前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[函数实现 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
RabbitMQ
...利用RabbitMQ实现发布/订阅模式。 二、什么是发布/订阅模式? 发布/订阅模式是一种软件设计模式,主要用于处理事件驱动的应用程序。在这种模式下,咱们可以这么理解:生产者,也可以叫它“发布君”,它的工作就是往一个特定的“消息中心”——也就是主题或者交换机那儿发送消息。而消费者呢,换个接地气的名字就是“订阅达人”,它们会先关注这个“消息中心”。这样一来,只要“发布君”有新消息发出,“订阅达人”就能第一时间接收到所有这些消息啦! 三、如何在RabbitMQ中实现发布/订阅模式? 在RabbitMQ中,我们可以通过以下几个步骤来实现发布/订阅模式: 1. 创建并配置RabbitMQ环境 首先,我们需要在本地安装RabbitMQ,并启动服务。启动后,我们可以使用管理控制台查看RabbitMQ的状态和信息。 2. 创建交换机和队列 在RabbitMQ中,交换机和队列是两个基本的概念。交换机负责路由消息,而队列则用于存储消息。在接下来这一步,咱要做的是构建一个直通交换机和两个队列。其中一个队列呢,是专门用来接住生产者发过来的消息;另一个队列呢,则是用来给消费者传递他们的回复消息滴。 3. 编写生产者代码 在生产者代码中,我们将通过RabbitMQ的客户端API发送消息。首先,咱们得先捯饬出一个连接和通道,就像是搭起一座桥,然后像变魔术一样整出一个交换机,再配上两个队列,这两个队列就想象成是咱的消息暂存站。最后一步,就是把消息往这个交换机上一放,就像把信投进邮筒那样,完成发布啦! python import pika 创建连接和通道 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 创建交换机和队列 channel.exchange_declare(exchange='direct_logs', exchange_type='direct') 发布消息到交换机上 routing_key = 'INFO' message = "This is an info message" channel.basic_publish(exchange='direct_logs', routing_key=routing_key, body=message) print(" [x] Sent %r" % message) 关闭连接和通道 connection.close() 4. 编写消费者代码 在消费者代码中,我们将通过RabbitMQ的客户端API接收消息。首先,咱们得先搭起一座桥梁,建立起一条通道。然后,把队列和交换机牢牢地绑在一起。最后,从队列里取出消息,好好地“享用”一番。 python import pika 创建连接和通道 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 绑定队列到交换机上 queue_name = 'log_queue' channel.queue_bind(queue=queue_name, exchange='direct_logs', routing_key='INFO') 消费消息 def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True) 启动消费者 print(' [] Waiting for logs. To exit press CTRL+C') channel.start_consuming() 5. 运行代码并观察结果 现在,我们已经编写好了生产者和消费者的代码,接下来只需要运行这两个脚本就可以观察到发布/订阅模式的效果了。当生产者发送一条消息时,消费者会立即接收到这条消息,并打印出来。 四、总结 通过以上步骤,我们成功地在RabbitMQ中实现了发布/订阅模式。这简直就是个超级实用的编程模型,特别是在那些复杂的分布式系统里头,它能神奇地让不同应用程序之间的交流变得松耦合,这样一来,整个系统的稳定性和可靠性嗖嗖往上涨,就像给系统吃了颗定心丸一样。
2023-09-07 10:09:49
94
诗和远方-t
Consul
...组件,可以在多维度上实现服务实例的健壮管理和故障恢复,有效避免服务实例频繁注销带来的负面影响。 此外,对于大规模分布式系统的运维实践,Google SRE团队在其著作《Site Reliability Engineering》中强调了服务注册表的稳定性和完整性对整个系统的重要性,并分享了一系列关于如何设计和实施可靠服务发现系统的最佳实践。这些内容不仅可以帮助我们更好地理解和应对Consul中的服务注销问题,也为构建高可用微服务架构提供了宝贵的经验参考。
2024-01-22 22:56:45
520
星辰大海
ClickHouse
...s进行任务编排,成功实现了对并发DDL操作的有效管理和控制,极大降低了由于并发引发的“TableAlreadyLockedException”。 同时,对于那些已经遇到或希望预防此类问题的企业用户,ClickHouse社区活跃的技术论坛和文档资料提供了丰富的实践案例和解决方案,如采用ON CLUSTER语法确保集群内所有节点顺序执行DDL操作,以及通过监控报警系统实时跟踪表锁定状态等方法,均值得广大用户参考和借鉴。 综上所述,无论是紧跟ClickHouse官方的最新特性更新,还是深入学习行业内的研究成果,或是借鉴同行的成功实践经验,都能为解决和规避“TableAlreadyLockedException”这类问题提供有力支持。对于致力于提升数据分析效率和系统稳定性的团队而言,这无疑是一条不可或缺的学习和探索之路。
2024-02-21 10:37:14
350
秋水共长天一色
Ruby
...过类实例化过程来模拟实现这一原则。其基本思想是资源(如文件句柄、数据库连接等)的获取与初始化同步进行,并且资源的生命周期与对象的生命周期绑定在一起。当对象结束生命周期(例如进入垃圾回收阶段)时,会自动执行相应的清理逻辑,确保资源被及时释放,无论程序执行过程中是否出现异常。 SOLID原则 , SOLID是面向对象设计和编程的五个基本原则的首字母缩写,它们分别是Single Responsibility Principle(单一职责原则)、Open-Closed Principle(开闭原则)、Liskov Substitution Principle(里氏替换原则)、Interface Segregation Principle(接口隔离原则)和Dependency Inversion Principle(依赖倒置原则)。这些原则指导开发者编写出高内聚、低耦合、易于扩展和维护的代码。在文章语境中,遵循SOLID原则有助于构建稳定可靠的软件结构,使得资源管理更加清晰可控。 GIL(Global Interpreter Lock) , 全局解释器锁是Ruby(以及其他一些解释型语言如Python)为实现线程安全而引入的一种机制。GIL在同一时刻只允许一个线程执行字节码,防止多线程环境下因共享数据引发的竞争条件问题。然而,在多核CPU系统中,GIL可能会限制Ruby并发性能的提升。尽管如此,在处理异常和资源管理时,理解GIL的作用仍非常重要,因为它影响着如何在多线程环境中有效地释放资源并保证一致性。
2023-09-10 17:04:10
89
笑傲江湖
Redis
... 4.2 实现步骤 为了建立一个Redis集群,你需要准备至少六个Redis实例,每个实例监听不同的端口。然后,使用redis-trib.rb工具来创建集群: bash redis-trib.rb create --replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 创建完成后,你可以通过任何节点来访问集群。例如: bash redis-cli -c -h 127.0.0.1 -p 7000 5. 总结 通过以上介绍,我们可以看到Redis提供了多种数据同步机制,每种机制都有其独特的应用场景。不管是基本的主从复制,还是复杂的集群模式,Redis都能搞定数据同步,让人放心。当然啦,每种方法都有它的长处和短处,到底选哪个还得看你自己的具体情况和所处的环境。希望今天的分享能对你有所帮助,也欢迎大家在评论区讨论更多关于Redis的话题!
2025-03-05 15:47:59
27
草原牧歌
DorisDB
...器或节点上执行,从而实现高效的数据处理和分析。在本文中,DorisDB即为一款实时分析型MPP数据库系统,其设计目标是提升大数据环境下复杂查询的响应速度与并发处理能力。 Apache Doris项目社区 , Apache Doris是一个开源、实时数据分析型MPP数据库项目,该项目由一个全球范围内的开发者社区共同维护和发展。该社区致力于推动DorisDB的功能完善、性能优化以及问题解决等工作,同时也为用户提供技术支持和最佳实践分享。 AIops智能运维 , AIops(Artificial Intelligence for IT Operations)智能运维是一种利用人工智能和机器学习技术来自动化IT运维流程的方法。在文中提及的背景下,AIops智能运维手段可应用于对DorisDB等数据库系统的实时监控和智能分析,通过对历史数据进行学习,能够提前预测潜在的性能瓶颈和故障风险,进而提供预警信息并指导运维人员采取预防措施,提高数据库系统的稳定性和可用性。
2023-10-20 16:26:47
566
星辰大海
Tomcat
...器编排平台,不仅可以实现自动化的部署、扩展和管理,还能有效地管理复杂的微服务架构,确保每个服务都能高效运行,从而大幅提升网站的整体性能。 此外,云服务商提供的弹性计算资源也成为了许多企业优化性能的重要手段。阿里云ECS(Elastic Compute Service)等产品,可以根据实时流量自动调整计算资源,避免因资源不足而导致的性能下降。同时,云服务商还提供了丰富的监控和日志分析工具,帮助企业快速定位和解决问题,进一步提升网站的响应速度。 值得注意的是,除了技术层面的优化,合理的架构设计同样关键。例如,采用CDN(内容分发网络)可以将静态资源缓存在全球各地的边缘节点,减少用户访问延迟。而微前端架构则可以实现前端应用的解耦和模块化管理,提升前端渲染速度,从而改善用户体验。 总之,随着技术的不断发展,网站性能优化不再局限于单一的技术手段,而是需要综合运用多种技术和策略。通过结合容器化、弹性计算、CDN和合理的架构设计,企业可以构建更加高效、响应迅速的网站,为用户提供更好的体验。
2024-10-20 16:27:48
110
雪域高原
PostgreSQL
...并应用这些日志,从而实现数据的实时同步。 3. 物理复制实践 3.1 配置主从复制 让我们首先通过一段示例配置开启主从复制: postgresql -- 在主库上创建复制用户并赋予权限 CREATE ROLE replication_user WITH REPLICATION LOGIN ENCRYPTED PASSWORD 'your_password'; GRANT ALL PRIVILEGES ON DATABASE your_database TO replication_user; -- 查看主库的当前WAL位置 SELECT pg_current_wal_lsn(); -- 在从库上设置主库信息 RECOVERY.conf 文件内容如下: standby_mode = 'on' primary_conninfo = 'host=master_host port=5432 user=replication_user password=your_password' -- 刷新从库并启动复制进程 pg_ctl restart -D /path/to/your_slave_node_data_directory 3.2 监控与故障切换 当主库出现故障时,可以手动提升从库为新的主库。但为了实现自动化,通常会借助 Patroni 或者其它集群管理工具来管理和监控整个复制过程。 4. 逻辑复制实践 4.1 创建发布与订阅 逻辑复制需在主库上创建发布(publication),并在从库上创建订阅(subscription): postgresql -- 在主库上创建发布 CREATE PUBLICATION my_pub FOR TABLE table1, table2; -- 在从库上创建订阅 CREATE SUBSCRIPTION my_sub CONNECTION 'dbname=your_dbname host=master_host user=replication_user password=your_password' PUBLICATION my_pub; 4.2 实时同步与冲突解决 逻辑复制虽然提供更灵活的数据分发方式,但也可能引入数据冲突的问题。所以在规划逻辑复制方案的时候,咱们得充分琢磨一下冲突检测和解决的策略,就像是可以通过触发器或者应用程序自身的逻辑巧妙地进行管控那样。 5. 结论与思考 PostgreSQL的数据复制机制为我们提供了可靠的数据冗余和扩展能力,但同时也带来了一系列运维挑战,如复制延迟、数据冲突等问题。在实际操作的时候,我们得瞅准业务的特性跟需求,像挑衣服那样选出最合身的复制策略。而且呢,咱们还得像个操心的老妈子一样,时刻盯着系统的状态,随时给它调校调校,确保一切运转正常。甭管是在追求数据完美同步这条道上,还是在捣鼓系统性能提升的过程中,每一次对PostgreSQL数据复制技术的深入理解和动手实践,都像是一场充满挑战又收获满满的探险之旅。 记住,每个数据库背后都是鲜活的业务需求和海量的数据故事,我们在理解PostgreSQL数据复制的同时,也在理解着这个世界的数据流动与变迁,这正是我们热衷于此的原因所在!
2023-03-15 11:06:28
343
人生如戏
MyBatis
.... MyBatis中实现全文搜索的基本思路 在MyBatis中实现全文搜索并不是直接由框架提供的功能,而是需要结合数据库本身的全文索引功能来实现。不同的数据库在全文搜索这块各有各的招数。比如说,MySQL里的InnoDB引擎就支持全文索引,而PostgreSQL更是自带强大的全文搜索功能,用起来特别方便。这里我们以MySQL为例进行讲解。 2.1 数据库配置 首先,你需要确保你的数据库支持全文索引,并且已经为相关字段启用了全文索引。比如,在MySQL中,你可以这样创建一个带有全文索引的表: sql CREATE TABLE product ( id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255), description TEXT, FULLTEXT(description) ); 这里,我们为description字段添加了一个全文索引,这意味着我们可以在这个字段上执行全文搜索。 2.2 MyBatis映射文件配置 接下来,在MyBatis的映射文件(Mapper XML)中定义相应的SQL查询语句。这里的关键在于正确地构建全文搜索的SQL语句。比如,假设我们要实现根据商品描述搜索商品的功能,可以这样编写: xml SELECT FROM product WHERE MATCH(description) AGAINST ({keyword} IN NATURAL LANGUAGE MODE) 这里的MATCH(description) AGAINST ({keyword})就是全文搜索的核心部分。“IN NATURAL LANGUAGE MODE”就是用大白话来搜东西,这种方式更直接、更接地气。搜出来的结果也会按照跟你要找的东西的相关程度来排个序。 3. 实际应用中的常见问题及解决方案 在实际开发过程中,可能会遇到一些配置不当导致全文搜索功能失效的情况。这里,我将分享几个常见的问题及其解决方案。 3.1 搜索结果不符合预期 问题描述:当你执行全文搜索时,发现搜索结果并不是你期望的那样,可能是因为搜索关键词太短或者太常见,导致匹配度不高。 解决方法:尝试调整全文搜索的模式,比如使用BOOLEAN MODE来提高搜索精度。此外,确保搜索关键词足够长且具有一定的独特性,可以显著提高搜索效果。 xml SELECT FROM product WHERE MATCH(description) AGAINST ({keyword} IN BOOLEAN MODE) 3.2 性能瓶颈 问题描述:随着数据量的增加,全文搜索可能会变得非常慢,影响用户体验。 解决方法:优化索引设计,比如适当减少索引字段的数量,或者对索引进行分区。另外,也可以考虑在应用层缓存搜索结果,减少数据库负担。 4. 总结与展望 通过上述内容,我们了解了如何在MyBatis项目中正确配置全文搜索功能,并探讨了一些实际操作中可能遇到的问题及解决策略。全文搜索这东西挺强大的,但你得小心翼翼地设置才行。要是设置得好,不仅能让人用起来更爽,还能让整个应用变得更全能、更灵活。 当然,这只是全文搜索配置的一个起点。随着业务越做越大,技术也越来越先进,我们可以试试更多高大上的功能,比如支持多种语言,还能处理同义词啥的。希望本文能对你有所帮助,如果有任何疑问或想法,欢迎随时交流讨论! --- 希望这篇文章能够帮助到你,如果有任何具体的需求或者想了解更多细节,随时告诉我!
2024-11-06 15:45:32
135
岁月如歌
Tomcat
...得用户的信任和支持,实现我们的业务目标。"
2023-08-10 14:14:15
282
初心未变-t
MemCache
...地影响其他节点,从而实现数据分布的均匀性和扩展性。 网络带宽限制 , 网络带宽是指单位时间内网络能够传输的最大数据量,是网络传输能力的关键指标之一。在网络数据传输过程中,如果带宽成为瓶颈,意味着网络无法快速处理大量并发请求,可能导致Memcached服务器响应变慢。例如,在高负载场景下,如果从Memcached获取或写入数据的速度超过了网络能提供的最大传输速率,就会出现响应延迟问题。 雪崩效应 , 在分布式系统中,雪崩效应指因为某个服务或节点失效而导致整个系统发生连锁故障的情况。在文中,当Memcached服务器负载过高、响应延迟时,不仅直接影响用户体验,还可能因处理速度减慢拖垮关联服务性能,进而引发整个系统的崩溃,犹如多米诺骨牌效应一般,一环接一环地传导影响。 自动扩缩容机制 , 在云计算环境中,自动扩缩容机制是一种根据资源需求动态调整硬件资源(如服务器数量)的能力。在Kubernetes等容器编排技术中,当检测到Memcached集群负载过高时,可以通过自动扩缩容添加新的缓存节点,反之则可缩减节点以节约资源,确保服务稳定性和响应速度。
2023-03-25 19:11:18
122
柳暗花明又一村
RocketMQ
...和稳定性的同时,也能实现平滑、经济的系统升级与迁移。
2023-05-24 22:36:11
187
灵动之光
Nacos
...环境下的微服务架构,实现系统的稳定、高效运行。
2023-03-16 22:48:15
116
青山绿水_t
SpringBoot
...成RocketMQ来实现实现异步任务的消息推送。 二、Spring Boot简介 Spring Boot是Spring框架的一个子项目,旨在简化Spring应用的构建和配置过程。它提供了一个开箱即用的开发环境,能够快速地搭建出基于Spring的应用程序。另外,Spring Boot还自带了一大堆好用的内置组件和自动化工具,这些家伙能帮我们更轻松地搞定应用程序的管理问题。 三、RocketMQ简介 RocketMQ是一款开源的分布式消息中间件,由阿里巴巴公司推出。这个家伙,可厉害了!它能够飞快地传输大量数据,速度嗖嗖的,延迟低得几乎可以忽略不计。而且,它的稳定性和容错能力也是一级棒,就像个永不停歇、从不出错的小超人一样,随时待命,让人安心又放心。RocketMQ支持多种协议,包括Java API、Stomp、RESTful API等,可以方便地与其他系统进行集成。 四、Spring Boot集成RocketMQ 要实现Spring Boot与RocketMQ的集成,我们需要引入相关的依赖。首先,在pom.xml文件中添加如下依赖: xml org.springframework.boot spring-boot-starter-rocketmq 然后,我们需要在配置文件application.properties中添加如下配置: properties spring.rocketmq.namesrv-address=127.0.0.1:9876 这里的namesrv-address属性表示RocketMQ的命名服务器地址,我们可以通过这个地址获取到Broker节点列表。 接下来,我们就可以开始编写生产者的代码了。下面是一个简单的生产者示例: java import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer; import org.apache.rocketmq.common.message.MessageQueue; import java.util.ArrayList; import java.util.List; public class Producer { public static void main(String[] args) { // 创建一个消息消费者,并设置一个消息消费者组 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("testGroup"); // 指定NameServer地址 consumer.setNamesrvAddr("localhost:9876"); // 初始化消费者,整个应用生命周期内只需要初始化一次 consumer.start(); // 关闭消费者 consumer.shutdown(); } } 在这个示例中,我们创建了一个名为testGroup的消息消费者组,并指定了NameServer地址为localhost:9876。然后,我们就像启动一辆跑车那样,先给消费者来个“start”热身,让它开始运转起来;最后嘛,就像关上家门一样,我们顺手给它来了个“shutdown”,让这个消费者妥妥地休息了。 五、总结 本文介绍了如何通过Spring Boot集成RocketMQ实现异步任务的消息推送。用这种方式,我们就能轻轻松松地管理好消息队列,让系统的稳定性和扩展性噌噌噌地往上涨。同时,Spring Boot和RocketMQ的结合也使得我们的应用程序更加易于开发和维护。以后啊,我们还可以捣鼓捣鼓其他的通讯工具,比如Kafka、RabbitMQ这些家伙,让咱们的系统的运行速度和稳定性更上一层楼。
2023-12-08 13:35:20
82
寂静森林_t
RocketMQ
...和处理,通过消息队列实现了服务之间的解耦和异步通信,确保了在大规模并发和高可用性场景下的稳定运行。 发布-订阅模式 , RocketMQ的消息传递模型,其中生产者发布消息到特定的主题,而多个消费者订阅该主题并接收消息。这种方式允许消息广播给多个接收者,提高了系统的扩展性和灵活性。RocketMQ通过分区和消费者组的设计,实现了消息的高效分发和消费。 顺序消息 , 在需要消息处理严格按照发送顺序执行的应用场景下,RocketMQ提供的特殊消息类型。这类消息确保消息在消费者端按照发送的顺序被处理,这对于金融交易、数据库操作等对消息顺序有严格要求的场景至关重要。 事务消息 , 一种提供原子性操作的高级消息类型,RocketMQ在处理这类消息时,如果消息处理失败,会回滚整个事务,直到所有相关消息都被成功确认。这对于需要数据一致性保障的场景,如电商支付、银行转账等,非常重要。 消费者组 , RocketMQ中一组订阅相同主题的消费者集合。每个消费者组负责处理特定分区的消息,通过消费者的并发度和负载均衡策略,可以提高系统的吞吐量和处理能力。 消息确认机制 , 当消费者接收到消息后,通过向消息队列发送确认信号,表示已经成功处理。RocketMQ根据确认状态来决定是否重新投递消息,这是确保消息不丢失和系统稳定性的关键环节。 重试策略 , RocketMQ针对消费者可能的故障或网络问题,预先设定的消息投递重试次数和间隔规则。合理的重试策略可以在一定程度上恢复消息的传递,增强系统的容错性。 消费者负载均衡 , 通过消息队列的内部机制,将消息分配给多个消费者,以防止某个消费者过载,保持系统的整体性能和响应速度。RocketMQ通过分区和消费者组的配置,实现了负载均衡。 生产者确认模式 , 消费者接收到消息后,生产者等待消费者的确认,只有在确认后才认为消息已被处理。这在某些场景下可以确保消息的最终一致性。 消息持久化存储 , RocketMQ将消息存储在磁盘上,即使系统重启,也可以从持久化的存储中恢复消息,保证了数据的持久性和可靠性。
2024-06-08 10:36:42
91
寂静森林
转载文章
...要想使用flex布局实现横向滚动,就要在scroll-view里加一层容器包裹,并且使用子组件才会出现滚动效果 --><view class="nav-bar-wrap"><block v-for="(item,index) in navbarArr" :key="index"><view class="nav-bar-item" @click="onNavbarItem(item.id)" :id="item.id"><image :src="item.pic_url" /><text>{ {item.name} }</text></view></block></view></scroll-view></view><view class="slider"><view class="slider-inside .slider-inside-location" :style="{left:lefts}"></view></view></view></template><script>export default {name: "scroll",data() {return {lefts:0} },props: {navbarArr: {type: Array},left: {type: Number} },created: function(e) {console.log(this.left,"leftinfo")},methods: {onNavbarItem(id) {console.log(id)// const id = options.currentTarget.dataset.id// wx.navigateTo({// url: /pages/mysignup/mysignup?id=${id},// })},scroll(event) {let that = thisconsole.log(event)let scrollLeft = event.detail.scrollLeft;let scrllWidth = event.detail.scrollWidth - 375;// that.left = ${(scrollLeft) / scrllWidth 100}%// this.$emit("changeLeft",that.lefts)// 32是剩余要滑动的地方let newLeft = scrollLeft / scrllWidth 32that.lefts =newLeft + 'rpx'} }}</script><style>.all {position: relative;height: 330rpx;overflow: hidden;background: fff;}scroll-view {white-space: nowrap;}/ 去除滚动条 /::-webkit-scrollbar {display: none;width: 0;height: 0;color: transparent;}.nav-bar-wrap {display: flex;flex-flow: column wrap;height: 330rpx;}.nav-bar-item {width: 187.5rpx;display: flex;flex-direction: column;align-items: center;padding-top: 28rpx;}.nav-bar-item image {display: block;height: 90rpx;width: 90rpx;margin: 0;}.nav-bar-item text {margin-top: 5rpx;line-height: 32rpx;font-size: 25rpx;}.slider {position: relative;margin-left: 50%;/ left: 50%; /transform: translateX(-50%);width: 64rpx;height: 6rpx;border-radius: 3rpx;background: eee;}.slider-inside {/ transform: translateX(-50%); /width: 32rpx;height: 100%;border-radius: 3rpx;background-color: 11BEA7;}.slider-inside-location {position: absolute;/ left: 50%; /}</style> 使用组件:<template><view><scroll :navbarArr="navbarArr" :left="left" @changeLeft="changeLeft"></scroll></view></template><script>import scroll from "../../components/scroll.vue"export default {components:{scroll},data() {return {navbarArr: [{pic_url: '../static/images/ic_57@2x.png',name: '骨科',id: 1},{pic_url: '../static/images/ic_59@2x.png',name: '检验科',id: 2},{pic_url: '../static/images/ic_56@2x.png',name: '外壳',id: 3},{pic_url: '../static/images/ic_53@2x.png',name: '口腔科',id: 4},{pic_url: '../static/images/ic_54@2x.png',name: '猫科',id: 5},{pic_url: '../static/images/ic_52@2x.png',name: '内科',id: 6},{pic_url: '../static/images/ic_50@2x.png',name: '皮肤科',id: 7},{pic_url: '../static/images/ic_52@2x.png',name: '肾病',id: 8},{pic_url: '../static/images/ic_58@2x.png',name: '血透科',id: 9},{pic_url: '../static/images/ic_62@2x.png',name: '肾病',id: 10},{pic_url: '../static/images/ic_64@2x.png',name: '血透科',id: 11},],left:0.65625} },methods: {changeLeft(e){let that = thisthat.left = e} },}</script> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_45584157/article/details/117958700。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-06 12:38:02
624
转载
Netty
...需要很少的代码就可以实现基本的功能,极大地降低了开发者的工作难度。 例如,我们可以使用以下代码来启动一个Netty的服务端: csharp EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new EchoServerHandler()); } }) .bind(8080).sync() .channel() .closeFuture() .sync(); 可以看到,这段代码非常简洁,只需要定义了一个EchoServerHandler处理器,然后将这个处理器添加到管道中即可。 2. 强大的可扩展性 在NIO中,如果我们想要增加更多的功能,就需要编写大量的代码,并且可能还需要修改原有的代码。在Netty这个家伙里头,它的设计可是模块化的,这就意味着咱们能够超级轻松地塞进新的功能,而且压根儿不用去碰原先的那些代码,简直太方便啦! 例如,我们可以使用以下代码来实现一个HTTP服务端: less EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { HttpServerCodec httpServerCodec = new HttpServerCodec(); HttpObjectAggregator aggregator = new HttpObjectAggregator(8192); Channels.pipeline().addLast(httpServerCodec, aggregator, new HttpHandler() { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { FullHttpRequest request = (FullHttpRequest) msg; if (!request.decoderResult().isSuccess()) { return; } HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK); ByteBuf content = Unpooled.copiedBuffer("Hello, World!".getBytes()); response.content().writeBytes(content); response.headers().set(HttpHeaders.Names.CONTENT_LENGTH, content.readableBytes()); ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE); } }); } }) .bind(8080).sync() .channel() .closeFuture() .sync(); 可以看到,这段代码只是在原有的管道中添加了一个HTTP处理器,而且没有修改任何原有的代码。这就是Netty的强大之处。 3. 高度优化 Netty不仅支持多种协议,还内置了许多高级特性,如流量控制、拥塞控制、心跳检测等。这些特性的存在可以使我们的应用在高并发的情况下保持良好的稳定性和性能。 例如,我们可以使用以下代码来实现一个心跳检测的功能: kotlin void doHeartbeat(ChannelHandlerContext ctx) { if (System.currentTimeMillis() - lastWriteTime > HEARTBEAT_INTERVAL_MS) { ctx.writeAndFlush(new Heartbeat()).addListener(ChannelFutureListener.CLOSE); lastWriteTime = System.currentTimeMillis(); } else { ctx.close().addListener(ChannelFutureListener.CLOSE); } } 可以看到,这段代码只是一段简单的Java代码,但是在Netty的帮助下,它可以有效地防止长时间无响应而导致的连接断开。 4. 社区活跃,生态丰富 最后,还有一个重要的因素是社区的活跃程度和生态的丰富程度。Netty拥有庞大的用户群体和技术社区,有大量的第三方组件和插件可供选择,大大降低了开发成本和复杂性。 总的来说,虽然NIO是一种强大的I/O模型,但是它并不是万能的,也无法解决所有的问题。你知道吗,跟别的工具一比,Netty可真是个了不得的网络编程神器!它超级简单好上手,扩展性那叫一个强大,优化程度极高,而且周边生态丰富得不要不要的,简直就是我们心中的理想型工具嘛!
2023-04-12 20:04:43
108
百转千回-t
Apache Solr
...d=enum参数来实现全局唯一计数。这种方法就像个超级小能手,它会在每个分片上麻利地生成一整套facet结果集合,然后在那个协调节点的大本营里,把所有这些结果汇拢到一起,这样一来,就能巧妙地避免了重复计算的问题啦。 java // 示例:修正后的facet统计请求,启用enum方法以保证跨分片统计准确 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.setFacetMethod(FacetParams.FACET_METHOD_ENUM); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); 不过,需要注意的是,facet.method=enum虽然能保证准确性,但会增加网络传输和内存消耗,对于大数据量的facet统计可能会造成性能瓶颈。因此,在设计系统时,需结合业务需求权衡统计精确性与响应速度之间的关系。 05 探讨与优化策略 面对facet统计的挑战,除了使用正确的配置参数外,还可以从以下几个方面进一步优化: - 预聚合:针对频繁查询的facet字段,可定期进行预计算并将统计结果存储在索引中,减轻实时统计的压力。 - 合理分片:在构建索引时,依据facet字段的分布特性调整分片策略,尽量使相同或相似facet值的商品集中在同一分片上,降低跨分片统计的需求。 - 硬件与集群扩容:提升网络带宽和服务器资源,或者适当增加Solr集群规模,分散facet统计压力。 06 结语 Apache Solr的强大之处在于其高度可定制化和扩展性,面对跨分片facet统计这类复杂问题,我们既需要深入理解原理,也要灵活运用各种工具和技术手段。只有通过持续的动手实践和不断改进优化,才能确保在数据统计绝对精准无误的同时,在分散各地的分布式环境下也能实现飞速高效的检索目标。在这个过程中,不断探索、思考与改进,正是技术人员面对技术挑战的乐趣所在。
2023-11-04 13:51:42
376
断桥残雪
RabbitMQ
...、STOMP等,能够实现高效、可靠的异步消息通信。在本文中,RabbitMQ被用来处理大量消息,确保消息的可靠传输和存储。 磁盘空间不足 , 指计算机硬盘或其他存储设备上的可用存储空间低于预期水平,可能导致系统性能下降、数据丢失或服务中断等问题。在RabbitMQ的应用场景中,磁盘空间不足通常表现为消息队列中的消息无法及时存储,从而影响整个系统的运行效率和稳定性。文中提到,这种情况会导致消息堆积、死信队列增大等现象,因此需要采取相应措施进行预防和处理。 死信队列 , 死信队列是一种特殊的队列,用于存放无法被正常消费者处理的消息。当消息被拒绝(通过basic.reject或basic.nack命令)且requeue参数为false,或者消息过期(TTL到期)时,它们会被发送到死信队列。死信队列有助于捕获和分析那些未能成功处理的消息,以便开发者可以了解问题所在并采取措施解决。在本文中,定期清理死信队列被视为一种有效的磁盘空间管理策略。
2024-12-04 15:45:21
132
红尘漫步
ActiveMQ
...则。这种模式非常适合实现任务分发、异步处理等场景。而消息传递延迟这玩意儿,其实就是计算一条消息从被生产者“吐”出来,到消费者成功“接住”这之间的时间差。在我们评估一款消息中间件的性能时,这个参数可是关键指标之一,不容忽视! 3. ActiveMQ P2P模式下的消息传递过程及延迟影响因素 在ActiveMQ的P2P模式中,消息传递延迟主要受到以下几个因素的影响: - 网络延迟:消息在网络中的传输时间。 - 队列处理延迟:包括消息入队、存储和出队的操作耗时。 - 消费者响应速度:消费者接收到消息后处理的速度。 4. 示例代码 ActiveMQ P2P模式配置与使用 下面我们将通过Java代码示例来演示如何在ActiveMQ中设置P2P模式以及进行消息收发,以此观察并分析消息传递延迟。 java // 导入必要的ActiveMQ依赖 import org.apache.activemq.ActiveMQConnectionFactory; import javax.jms.Connection; import javax.jms.Destination; import javax.jms.MessageProducer; import javax.jms.Session; import javax.jms.TextMessage; // 创建连接工厂 ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory("tcp://localhost:61616"); // 创建连接与会话 Connection connection = factory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); // 创建目标队列 Destination queue = session.createQueue("MyQueue"); // 创建消息生产者 MessageProducer producer = session.createProducer(queue); // 发送消息,记录当前时间 long startTime = System.currentTimeMillis(); TextMessage message = session.createTextMessage("Hello, World!"); producer.send(message); System.out.println("Message sent at " + startTime); // 接收端代码... 上述代码片段创建了一个消息生产者并发送了一条消息。在真实世界的应用场景里,我们得在另一边搞个消息接收器,专门用来抓取并消化这条消息,这样一来,咱们就能准确计算出消息从发送到接收的整个过程究竟花了多少时间。 5. 控制与优化ActiveMQ P2P模式下的消息传递延迟 为了降低消息传递延迟,我们可以从以下几个方面着手: - 提升网络环境质量:优化网络设备,提高带宽,减少网络拥堵等因素。 - 合理配置ActiveMQ:如调整内存参数、磁盘存储策略等,以适应特定场景的需求。 - 优化消费者处理逻辑:确保消费者能够快速且有效地处理消息,避免成为消息传递链路中的瓶颈。 6. 结语 ActiveMQ在P2P模式下的消息传递延迟受多方面因素影响,但通过深入理解其工作原理和细致调优,我们完全可以在满足业务需求的同时,有效控制并降低延迟。希望以上的探讨和我给你们准备的那些代码实例,能够真真切切地帮到你们,让你们对ActiveMQ咋P2P模式下的表现有个更接地气、更透彻的理解,这样一来,你们设计分布式系统时就可以更加得心应手,优化起来也能更有针对性啦! 在探索ActiveMQ的道路上,每一次实践都是对技术更深层次的理解,每一次思考都是为了追求更好的性能体验。让我们共同携手,继续挖掘ActiveMQ的无限可能!
2023-11-19 09:23:19
434
追梦人
Etcd
...确保在实际生产环境中实现稳定、高效的分布式存储服务。
2023-03-31 21:10:37
440
半夏微凉
.net
...al Basic快速实现桌面解决方案,都需要紧跟技术潮流,关注官方发布的最新动态和技术文档,以便充分利用两种语言的优势,应对瞬息万变的技术挑战。
2023-07-31 15:48:21
567
幽谷听泉-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
unset VAR
- 删除环境变量。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"