前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[移动端Ajax操作与jQuery整合 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 广告来自于广告或者移动App等,广告需要设定在具体的广告位,当用户点击广告的时候,一般都会通过ajax或Socket往后台发送日志数据,在这里我们是要做基于SparkStreaming做实时在线统计。那么数据就需要放进消息系统(Kafka)中,我们的Spark Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
JQuery插件下载
JQuery插件介绍 jQuery.fontFlex是一款专注于提供字体响应式解决方案的轻量级jQuery插件,尤其适用于那些需要根据浏览器窗口大小或容器尺寸变化而自动调整字体大小的网页设计。该插件具有良好的兼容性,支持包括IE8在内的多种浏览器环境,确保在不同设备和屏幕尺寸下都能实现流畅的文字展示效果。通过集成jQuery.fontFlex到项目中,开发者可以轻松实现动态字体缩放功能,从而优化用户的阅读体验,不论是桌面大屏还是移动小屏设备访问,页面中的文字内容都能够自动适应并保持清晰易读。这一特性对于内容驱动型网站尤为重要,它使得设计师无需为每种设备单独设定字体大小,而是利用插件智能计算最佳显示字号,大大简化了响应式Web开发的工作流程。总之,jQuery.fontFlex是现代网页响应式设计中不可或缺的一款字体适配工具,有助于提升网页整体布局的灵活性与可访问性。 点我下载 文件大小:72.29 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-31 13:45:04
139
本站
JQuery插件下载
JQuery插件介绍 jQuery.eraser是一款专门用于在网页中模拟真实橡皮擦擦除效果的jQuery插件,尤其适用于实现互动式的图片擦除或刮刮卡效果。该插件通过巧妙地将一个透明画布覆盖在目标图片之上,当用户使用鼠标或在支持触摸的设备上进行擦除操作时,实际上是擦除了画布对应位置的内容,从而逐渐揭示出底层图片原本的颜色和细节。开发者可以通过简单配置jQuery.eraser的参数来自定义擦除笔触的大小、形状以及擦除过程中的动画过渡效果。在实际应用场景中,这一特性常被用于创建游戏化的用户体验,例如线上抽奖活动的刮刮卡效果,或者教育类网站中让用户亲手擦除部分内容以揭示答案等交互设计。总之,jQuery.eraser为前端开发者提供了一种便捷而高效的方式来实现动态擦除图片内容的功能,极大地增强了网页内容的趣味性和互动性。只需调用相应方法并设置好回调函数,即可轻松将静态的图像转变为引人入胜的擦除交互体验。 点我下载 文件大小:284.39 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-05-26 19:20:24
112
本站
JQuery插件下载
JQuery插件介绍 该“jQuery+css33d画廊房间效果”插件是一款基于jQuery和CSS3技术开发的高级网页交互组件,它巧妙地模拟了现实世界中艺术画廊的沉浸式体验。用户在浏览时仿佛置身于一个虚拟的展厅内,美术作品被生动地展示在四面环绕的墙壁上。通过简单的前后移动按钮,访问者能够流畅地在各个墙面之间切换欣赏不同的作品集。每当用户达到当前墙面的“尽头”,插件会利用CSS3强大的3D转换功能,呈现出极具真实感的旋转过渡效果,带领用户无缝转至下一墙面。这种设计不仅增强了用户的视觉享受,还极大地提升了网站的互动性和用户体验,使得线上展览与实体画廊的观展体验更为接近。此外,每一件艺术品都配备有精致的小型说明标签,点击后即可弹出详细的图片介绍信息,使内容展示更为丰富立体。这款插件凭借其独特的3D空间布局、逼真的动态切换以及详尽的作品解说功能,为各类艺术网站、在线展览或多媒体项目提供了理想的图像展示解决方案。 点我下载 文件大小:756.79 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-15 12:45:17
67
本站
JQuery插件下载
JQuery插件介绍 jquery.pinBox是一个jQuery插件,主要用于实现在页面滚动过程中将指定的HTML元素固定在容器内的特定位置。通过集成该插件到项目中,开发者可以轻松实现常见的“吸顶”或“吸底”效果,即当用户滚动浏览器时,被选中的元素会保持其在容器视窗范围内的可见性,犹如被吸附在容器边界一样。这款插件具有广泛的适用性,无论是导航栏、工具提示还是内容区域,任何需要在滚动过程中保持相对定位的网页组件都可以利用它来实现动态固定功能。开发人员只需简单调用插件API并进行配置,即可将任意元素绑定到目标容器上,使其在页面滚动时产生跟随滚动的效果,增强用户体验和界面交互的一致性。此外,jquery.pinBox还兼容多种浏览器环境,有助于确保跨平台、跨设备的Web应用具备良好的视觉与操作体验。尽管发布于2020年,但在许多现代Web项目中仍然可以发挥重要作用,特别是在构建单页应用程序(SPA)或者长滚动页面布局时,能够有效提升页面的可用性和美观度。 点我下载 文件大小:72.47 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-29 08:20:06
270
本站
JQuery插件下载
JQuery插件介绍 jQuery.slidizle是一款轻量级、高度灵活的响应式幻灯片插件,专为开发者和设计师打造,以实现卓越的网页动态展示效果。这款插件充分利用了jQuery库的强大功能,使得创建自定义且适应不同屏幕尺寸的幻灯片变得轻松便捷。通过将特定的class类应用于HTML元素,用户可以细致地控制幻灯片的样式与行为,无论是布局、动画效果、过渡方式还是交互模式。该插件的一大亮点是其完全可定制性,这意味着开发者可以根据项目需求调整幻灯片的每一处细节,无需受限于预设模板或固定样式。不论是简单的图片轮播,还是包含丰富媒体内容和复杂布局的多层幻灯片,jQuery.slidizle都能游刃有余地处理。此外,jQuery.slidizle还具备响应式设计特性,确保在桌面、平板以及移动设备上提供流畅而一致的用户体验。它能够根据视窗大小自动调整幻灯片的尺寸和布局,完美契合现代网页开发对跨设备兼容性的高要求。总而言之,jQuery.slidizle是一个强大且易于使用的工具,赋能开发者创造引人入胜且互动性强的幻灯片组件,提升网站的整体视觉吸引力与用户体验。 点我下载 文件大小:4.46 MB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-11 22:11:34
111
本站
JQuery插件下载
JQuery插件介绍 jquery.tabulation.js是一款专为追求高效网页布局和用户交互体验的开发者设计的jQuery插件。作为一款兼容Bootstrap框架的分页插件,它能够将一组同级元素轻松转换为分页或者标签页,从而让网站内容更加有序且易于浏览。无论您正在处理的是大量的文章列表、商品展示还是其他需要分页显示的内容,jquery.tabulation.js都能为您提供完美的解决方案。此插件的一大亮点在于其高度的自定义性和灵活性。开发人员可以通过简单的配置选项来调整分页的外观,以匹配不同网站的设计风格。同时,插件内置的回调函数允许用户在页面切换时执行特定的操作,比如更新数据或加载新的内容,极大地提升了用户体验。jquery.tabulation.js不仅代码轻量,而且运行流畅,可以显著提升网站性能。此外,其简洁明了的文档和丰富的示例代码使得即使是初学者也能快速上手,轻松集成到现有项目中。总之,jquery.tabulation.js是任何希望为其网站添加美观且实用分页功能的开发者不可或缺的工具。无论是为了提高用户体验,还是优化网站结构,这款插件都是您的理想选择。 点我下载 文件大小:46.31 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-01-12 21:13:23
101
本站
JQuery插件下载
JQuery插件介绍 "jQuery-peeper"是一款专为增强表单交互体验而设计的jQuery插件,它针对表单中的密码字段提供了便捷的显示与隐藏功能。通过集成此插件,用户可以在输入密码时自由切换是否以明文形式查看已输入的内容,增强了对密码输入的控制权和可视性。此外,该插件还具备独特的复制密码至剪贴板功能,允许用户直接复制已输入的密码,从而简化了在不同平台或应用间转移密码的操作流程。开发者可以根据需求灵活配置并集成到项目中,使得网页表单更加人性化且易于使用,同时保持了良好的浏览器兼容性和用户体验一致性。 点我下载 文件大小:47.06 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-06 08:07:44
77
本站
JQuery插件下载
JQuery插件介绍 jQuery-tableExport是一款强大的前端插件,专门设计用于将网页上普通HTML表格的数据内容便捷地导出为多种常见格式。通过集成此插件,开发者能够赋予用户将表格数据一键转换成CSV、XLS(Excel)、TXT或SQL文件的功能。该插件基于jQuery库构建,易于集成到现有项目中,并且提供了高度的灵活性和可定制性。使用者无需复杂的编程操作,只需简单调用API,即可实现对表格数据的灵活导出配置,如设置分隔符、忽略特定列等。这一特性使得jQuery-tableExport成为报表生成、数据分析及数据迁移场景下不可或缺的工具,极大地提升了用户体验和数据处理效率。 点我下载 文件大小:47.78 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-01 20:21:15
133
本站
JQuery插件下载
JQuery插件介绍 "jquery-mouse-parallax"是一款专为实现鼠标交互驱动背景视觉差特效而设计的jQuery插件,它巧妙地利用了TweenMax强大的动画引擎。这款插件能够帮助开发者轻松创建动态且引人入胜的网页体验,通过将多层背景图片进行差异化速度控制,当用户在页面上移动鼠标时,各个图片层会随之以不同的速率响应变化,营造出深度和空间感强烈的视觉差效果。这种互动式设计增强了用户的参与度,使得静态的网页背景变得生动活泼,极大地丰富了网站的视觉表现力与用户体验。通过简单配置和集成,开发者可以迅速在项目中应用这一前沿特效技术,打造出具有现代感和创新性的网页界面。 点我下载 文件大小:2.92 MB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-09 18:14:52
46
本站
JQuery插件下载
JQuery插件介绍 jquery.sldr.js是一款专为解决跨平台兼容性问题而设计的响应式幻灯片jQuery插件,特别注重对老旧IE8浏览器以及现代移动设备如Android和iOS系统的支持。该插件能够根据屏幕尺寸自动调整幻灯片图片的宽度,确保在不同分辨率下展示效果都能达到最佳。它不仅提供了流畅的触摸滑动交互体验以适应手机和平板用户,还拥有丰富的可自定义回调函数,便于开发者进行深度定制与扩展功能。通过集成此插件,网页开发者可以轻松实现兼顾桌面与移动端、具有良好用户体验的幻灯片组件,大大简化了开发响应式网站时对于多媒体内容展示的需求与挑战。 点我下载 文件大小:417.31 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-09 17:24:00
101
本站
JQuery插件下载
JQuery插件介绍 "jquery-lwd"是一款专为网页设计和开发打造的轻量级jQueryUI插件,它致力于模拟真实的Windows窗口环境。利用这款插件,开发者能够在浏览器中构建出具有类似操作系统窗口功能的UI元素,如面板或对话框。用户能够如同操作本地应用窗口一样,对这些模拟窗口进行最大化、最小化以及自由拖动等交互操作,极大地丰富了网页应用程序的用户体验。该插件不仅提供了基础的窗口模拟功能,还特别引入了经典的Windows2000主题样式效果,使得界面更具亲切感与怀旧气息。通过集成到jQueryUI框架中,"jquery-lwd"插件易于使用且高度可定制,方便开发者根据项目需求灵活配置和扩展。只需简单调用相关方法和选项,即可在Web页面上轻松创建出功能齐全、外观仿真的桌面窗口界面。 点我下载 文件大小:195.99 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-06 23:30:14
35
本站
JQuery插件下载
JQuery插件介绍 jQuery.json-viewer.js是一个专为开发者设计的jQuery插件,旨在以美观且易于理解的方式展示JSON格式的数据。这款插件不仅能够将复杂的、难以阅读的JSON数据进行格式化,使其变得整洁有序,还提供了强大的语法高亮功能,使得关键信息一目了然。用户可以通过简单的点击操作来展开或收起JSON中的各个节点,极大地提升了用户体验和工作效率。无论是用于调试API返回的数据,还是展示从服务器获取的复杂配置信息,jQuery.json-viewer.js都能提供清晰直观的视图。其轻量级的设计确保了加载速度的同时不会影响页面性能,非常适合在各种项目中集成使用。通过使用这款插件,开发者可以节省大量时间,专注于解决更核心的问题,而不是被繁琐的数据格式问题所困扰。无论你是前端开发者,还是需要处理JSON数据的专业人士,jQuery.json-viewer.js都是你不可或缺的好帮手。 点我下载 文件大小:44.64 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-18 11:09:33
72
本站
JQuery插件下载
JQuery插件介绍 "SwingDrag"是一款基于jQueryUI的增强型拖拽插件,它为原生的jQueryUI拖拽功能增添了新颖且炫酷的摇摆效果。通过巧妙利用CSS3的transitions和transforms属性,该插件能够在元素被拖拽时呈现出平滑且动感十足的动画效果。用户在执行拖拽操作时,不仅能够实现基本的拖放功能,还能感受到视觉上的动态反馈,大大提升了交互体验和用户界面的吸引力。开发者只需通过npm进行便捷安装(npminstallswingdrag),并在项目中引入必要的脚本文件,包括jQuery、jQueryUI的核心库以及jQuery.ui.swingdrag.min.js。一旦集成到网页中,任何支持jQueryUI拖拽功能的元素都能自动获得额外的摇摆特效,无需从零开始编写复杂的CSS3动画代码。这款插件将功能性与艺术性完美结合,是构建现代Web应用时提升用户体验的理想工具。 点我下载 文件大小:179.21 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-12 17:36:13
57
本站
JQuery插件下载
JQuery插件介绍 “jQuery炫酷3d画廊”是一款基于jQuery和CSS3技术开发的高级图像展示插件,专为打造沉浸式网页画廊体验而设计。该插件利用了jQuery.gallery库与CSS3的3D变换功能,将传统的二维图片浏览方式提升至三维空间,提供独特的视觉效果。在实际应用中,这款插件能够同时展示三张图片,以中间一幅为主,两侧各一幅为辅,并通过流畅的3D循环旋转动画切换不同图片,从而营造出类似实物相册翻页的立体感。此外,“jQuery炫酷3d画廊”还具备自动播放功能,让画廊中的图片序列可以按照预设效果自动、连续地进行展示,无需用户手动操作,极大地增强了用户的观赏体验。相较于同类jQuery3d画廊插件,它凭借其精良的制作工艺、丰富的视觉效果以及便捷的使用性,在同类产品中脱颖而出,成为网页开发者构建高端、动态3D图片画廊的理想选择。 点我下载 文件大小:581.70 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-13 09:23:52
105
本站
JQuery插件下载
JQuery插件介绍 这款jQuery炫酷网页3D背景视觉差特效插件为网页设计师和开发者提供了一种创新的方式来增强用户在浏览网页时的沉浸式体验。它利用先进的视觉欺骗技术,通过动态调整背景图片层在鼠标移动时的不同移动速度,成功营造出深度感强烈的3D视觉效果。无论是设计全屏背景还是局部容器背景,此插件都能轻松实现惊艳的视觉差效果。开发者只需引入jQuery库以及配套的jquery.simple3D.js文件,结合简洁的HTML结构,将需要应用视觉差效果的图片放置在特定的容器元素中,即可一键开启这一令人耳目一新的功能。当用户的鼠标在页面上滑动时,页面背景仿佛拥有了立体维度,不同层次的图像呈现出独特的动态变化,大大提升了网站的交互性和吸引力。这款插件无疑为现代网页设计注入了更多活力与艺术性,是打造高端、动感十足网页界面的理想工具。 点我下载 文件大小:511.95 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-15 12:36:16
83
本站
JQuery插件下载
JQuery插件介绍 jQuery电子邮件地址填写自动完成插件,名为"jquery.email-autocomplete.js",是一款专为提升表单交互体验而设计的高效能jQuery插件。该插件主要用于优化用户在网页表单中输入电子邮件地址的过程,通过先进的自动完成功能,显著简化并加速了邮箱信息的录入。当用户在邮件输入框内开始键入邮箱地址时,只需输入几个起始字符,此插件便能够智能地根据已有的邮件数据库提供相关的自动提示建议。用户无需完全手动输入整个电子邮件地址,只需通过浏览下拉列表选择或直接使用tab键,即可快速、准确地完成邮箱地址的填充,极大地提高了用户的操作效率和页面的友好性。总结来说,这款jQuery电子邮件地址填写自动完成插件以其便捷的自动补全功能,有效提升了网站表单的用户体验,降低了邮箱输入出错的可能性,是开发者优化网页表单组件的理想工具之一。 点我下载 文件大小:74.28 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-30 22:47:29
58
本站
JQuery插件下载
JQuery插件介绍 jQuery.dropdown是一款专为增强用户体验而设计的浏览器插件,致力于美化HTML表单中的select下拉菜单组件。通过集成这款插件,开发人员能够将原生的、样式受限的下拉列表转化为视觉效果惊艳且交互流畅的动态菜单。它利用了jQuery强大的DOM操作能力以及CSS3的先进动画特性,包括令人印象深刻的3D动画效果,使菜单选项以新颖炫酷的方式展现给用户。该插件不仅注重外观的提升,同时也保证了功能上的易用性和兼容性,确保在多种主流浏览器环境下(如支持CSS3动画的Chrome、Firefox及部分版本的InternetExplorer)都能提供一致的良好体验。使用jQuery.dropdown可以轻松实现对传统下拉框样式的替换,并且开发者可以根据项目需求自定义各种主题和动画效果,从而打造出符合现代Web设计潮流且高度定制化的表单界面。 点我下载 文件大小:109.49 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-07-20 11:42:56
115
本站
JQuery插件下载
JQuery插件介绍 "基于jQueryUI的多项选择下拉列表框组件"是一款名为jquery.multiselect.js的高性能浏览器插件,它充分利用了jQueryUI强大的交互和动画功能。该插件专为提升用户在多选或单选场景下的体验而设计,能够将传统的下拉列表转化为功能丰富的可多选下拉框控件,并且特别兼容IE8及更高版本的浏览器。通过集成此插件,开发者可以轻松实现动态、炫酷的下拉框展开与收起动画效果,增强网页视觉吸引力。同时,它支持灵活的选项配置,允许用户进行批量选择或单独选择,例如提供全选/取消全选的功能选项以及便捷的关闭按钮。此外,jquery.multiselect.js提供了全面的API接口,包含一系列丰富的回调函数和其他实用方法,这使得开发者可以根据具体需求定制化下拉列表的行为逻辑,如响应用户的操作事件,处理数据提交等。总之,这款插件是构建复杂Web应用时对多选下拉菜单高效、灵活控制的理想工具。 点我下载 文件大小:93.67 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-18 23:19:30
139
本站
JQuery插件下载
JQuery插件介绍 Jquery-Stylish-Timer是一款简洁且美观的jQuery计时器插件,专为网页开发者提供直观的计时功能。这款插件能够实现秒、分钟和小时级别的精确计时,并通过一组易于理解的按钮,让用户轻松控制计时流程——启动、暂停与重新开始。其核心功能包括:1.多级计时:用户可以根据需要设置秒、分钟或小时作为计时单位,满足各种场景需求。2.交互式控制:插件提供了启动、暂停和重新开始计时的功能按钮,使操作直观且便捷。3.美观界面:采用现代设计风格,确保与各种网站主题和谐融合,提升用户体验。4.兼容性:支持主流浏览器,确保在不同环境下稳定运行。5.轻量级:优化代码结构,减少加载时间和资源消耗,适合各类项目应用。Jquery-Stylish-Timer的集成过程简单高效,只需几行代码即可完成初始化配置。它适用于构建倒计时、计时器、任务提醒等多种功能,极大地丰富了网页交互体验。无论是个人项目还是商业应用,此插件都能有效提升网页的实用性和吸引力。 点我下载 文件大小:70.21 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-07-27 11:28:26
308
本站
JQuery插件下载
JQuery插件介绍 Zoomove是一款专为jQuery设计的图片放大和移动插件,它旨在增强用户在浏览网站上的图片交互体验。当用户的鼠标滑过带有该插件的图片时,图片会在原位置进行动态放大,提供一个局部的、高清晰度的预览视图。这款插件的核心功能在于其内置的放大功能,用户可以轻松地在图片内部查看细节,增加了视觉吸引力。使用Zoomove非常直观,开发者只需简单的配置过程,包括设置图片的初始大小、放大倍数以及是否允许图片随着鼠标移动而实时调整。通过调整这些参数,用户可以根据自己的设计需求定制出适合不同场景的效果,比如商业展示、产品详情页或者艺术作品展示。此外,由于其基于jQuery构建,Zoomove与主流浏览器有良好的兼容性,使得它能在大部分现代浏览器环境中无缝运行。对于那些寻求提升网站视觉冲击力和用户体验的设计师或开发者来说,Zoomove是一个强大的工具,可以快速且有效地添加图片放大镜效果,提升网站的专业感和互动性。 点我下载 文件大小:125.28 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-05-07 12:17:43
35
本站
JQuery插件下载
JQuery插件介绍 这款“css3+jquery自适应缩略图叠加点击图片展示特效”插件巧妙地结合了jQuery和CSS3技术,为用户提供了一种新颖且交互友好的图片浏览体验。该插件的核心功能是通过利用名为"stapel"的jQuery组件,实现对上传图片进行智能分组,并将每组图片以层叠样式布局在页面上。得益于CSS3的动画效果支持,图片堆叠排列既节省空间又极具视觉吸引力。当用户点击位于顶部的缩略图时,这一组内的所有图片会采用流畅、动态的方式展开显示,从而让用户能够一览无余地查看同一主题下的所有相关图片。这种设计不仅提升了网页内容的丰富度,还优化了用户的浏览流程,尤其适用于画廊、作品集或产品展示等需要大量图片切换的应用场景。通过此插件,网站开发者可以轻松创建出既响应式又能自动适应不同屏幕尺寸的图片展示区域,确保无论在桌面端还是移动设备上,都能带给用户一致且出色的视觉互动效果。 点我下载 文件大小:169.30 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-23 15:11:56
113
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
grep -ir "search_text" .
- 在当前目录及其子目录中递归搜索文本。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"