object Tree,当发现某个无法从Tree中引用到的对象时,便将其回收。 GC Roots分类举例: Class类 Alive Thread 线程stack上的对象,如方法或者局部变量 JNI活动对象 System Class Loader Java中的引用关系 java中有四种对象引用关系,分别是:强引用StrongRefernce、软引用SoftReference、弱引用WeakReference、虚引用PhantomReference,这四种引用关系分别对应的效果: StrongRefernce 通过new创建的对象,如Object obj = new Object();,强引用不会被垃圾回收器回收和销毁,即是OOM,所以这也容易造成我们接下来会分析的《非静态内部类持有对象导致的内存泄漏问题》 SoftReference 软引用可以被垃圾回收器回收,但它的生命周期要强于弱引用,但GC回收发生时,只有在内存空间不足时才会回收它 WeakReference 弱引用的生命周期短,可以被GC回收,但GC回收发生时,扫描到弱引用便会被垃圾回收和销毁掉 PhantomReference 虚引用任何时候都可以被GC回收,它不会影响对象的垃圾回收机制,它只有一个构造函数,因此只能配合ReferenceQueue一起使用,用于记录对象回收的过程 PhantomReference(T referent, ReferenceQueue<? super T> q) 关于ReferenceQueue 他的作用主要用于记录引用是否被回收,除了强引用其他的引用方式得构造函数中都包含了ReferenceQueue参数。当调用引用的get()方法返回null时,我们的对象不一定已经回收掉了,可能正在进入回收流程中,而当对象被确认回收后,它的引用会被添加到ReferenceQueue中。 Felix obj = new Felix();ReferenceQueue<Felix> rQueue = new ReferenceQueue<Felix>();WeakReference<Felix> weakR = new WeakReference<Felix>(obj,rQueue); 总结 看完Android引用和回收机制,我们对于代码中内存问题的原因也有一定认识,当时现实中内存泄漏或者溢出的问题,总是不经意间,在我之后一些列的文章中,会对不同场景的代码问题进行分析和解决,一起来关注吧! 本篇文章为转载内容。原文链接:https://blog.csdn.net/sslinp/article/details/84787843。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 11:39:05
263
转载
Hive
...HiveQL),使得用户能够更方便地对大规模分布式存储在Hadoop HDFS中的数据进行读、写和管理操作。在大数据处理领域,Hive常被用于数据ETL(抽取、转换、加载)、数据分析以及业务报表生成等场景。 元数据 , 元数据在本文中特指与Hive表结构相关的信息,包括但不限于表名、列名、列类型、分区信息等。这些信息存储在独立的数据库系统(如MySQL或Derby)中,Hive通过访问元数据来理解如何解析和定位实际的数据块。当元数据损坏时,可能导致Hive无法正确识别和访问底层的数据文件。 HDFS(Hadoop Distributed File System) , HDFS是Hadoop项目的核心组件之一,是一种高度容错性的分布式文件系统,设计用于部署在低成本硬件上运行,并支持超大规模的数据集。在Hive中,实际的数据以文件形式存储在HDFS上,如果HDFS发生节点故障、网络中断等问题,可能导致数据复制因子不足或数据块损坏,进一步影响到Hive表数据的可用性。 ACID特性 , ACID是Atomicity(原子性)、Consistency(一致性)、Isolation(隔离性)和Durability(持久性)四个英文单词的首字母缩写,它描述了数据库事务处理的理想特性。在Hive中,Transactional Tables(事务表)引入了对ACID特性的支持,可以确保在并发写入操作下,数据的一致性和完整性得到保障,从而降低因并发冲突导致的数据损坏风险。
2023-09-09 20:58:28
642
月影清风
转载文章
...面板进行管理的方式,用户无需在服务器上安装额外的软件或页面端口,而是通过加密探针等技术手段与云端运维平台连接,实现对服务器资源、网站、数据库等的集中管理和操作。这种方式不仅降低了本地服务器的资源消耗,增强了安全性,还简化了运维流程,提高了工作效率。 面板厂家 , 面板厂家是指提供用于Linux操作系统环境下的可视化控制面板产品的服务提供商。这类厂家通常研发并销售能够帮助用户更方便地进行服务器配置、网站搭建、文件管理、数据库维护等一系列IT运维工作的软件产品。如文章中提到的宝塔面板、WDCP和旗鱼云梯等,都是国内较为知名的Linux面板厂家。 集群化管理 , 集群化管理是一种分布式计算环境下的资源组织和管理模式,它将多个独立的服务器或者其他计算资源通过特定的软件技术进行整合,使其可以协同工作,共同对外提供服务或者处理任务。在Linux面板的应用场景下,集群化管理意味着用户可以通过一个统一的控制界面来管理多个服务器,实现负载均衡、资源共享、故障切换等功能,从而提高系统的可用性和扩展性。例如,旗鱼云梯就提供了良好的集群化功能,允许用户无限制添加自己的服务器进行统一管理。
2023-10-25 12:23:09
518
转载
Etcd
...能力。例如,Etcd用户在实践中不仅可以通过调整Etcd自身的日志级别和输出方式,还可以将日志对接到这些现代日志管理系统中,实现更高效的问题定位和性能优化。 此外,鉴于数据安全与合规性的要求日益严苛,如何在保证日志功能的同时确保敏感信息的安全也成为当前热点话题。因此,学习并采用加密传输、日志脱敏等相关技术,也是Etcd以及其他分布式系统运维者在日志管理方面不可忽视的一环。 综上所述,在实际运维工作中,结合最新的日志管理理念和技术手段,将有助于运维团队更加从容地应对复杂多变的业务场景,使Etcd及其他关键组件在保障服务稳定性的同时,更好地服务于企业的数字化转型和云原生战略实施。
2023-01-29 13:46:01
832
人生如戏
Consul
...大规模分布式环境下的用户来说,无疑是一次重要的升级选择。 然而,即使有着详尽的Upgrade Guide和稳定性的保证,从实际运维角度来看,任何一次服务发现工具的版本跃迁都需要严谨的评估和规划。为此,IT社区内多位专家建议,在进行Consul版本升级前,除了常规的功能测试、性能验证外,还应结合自身业务场景,考虑利用Canary Release(金丝雀发布)等现代部署策略,确保在新旧版本交替过程中业务连续性和稳定性不受影响。 另外,针对因版本更迭带来的API变更问题,《分布式系统架构设计》一书作者Martin Kleppmann曾指出,构建抽象化的服务接口层是解决此类问题的有效途径之一,这不仅可以隔离底层技术变化对上层应用的影响,也有利于在未来的技术选型中保持更大的灵活性。 综上所述,无论是紧跟Consul最新版本以利用其新特性提升服务效能,还是深挖兼容性问题背后的设计哲学,都要求我们作为技术实践者不断学习、适应并创新应对策略,从而在瞬息万变的技术浪潮中始终保持系统的健壮与高效运行。
2023-02-25 21:57:19
544
人生如戏
Redis
...可是能够轻松应对海量用户的并发请求!这其中有一个特别重要的“小开关”——最大连接数(maxclients),它就像是Redis在高并发环境下的“定海神针”,直接关系到Redis的表现力和稳定性。 二、为什么要关注Redis的最大连接数 Redis最大连接数限制了同一时间内可以有多少客户端与其建立连接并发送请求。当这个数值被突破时,不好意思,新的连接就得乖乖排队等候了,只有等当前哪个连接完成了任务,腾出位置来,新的连接才有机会连进来。因此,合理设置最大连接数至关重要: - 避免资源耗尽:过多的连接可能导致Redis消耗完所有的文件描述符(通常是内核限制),从而无法接受新连接。 - 提高响应速度:过低的连接数可能导致客户端间的竞争,特别是对于频繁读取缓存的情况,过多的等待会导致整体性能下降。 - 维护系统稳定性:过高或者过低的连接数都可能引发各种问题,如资源争抢、网络拥堵、服务器负载不均等。 三、Redis最大连接数的设置步骤 1. 查看Redis默认最大连接数 打开Redis配置文件redis.conf,找到如下行: Default value for maxclients, can be overridden by the command line option maxclients 10000 这就是Redis服务器的默认最大连接数,通常在生产环境中会根据需求进行调整。 2. 修改Redis最大连接数配置 为了演示,我们把最大连接数设为250: 在redis.conf 文件中添加或替换原有maxclients 设置 maxclients 250 确保修改后的配置文件正确无误,并遵循以下原则来确定合适的最大连接数: - 根据预期并发用户量计算所需连接数,一般来说,每个活跃用户至少维持一个持久连接,加上一定的冗余。 - 考虑Redis任务类型:如果主要用于写入操作,如持久化任务,适当增加连接数可加快数据同步;若主要是读取,那么连接数可根据平均并发读取量设置。 - 参考服务器硬件资源:CPU、内存、磁盘I/O等资源水平,以防止因连接数过多导致Redis服务响应变慢或崩溃。 3. 保存并重启Redis服务 完成配置后,记得保存更改并重启Redis服务以使新配置生效: bash Linux 示例 sudo service redis-server restart macOS 或 Docker 使用以下命令 sudo redis-cli config save docker-compose restart redis 4. 检查并监控Redis最大连接数 重启Redis服务后,通过info clients命令检查最大连接数是否已更新: redis-cli info clients 输出应包含connected_clients这一字段,显示当前活跃连接数量,以及maxClients显示允许的最大连接数。 5. 监控系统资源及文件描述符限制 在Linux环境下,可以通过ulimit -n查看当前可用的文件描述符限制,若仍需进一步增大连接数,请通过ulimit -n 设置并重加载限制,然后再重启Redis服务使其受益于新设置。 四、结论与注意事项 设置Redis最大连接数并非一劳永逸,随着业务发展和环境变化,定期评估并调整这一参数是必要的。同时,想要确保Redis既能满足业务需求又能始终保持流畅稳定运行,就得把系统资源监控、Redis的各项性能指标和调优策略一起用上,像拼图一样把它们完美结合起来。在这个过程中,我们巧妙地把实际操作中积累的经验和书本上的理论知识灵活融合起来,让Redis摇身一变,成了推动我们业务迅猛发展的超级好帮手。
2024-02-01 11:01:33
301
彩虹之上_t
Apache Pig
...、社交媒体情绪挖掘等场景。例如,某知名电商平台利用Pig Latin脚本实现了对其数亿条用户评论数据的快速清洗与情感分析,不仅提升了客户体验管理效率,还为企业决策提供了实时、准确的数据支持。 此外,学术界也在持续探索Apache Pig在文本挖掘领域的潜能。近期一项研究将Pig Latin与深度学习框架TensorFlow结合,构建了一种混合式的大规模文本预处理流程,成功应用于新闻语料库的自动分类项目中,展示了Apache Pig在结合前沿技术推动大数据处理创新方面的巨大潜力。 综上所述,Apache Pig在大规模文本数据处理方面的价值得到了实践和理论研究的双重验证,而随着大数据技术的不断迭代更新,我们有理由期待Apache Pig在未来能继续发挥其关键作用,帮助企业和社会科研机构更深入地挖掘和利用信息宝藏。
2023-05-19 13:10:28
724
人生如戏
Flink
...强大的模块,它可以让用户在大数据环境中进行实时分析。处理复杂的事件,其实就像是在无尽的数据洪流里淘宝,目标是要挖出那些真正有价值的、有意义的信息,这种方式可以说是一种高级的数据处理技术。 二、应用场景 1. 实时监控系统 在实时监控系统中,我们需要从大量的实时数据流中获取有价值的信息,例如设备故障、异常行为等。Flink CEP可以帮助我们实时地发现这些事件,并及时采取措施。 java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream> stream = env.addSource(new DataStreamSource<>(new FileInputFormat<>("file:///path/to/input/file"))).map(new MapFunction, Tuple2>() { @Override public Tuple2 map(Tuple2 value) throws Exception { // 将字符串转为整数 return new Tuple2<>(value.f0, Integer.parseInt(value.f1)); } }); Pattern, Tuple2> pattern = Pattern., Tuple2>begin("start") .where(new FilterFunction>() { @Override public boolean filter(Tuple2 value) throws Exception { // 判断是否满足条件 return value.f1 > 10; } }) .next("middle") .where(new FilterFunction>() { @Override public boolean filter(Tuple2 value) throws Exception { // 判断是否满足条件 return value.f1 > 20; } }) .followedByAny("end"); DataStream>> results = pattern.grep(stream); results.print(); env.execute("Flink CEP Example"); 这段代码中,我们首先定义了一个事件模式,该模式包含三个事件,分别名为“start”、“middle”和“end”。然后,我们就在这串输入数据流里头“抓”这个模式,一旦逮到匹配的,就把它全都给打印出来。拿这个例子来说吧,我们想象一下,“start”就像是你按下开关启动一台机器的那一刻;“middle”呢,就好比这台机器正在呼呼运转,忙得不可开交的时候;而“end”呢,就是指你再次关掉开关,让设备安静地停止工作的那个时刻。设备一旦启动运转起来,要是过了10秒这家伙还在持续运行没停下来的话,那咱们就可以把它判定为“不正常行为”啦。 2. 实时推荐系统 在实时推荐系统中,我们需要根据用户的实时行为数据生成个性化的推荐结果。Flink CEP可以帮助我们实现实时的推荐计算。 python from pyflink.datastream import StreamExecutionEnvironment, DataStream, ValueStateDescriptor from pyflink.table import DataTypes, TableConfig, StreamTableEnvironment, Schema, \ BatchTableEnvironment, TableSchema, Field, StreamTableApi env = StreamExecutionEnvironment.get_execution_environment() t_config = TableConfig() t_env = StreamTableEnvironment.create(env, t_config) source = ... t_env.connect JDBC("url", "username", "password") \ .with_schema(Schema.new_builder() \ .field("user_id", DataTypes.STRING()) \ .field("product_id", DataTypes.STRING()) \ .field("timestamp", DataTypes.TIMESTAMP(3)) \ .build()) \ .with_name("stream_table") \ .create_temporary_view() pattern = Pattern( from_elements("order", DataTypes.STRING()), OneOrMore( PatternUnion( Pattern.of_type(DataTypes.STRING()).equalTo("purchase"), Pattern.of_type(DataTypes.STRING()).equalTo("click"))), to_elements("session")) result = pattern.apply(t_env.scan("stream_table")) result.select("order_user_id").print_to_file("/tmp/output") env.execute("CEP example") 在这段代码中,我们首先创建了一个表环境,并从JDBC连接读取了一张表。然后,我们定义了一个事件模式,该模式包含了两个事件:“order”和“session”。最后,我们使用这个模式来筛选表中的数据,并将结果保存到文件中。这个例子呢,我们把“order”想象成一次买买买的行动,而“session”呢,就相当于一个会话的开启或者结束,就像你走进商店开始挑选商品到结账离开的整个过程。当用户连续两次剁手买东西,或者接连点啊点的,我们就会觉得这位朋友可真是活跃得不得了,然后我们就把他的用户ID美滋滋地记到文件里去。 3. 实时告警系统 在实时告警系统中,我们需要在接收到实时数据后立即发送告警。Flink CEP可以帮助我们实现实时的告
2023-06-17 10:48:34
453
凌波微步-t
Kylin
...果提前存储起来,以便用户在执行查询时能实现亚秒级响应速度。在跨集群查询场景下,Kylin需要有能力从多个数据源构建Cube,使得即使数据分布在不同集群,也能高效完成查询操作。 Hadoop集群 , Hadoop是一个开源的大数据处理平台,由众多计算节点组成的Hadoop集群可以实现海量数据的分布式存储与并行计算。在本文中,“ClusterA”就是一个Hadoop集群,它包含了HDFS(Hadoop Distributed File System)用以存储数据,并运行MapReduce等计算框架处理大数据任务。Kylin通过配置访问“ClusterA”的HDFS工作目录和相关服务地址,实现了从远程Hadoop集群获取数据进行预计算。
2023-01-26 10:59:48
84
月下独酌
Mahout
...自动提取高阶特征表示用户和商品,有效解决了传统方法在处理复杂、非线性关系时的局限性。此外,诸如LightGCN等图卷积神经网络模型,在处理社交网络或协同过滤场景下的推荐任务时表现出色,进一步提升了模型对稀疏数据的适应能力及预测精度。 同时,对于推荐系统的实时监控与故障恢复,业界也开始关注并引入了更先进的流式计算框架,如Apache Flink和Kafka等,它们能够在海量数据流中实现实时分析与异常检测,从而确保推荐系统的稳定运行。 综上所述,尽管Mahout为推荐系统的构建提供了有力支持,但在实际应用中还需结合最新的算法和技术进行持续优化,以应对日益复杂的业务场景与不断提升的用户体验需求。对推荐系统的研究者和开发者而言,紧跟领域内前沿动态,深挖技术创新潜能,将有助于推动推荐系统的功能完善与效果提升。
2023-01-30 16:29:18
122
风轻云淡-t
MemCache
...cached在高并发场景下的表现更为出色。同时,随着云原生技术的发展,越来越多的企业开始探索将Memcached与Kubernetes等容器编排平台结合,通过StatefulSet实现自动化的集群部署与扩展,进一步提升了运维效率。 此外,对于寻求更高一致性保证的用户,可以关注新兴的开源项目如Redis或Cassandra,它们在提供内存级速度的同时,还具备更强的数据持久化能力和多数据中心同步功能。例如,Redis 6.2版本引入了客户端缓存、Stream数据结构改进等特性,为开发者提供了更多元化的缓存解决方案。 而在实际应用层面,有文章深入剖析了大型互联网公司在处理海量数据时如何借助分布式缓存系统进行架构优化,如淘宝、京东等电商平台利用Memcached集群有效缓解数据库压力,保障了业务高峰期的服务稳定性和用户体验。 综上所述,在掌握Memcached集群搭建的基础上,持续关注相关领域的技术创新和行业实践,能够帮助我们更好地应对复杂应用场景,提升系统性能和可用性。
2024-02-28 11:08:19
90
彩虹之上-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
unalias alias_name
- 删除已定义的别名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"