前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Greenplum开源数据仓库系统]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...功研发出一款智能调色系统,该系统基于颜色混合原理,能够通过精确控制红、绿、蓝(RGB)三原色光源的强度比,实时生成并调整数百万种颜色,这项技术对于显示器制造、舞台灯光设计以及印刷行业等领域具有重大意义。 同时,在教育领域,美国麻省理工学院的研究者们正将类似的颜色叠加实验引入到K-12科学课程中,以培养学生的跨学科思维能力,通过动手实验让学生直观理解光学原理,并与数学计算相结合,提升他们解决实际问题的能力。 此外,艺术家和设计师也在利用颜色叠加的原理进行创新实践。例如,荷兰艺术家埃舍尔借助颜色叠加创作出视错觉艺术作品,展示出二维空间内不同颜色相互作用产生的神奇效果。而在时尚界,设计师们通过面料上的颜色叠加与透明度变化,营造出丰富多变且极具层次感的视觉体验。 总的来说,颜色叠加这一基本原理不仅在科普实验中有生动体现,更在科技、教育、艺术等多个领域发挥着重要作用,不断推动着人类对色彩世界的深入理解和广泛利用。
2024-01-20 16:20:26
468
转载
转载文章
...;a>狂神说大数据</a></li><li><a>狂神聊理财</a></li></ul></div></div></div></div></div><el-button @click="download" id="download">下载</el-button><!-- <el-button @click="concurrenceDownload" >并发下载测试</el-button>--><el-button @click="stop">停止</el-button><el-button @click="start">开始</el-button>{ {fileFinalOffset} }{ {contentList} }<el-progress type="circle" :percentage="percentage"></el-progress></div><!--前端使用Vue,实现前后端分离--><script th:src="@{/js/axios.min.js}"></script><script th:src="@{/js/vue.min.js}"></script><!-- 引入样式 --><link rel="stylesheet" href="https://unpkg.com/element-ui/lib/theme-chalk/index.css"><!-- 引入组件库 --><script src="https://unpkg.com/element-ui/lib/index.js"></script><script>new Vue({ el: 'app',data: {keyword: '', //搜索关键字results: [] ,//搜索结果percentage: 0, // 下载进度filesCurrentPage:0,//文件开始偏移量fileFinalOffset:0, //文件最后偏移量stopRecursiveTags:true, //停止递归标签,默认是true 继续进行递归contentList: [], // 文件流数组breakpointResumeTags:false, //断点续传标签,默认是false 不进行断点续传temp:[],fileMap:new Map(),timer:null, //定时器名称},methods: {//根据关键字搜索商品信息searchKey(){var keyword=this.keyword;axios.get('/search/JD/search/'+keyword+"/1/10").then(res=>{this.results=res.data;//绑定数据console.log(this.results)console.table(this.results)})},//停止下载stop(){//改变递归标签为falsethis.stopRecursiveTags=false;},//开始下载start(){//重置递归标签为true 最后进行合并this.stopRecursiveTags=true;//重置断点续传标签this.breakpointResumeTags=true;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
546
转载
转载文章
...一、建模背景及目的及数据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
转载文章
...PR等相关法规对用户数据处理提出了严格要求,这也促使各平台在设计头像上传功能时,必须兼顾到用户信息的安全存储与传输。众多企业开始采用加密上传、权限控制等手段,确保用户头像数据的安全性。 综上所述,在当前互联网环境下,用户头像处理技术正不断迭代创新,以满足日益增长的个性化需求和严格的隐私保护规范。无论是大型社交平台的技术突破,还是各类开发框架对头像上传功能的优化改进,都为我们提供了丰富的实践案例与参考思路,值得广大开发者持续关注并深入研究。
2023-07-18 10:58:17
268
转载
转载文章
...布局通过定义二维网格系统,轻松实现复杂且灵活的布局需求;而Flexbox则专注于一维空间内的对齐和方向调整,尤其适用于导航栏、侧边栏等组件的布局。这两种现代布局方式不仅在兼容性上有所提升,而且大大简化了以往使用浮动、定位或表格布局时繁琐的计算过程。 同时,针对物理像素精确绘制的需求,CSS单位如“vw”、“vh”以及“calc()”函数的应用也日趋广泛。这些单位基于视口宽度和高度百分比,能更好地配合各种屏幕密度进行布局,并解决了1px边框在高DPR设备上的显示问题。 此外,最新的浏览器已经开始支持CSS环境变量(CSS Variables),这使得跨组件甚至跨页面的样式统一管理变得更加容易,进一步提升了移动端页面自适应设计的效率和灵活性。 综上所述,在移动端页面自适应方案的探索道路上,从早期的rem布局到如今CSS Grid、Flexbox等现代布局技术的广泛应用,开发者们正不断追求更高效、更便捷、更具前瞻性的解决方案,以应对日新月异的移动互联网时代挑战。而对于那些仍在使用或想要了解rem布局方案的开发者而言,适时关注并学习这些新的布局技术和策略,无疑将有助于其在未来的项目中打造出更为优质且适应力更强的移动端用户体验。
2023-03-23 12:01:53
133
转载
转载文章
...《中国劳动统计年鉴》数据显示,我国40-59岁劳动力人口占比逐年上升,他们在面临新兴技术冲击、行业变革的同时,还要应对来自年轻一代的竞争压力。 《人民日报》曾发表一篇深度报道,聚焦中年职场转型与再发展问题,报道指出,在数字化时代背景下,中年人应主动拥抱变化,通过不断学习新技术、新知识,更新自身技能树,并积极参与职业培训和继续教育,拓宽职业发展空间。 此外,据LinkedIn(领英)发布的《中国人才趋势报告》显示,企业对具备跨界能力、持续学习力以及深厚行业经验的中高级人才需求不减反增。这进一步印证了文章中的观点:无论年龄大小,职场人士都需要设立明确目标,增强执行力,并懂得投资自己,通过不断学习实现职业生涯的可持续发展。 同时,心理学专家也强调,保持积极心态是中年人应对职场挑战的关键要素之一。正如美国心理学家卡罗尔·德韦克提出的“成长思维模式”,鼓励人们以开放的态度看待困难和挑战,相信能力可以通过努力得以提升,这对于中年职场人士打破现状、激发潜力具有深远意义。 综上所述,面对日新月异的社会变迁和职场环境,中年群体需树立长期职业规划意识,提高实际行动力,强化个人核心竞争力,并始终保持与时俱进的学习态度和积极进取的心态,以此来应对职业道路上的各种挑战,实现职业生涯的二次腾飞。
2023-06-29 14:16:29
119
转载
转载文章
...供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...具有服务器身份验证和数据传输加密功能 在爬虫时可能会遇到这样的报错(SSLError)这说明我们要爬取的网站没有SSL证书 处理:res = requests.get(url,verify=False) 二、cookie 通过记录用户信息来确定身份 1 模拟登陆 人人网保持登陆状态import requestsurl = 'http://www.renren.com/976686556/profile' 个人主界面headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'anonymid=knvqe21amc6ghy; depovince=ZGQT; _r01_=1; taihe_bi\_sdk_uid=c2bd353cea6830a73eb74760fbc9fd5c; taihe_bi_sdk_session=9a91c\62f18e74ee26c3145bb49b4eb9e; ick_login=286c45d0-e571-4fb7-918a-46a9706\18110; first_login_flag=1; ln_uact=17315371375; ln_hurl=http://head.xiao\nei.com/photos/0/0/men_main.gif; wp_fold=0; jebecookies=ee811760-7bc0-43a9-\883c-0d041cb1baf0|||||; _de=A4C6B1A20CD5F525F9DA27654C2D2FDA; p=f5239823cd0af743a5f015652568b6036; t=42783075a815b6cef9f651ca18ff5c166; societyguester=42783075a815b6cef9f651ca18ff5c166; id=976686556; xnsid=f72459d7; ver=7.0; loginfrom=null'}res = requests.get(url,headers=headers) res 响应对象 html = res.textwith open('rr.html','w',encoding='utf-8') as file_obj:file_obj.write(res.text) 2 反反爬机制 12306查票import requests import json json.loads -- json类型的str -> python类型的字典def query():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'_uab_collina=159490169403897938828076; JSESSIONID=090F384AC50BE0F1AFA3892BE3F6DBE9; _jc_save_wfdc_flag=dc; _jc_save_fromStation=%u957F%u6C99%2CCSQ; _jc_save_toStation=%u5317%u4EAC%2CBJP; RAIL_DEVICEID=bbXqzYOPTc-SPgujxnGkCBr9t3sq0JQoMSYUdg-FxjyQ5IkfcPCNoreXmBAIh2HSrM9Z9awDR5onIQwy4EZ8pAhaGXWYBAH6etIlFc4dyxLudz525GAcRgVX5HLIxOE1orODUNSb9wvTBAJptPms1z5Pz5K6FXES; RAIL_EXPIRATION=1619479086609; _jc_save_toDate=2021-04-23; BIGipServerpool_passport=182714890.50215.0000; route=6f50b51faa11b987e576cdb301e545c4; _jc_save_fromDate=2021-04-26; BIGipServerportal=3067347210.16671.0000; BIGipServerotn=1725497610.50210.0000'}response = requests.get('https://kyfw.12306.cn/otn/leftTicket/query?leftTicketDTO.train_date=2021-\04-26&leftTicketDTO.from_station=CSQ&leftTicketDTO.to_station=BJP&purpose_codes=ADULT',headers=headers) print(response.content.decode('utf-8'))return response.json()['data']['result']for i in query(): print(i)tem_list = i.split('|') 定义一个标记 给每个数据做个标记 j = 0 技术特别 for n in tem_list: print(j,n) j += 1 通过以上的测试我们知道了 列出是下标索引为3的数据 软卧是下标索引为23的数据if tem_list[23] != '无' and tem_list[23] != '':print(tem_list[3],'有票',tem_list[23])else:print(tem_list[3],'无票') 三、session Session与cookie功能效果相同。Session与Cookie的区别在于Session是记录在服务端的,而Cookie是记录在客户端的。 由于cookie 是存在用户端,而且它本身存储的尺寸大小也有限,最关键是用户可以是可见的,并可以随意的修改,很不安全。那如何又要安全,又可以方便的全局读取信息呢?于是,这个时候,一种新的存储会话机制:session 诞生了 突破12306验证码import requestsreq = requests.session() 保持会话def login(): 笔记本 win7 python3.6 获取验证码图片pic_response = req.get('https://kyfw.12306.cn/passport/captcha/captcha-image?login_site=E&module=login&rand=sjrand')codeImage = pic_response.contentfn = open('code2.png','wb')fn.write(codeImage)fn.close() 从验证码图片的左上角 (0,0)codeStr = input('请输入验证码坐标:')headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36'}data = {'answer': codeStr,'rand': 'sjrand','login_site': 'E'}response = req.post('https://kyfw.12306.cn/passport/captcha/captcha-check',data=data,headers=headers)print(response.text)login() base64伪加密 根本不算是一种加密算法 只不过它的数据看上去更像密文而已 64个字符来表示任意的二进制数据的方法 使用 A-Z A-Z 0 - 9 + / 这64个字符进行加密 import base64url = '9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC+ASUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+ivPNS1bUJdPlW2XWIJZ550EExgZ4mwMplZDkA5IIJwGA7Vd8P63d2Wi39zqC3k32C3VmR9gYkKSQPmJyeMZxQB21FcPqV14igvb/Vfs2qWlklsh8qKS1fGzeWbDk9iOnpU+r6tqVsohtdYij2W48w3GiT3DuxGdweJ0QcEcAcEHnsADsaK4Xwrq2p3un6fBd6zHIk1oqjydGuIpQxQYbzndkyPUrg0zXZdR0fxLpVqmq65c2k9rdTTpbpC8i+W0IDAbMkASNkAEnjAoA72iuH1C6iNlpk1tr11d2lxcPula7WDpE+FLoF24YDIIyCMYzxXKXOoapB4f1W4k1PUY5LfT7qaOctcxqZlVygjJkZWA25ywGRt4OTgA9jorh/Eev3507xBFb3OnWwtN0S75mWU/u1bcMdPvcfSpdS8RahBZ6lEtxYNLHps1zHNZuWKMm0DIOR/F+lKTsrl04OpNQW7djs6K8t/te+WGCAXOvLM9zsuws0MsxHkGUeWfuKMEE+2e9Ra/4hktvDVguma1qkEt+gWOC9MJdkZjmV5D90EHAO4AYHTBrneJik3Y9eOSVZTjBSXvPz89dL9vu7Hq9FeZaHrl5LqmnaWNcvCsjeWn76yuOFUthim5uQOp596ojxbq41DUzFqFrK90lwDAWZfsQh+VW64GRljgZJFH1mNr2BZHWcnFSW1+vd+Wmz+63VHrMjFY2YKWIGQoxk+3NUrqVUjYsu7A3BfUjkVgeFb3UvPvtLvr2C9Sxt7dormNWzKHDHcxLHJwo596xfiDqSwaTArPKJXmTaYi6nggt8oIz8oPBNbwlzK55mIoOhUdNu+33NXX4Mt/8JpYzR7por+AKoacfZ2YRZB+Vio47Nn3HNXbXXNN1PcLK8hnZQCyo43KPcdRXjuqanNeK+ZZUF2TNIo67XbagOGBPyhVPXp0rUj1S5j0TUrqS4k+1OywJKpJJCcL7/fZqowO91LxFYaeXSWR3lQZZIo2YqM98A449cVVk8Q2K6bHe3Mn2SNwSq3GFY/hz9a83nkEkkcCfbrm1UF2BXyQ0mRgnoT35OT0qCWaUab9ghIjiuLgmUqcg8/d98KOfpQB3sPimwmtYZZC2+WLzMQqZBGM/wARUHHcdualh1SzvmZbWfzSv3sKR3rgI9UuRdvdvetEZAULIqlWCgY657l+nrXWaVc3ctmDdEbyckAbcjPynHrg/rQB6boMirotvyxJD8844c/gOv4/hVRPEVjd6zPp0LO0sEZZnH3Cd2Co9SCOfSqcInl8JxwW832eSQMDKFyVBY5I98dD2rn7qODTby2vEnS1gt42iKtwHDHPJJ65596ANiXxboonngnujbyI+1xco0YDYBGN3HTBGPXNRyeJdGZlRdStXdyAqLICWPbAHWvPLbVXO+8Muo28t07TF4gJUYMePlw2MDA6DpV3Rr4rDeXzM0zvIQrmMKxVRjGAB33du9AHS6h4n0q1n8s3HmygldsKGQ59OOh4z+FZkXjbT3jSacTW/wAwU74CVDDsTjBP/wBevN9SvRLeAhMRISqLIVPJ5JOdwJ65OByabYXKxwlHgt5M/wALsAfqOP60AfUekyxzaNYyxOHje3jZWHRgVGDVysvw1j/hFdHwu0fYYcKDnHyDjNalABRRRQAUUUUAFFFFABRRRQByNx4PuL3UfNu7yJrX7XLcLEIEbYGXA++rBie5wMcY7kw6b4V1GLTtStLiLTok1CdFliXbKnkAYcYEUalmGRgrgZzk4xXXedJ/z7S/mv8A8VR50n/PtL+a/wDxVAHGj4a6KSUfSdEMTNcKSNLgDBH5jIIT7yfdHYjrk1pnT9fjlSdDp80r2EdtOGkeNRIpYllAU8Hd09q3/Ok/59pfzX/4qjzpP+faX81/+KoA5/SNL1q2u9JW9WyFtYWT25aCZ2Z2xGASpUD+A9+9XrvSp5/Fml6qrRiC0tLqB1JO4tI0JUgYxj922ee461pedJ/z7S/mv/xVHnSf8+0v5r/8VQBla3pd5dyWL6cbeJoJpHk8wsuQ0bqSCvO7LA5rmb7wZr8unaxb29/ZFtRsZrRlmUYJdSAxcJv4yepI56V3fnSf8+0v5r/8VR50n/PtL+a//FUAZWueH7XUdJ1GKCztftV1Gw8x4xkuQACTjPQDn2pus+Hob3R762sIbW1urm3aATeUBhWxkHHY4rX86T/n2l/Nf/iqPOk/59pfzX/4qk1dWZdObpzU47rU51/CVvDqNtLYQW1ta28E2Io02l5nUIGOO23d+dV7jwlNc+GNG00tClzaNbCeVSQSkZ+YKcdeTjIrqvOk/wCfaX81/wDiqPOk/wCfaX81/wDiqj2MNTqWYYhcr5tV/wAH/NnJQ+ELyDxVZXqXIawtHZ182YvIxKFcbdoA5J5yah03wjq9nqtvcT3NhNbQm82whGyPOOQCf4h69Mds12fnSf8APtL+a/8AxVHnSf8APtL+a/8AxVT7CH9f15FvNMQ1Z22tt6/j7zOa0TQ7rSjqN1f/AGGA3KwQpBZ58uNI8gDLAZJ3elZfiawXUrZoiSY3HVT1H1rtpnkkiZRbS5Puv+NZlxYTzD/j2J5H3mX/ABrSMVFWRyV60q83Unvp+CseTX+gM7B44oRMpGxnj3bQOg68VB/YlwulxW4lAlSTzd23ILbt3T616lPoFzIDtgAPbLD/ABqtJ4Yum6Qgf8DFUZHmT6XeTE+felVA5EMQQfmc/wA6guNFUwRoNyomSNp9Qe/4mvTv+EUve0Sf99imy+Er98Yjj6c/MBQB5SugF8geaQn3O4jwM5A+gNdNp4nhtBHM43nh1AI5Hf8AU/rXTyeCb9nJSKMDPAMgJpw8IauhwhTABVT5mODnj9T+dAGjpKeZ4ft8HB+fBPTO49RVDVrJJImQxhlPUEcVuabpd7Z6bFbSQ5dM5KsMckn196WTS7yUfNB6/wAYoA8ru9Btt+UtRG2OfKJXP1xiqNppLQac8RZxI6kH5yQMnPAr1G48M3kwOIVz7uBVVvB98RgRx/8AfYoA8duNDbeMlmPYjC/ypBowQYdJAeD949K9bbwNftn91Fn/AK6Co5PAuqSDBSEkYAJk6D0oA7Xwynl+FNHQfw2MI/8AHBWrVDTUms9LtLV7eQtDCkZKlcZCgcc+1WfOk/59pfzX/wCKoAmoqHzpP+faX81/+Ko86T/n2l/Nf/iqAJqKh86T/n2l/Nf/AIqjzpP+faX81/8AiqAJqKh86T/n2l/Nf/iqPOk/59pfzX/4qgCaiofOk/59pfzX/wCKooAmooooAKKKQmgBaKge7hj6yDPoDSR3SSkhT04qeeOw7MsUUgpaoQUUUUAFFFI2QOKAForwP4jeN9UOvTw6fqlzbW0J8kfZp2jyR1PBGc/4VxWi/EPxbpV9DdSazf3MLOV23Nwzo3Q4w2fUduOTx1oA+saK53wd4rtvFujC+hGyRTtljz909iPYjnv3HY10VABRRRQAUUUx84OM5oAfRXByfEjTYpCpulJBwVMTZHtgd6if4l6axwL1UPtC+f5UuZGXt6fWR6DRXnZ+Itht41Nh/wBu7f8AxNIfiNYAD/iaH/wHb/4mlzoPb0+6PRaK83PxIsDwdTP4QN/8TV/QvGNjqutQWkN/LLJIWwhVwD8pPcYppp7Aq0G7Jnc0U1TzWV4jne305GSV48yhSyOVOMHuKmpNQi5djVamvRXGJc3uxNks7DHBNyefzp87X7W8kf2q6gd1IEm8kLx168muT67HsXyM7CiuV+13O8RCeXKqOVkLAgADJPv15560/wC0XRAzPL/32ar65HsTY6eiuXa6uQP9fN1/vmo2vLjn/SJhyf4zR9cj2Cx1lFce95dBM/apv+/hqq1/eY/4/LgH/rof8aPrkewWO6ooorsEFFFFAFO9vVtIixySBnviuan1ma4k2F5RnGwqowc5OQM89scV095bieAr0I5Fca9ssMzbsjewQFjwF69PQA8ew9CMcdeUk7G1NJli3uHkcZLfN2ZSp/I/5xitKKQxyhh171jpKz7XQIuY1Kq0h+XLZ3DOMrtJPTPA6dBy3ivxffWBCWsiWqkcyrh/mPHJ4Xb3BOOo4GCTlHc0kj16GVZVBB59M1LXmHw38S3t2L23vZonERUo4UDPYgkdcfJ15+b349LikEi7h+R7Gu2Er6M52rElFHeitCQpkhIjJHUDOPWmTXVvbDM88cQ9ZHC/zqomt6ZM/lw6javIeAqyqST7c0XA+XtfZXnMkpBBk3EAZGM8gf54zisGK9jhsYrebDItxgeylTn9cflXQePbWXRtXvbSaXLRyFVOMFk7Eg8YI6e2M1wLPLeS7lGfm4XI/wAikI9U8BeLp/Ct8ZZpM2TkKYhycbjux74249xX0jZXkV9axXMDiSGVA6OOjKRwa+KQbuCymW5QhsDYZHwCCeSB346n698V7H8EfHbKX8OX8qKhctaO5wQxOWQ/U8j3yO4oQz3yimI249R0zT6YBTT06ZpTSH7poE2fO2sJdXviDWktoZXP2qQ74oyxU+Y2DxyOh/Oqk1peOy7tIuBkESFYWyfcHPXGce+K6XRGzJrl1yRLcdAMk/ebgDknnoOTXP6lrD3GqT2cI2tkqWMuxowDhs5XOBhskEkAHOOK87nk27HLg8NOVO8dtShcWV5FLhdMvDg4ObdhnpTF0/Uf4tOuwM9oWNTprt9d6msNtO0xVFTfEWfJGRk84xk9eQeOakGo6tc3xNpfbpZlKiDziSoZQwIBPJxgDn+L64Oad7BLKJN3dyfRdLa4nla+sZl2qNiSKybm9vXgdPeu48AWUFl47kjiAVjp0jOgbIB8yPHB5Hf8+9cTomuXdzqxt7rUoTA7Om15g2whgcj164BGc54yAcd94OkJ+J2owAKkUFgVRAOmWjP+R29Kzpxn9YUm9CvqqwyjFx1vueoDrXP+L5zbaZbOHK/6SozjP8LV0AFZXiG/s9P09JL2NZInlEYVgDkkE9/oa68ar4eavbQ7KfxI5C58RLPHHGHEMirtZkfBar9hcyzQ7JJmbCgIwKZz61zc+p2Ty7RYpHH5hXzXJKEdsEf1IqKS3ihVJorpoRngLna3484r4j29aNTWR6XsVa5uaNr8N5rUmnPG8NxzmJ1wCR3B+g5BA/Hmum8nJwBwK8+8L28c/iyzl2O94okM7qNysfmG/PYY2ge5rsH8U2NvBGtwHN0XaNoIBuIIYqT1AxlfrgivocPVvD3ziqxSehf8jPaoZLXJOBWmi74UkZChIyVPUZrO1DUrWwjZpJEGwgFiwCrlgOSSB3zjO44OFY8V1cl9UZWKUltjIIqjJBz/AJNcr4h+Jlpaq0ENuLiUqMbZnjUNkYI+67jkZ+5xnqKk8LzS+OIp7jX7TBXDRQK7LGFJODtAABGDgkkkEj+E0nTajdlRjfVnslFFFeuZBRRRQAjDI5rm9eswZBKCyAnJZTgqfUHBwffFdKaq3luLiB04yw4NY1o3iVB2ZxCRMq/vpFhRmMis0Y2qRzu6lQByRzjnHJGKnlgtL5lhkgimztOHTgZyxwWBVuBjqeMnsaV4WttTi3qDglU+TP3sA49B0JP+yOvSi3nUlJRLG9uSWEezAIYfKM4AACYABzn071wXszpepd07T4rUTacIl8kr5qIOFIzygH+yduDjpgdq2YHkRuGJI65/jH+NULZA80cjtloSRlWyp3Dhc56YIIzgnANWZLiKGVF5dz90Yyfy7fX9a1jKzuZtGtG+9QfWud8deJx4S8NvqQTfIXEUY/2iCf6VtWJmZC8qqpbkAHPHuemfz+przj4+Bz8PoPLzu+3x9P8Ackrui7oweh57B8XLPUp4otX0GS44AkmDrMzHjJCsBjPXGeK04IfCHiASB7K+0uaZig8yN4uD3A5jA+teXaTrlpotgZYY/NvHzncOnPr1xUMvjDV7yXEl28UZP3YTs/XqadkI9Y1/4f3Op6NBFbXv9o20HyWzO+2aOMY+QSfdkAwcA7cZwGAAFcRbeC/K1BLKa9hs5sj9xODE5JOON3Dcg/dJHuap2WvajH5UqXlyWVsrIf3jofZvvL9RzXY2XjK7ghaz1+xGoWWNsiSKCyYIwPm4bAzw/JPO89CAa198Mvtfheazjwb2NN9u7Z4cZwOwAPTnI5rxG2up7G73xjBVsFCe4I9+vT8q9102LT9UDSeDPEU+lXse4vYFsxoc/Putn+7gsFyuAD0ya8w8ceGNestWudR1OxRBO3mSXFsGaBnPVs9VJJAwQOSe1JMD3f4TfEKPxXpzWF3Iw1OzRQ/mMuZl6bhzkkcA8f3T3r0wHIr4r8J+Ibnwr4kstVi3FY2xKg4EkZOGX39u2dp7V9kabeQ39lFdW8gkglQPG46Mp5B/LFUMummN90080x8bD9KBS2Z4docfn+HtQxtzJcMMuAVHydSGIBGD0PB6VzsFuBqV3PbST3G9miWKREVWmI34bBBIznjAxng+u5oE4TQpQSMfalzn0IwSK5TUJtRulaG5ljEJYlVRVLe3OMivJjNKbRGExnsKNr6FsaVd2t/Fv05XBjZ1cxKfNZxk71AIUDDcAHHfrmpLHT7qe+hlSNH+xrs8tmZmKiMKR5fIG4kEDPc+tYralespV5mlVFOCQDjgjOD9a0tO0sXsdtN9tcfaQ5uQh5K5zgDHPXng/XoTtdJXOyOY1KiujWtfDRi1Q3R81FR2mYtdM2Q2QPl2g5yRnJP3D1zmu18GL/xdbWj0xZ4wfrF/n8a5Dw6iR3k8bSzFSocGRjggnr19c5+orsfBJH/CztbA7WoA+mUqaM+aa06nLia860oOfRnqArh/irpUur+F7WCGRY5EvVkBJx0Rx1/Gu471yPxGuPs3h+2kJuABdqD9ni3t9x+3+ecDkkA9OLU3Qlyb2NqTSmmzwe6i8Q6XlQ8+wdGxuB/Hn+dXNKi12+1P7NPdLA8KrI6zyBOCcKDjoSfl69a2/t+qSSRiLTZtpwUEsBByc9R6dD3xvB+bGKvtNNbmGC80iLaTskcCMLsLEbSzAKuMZUHAYnGRwq+XRw14/vkr+h1zrdEdn4S8MWek6W32ae4hvmO6SXfuIODgYOVI+Ynpz17CoNGj0dvELQP9qj1WSR3kZ2UEvktnGOAcE47dBVGDxTHbKbay097med38ydZBa+aqgfOpIyQVU5I4+XOeRUFhosNjqNncrdwRXspLhvPLK5ZAzYbuMeoU85xgrVzpyglZXRzPVnpVzbia2ELyuEYFWZSVYjHZl5U9ORXhfjrSZdD1mK0hkC2MkbmKeUk+QMtuRQx7fzPU173tV05wQwwecg1yHi3wbP4hlg8mWEIgYMZuSdxXtt6YBP1A+o6paJWRMXrqeFWdlcXd5KNIAlaXar3TDepUdcc4Y/N93p0GR0PpHgTwrfNavqD6jeRSOo8u43KRITgtkYIYcA57556V22keAtF00l3gN1I3DG4bcp4Axs+7jgdRkeprqFjUdBxUSjOb12Lc0tieiiivTMAooooAKQjIxS0UAc14ksBMqyYGxv8AWZAIwPUHrxXLrcm3vX+0COFYQA0rNg/KSUI25UDAPHDdW44r0DVFdrGQRJvkONo9Dnr+HX8K5C28DyS3wnvZQcNuzjp7KOgxj8+e9cNSk+fQ6ITXLqRWl1dXxEemB1twFXfIqnpgZUYyenc10lhoYiPmzySFyuG+c5PuT/nitKysLeyjCQoBgYJPJNW8CtoUEviIlUvohkaLGAqKqqAFAHYDoK5f4ieGJfFfhZrG3l2XEcqzRA8BmAIwfwY11dBGa6DI+Kte8PXOlXbW93BNbyKfmDKQCcf5x7fjWPHZkS5VgVHYDJr7a1PQNM1dAt/ZxTgfd3oDj6VhRfDTwxDL5i6cmc98/wAqAPAPAngy/wBZ1eB/JdYI2Du5H5Y9K98k8FWN5YrBdW6yBQQCRyPoa6iz061sIRDbQRxRgcKq4FW8UgPnfxd8Ib+yuV1DRJpC0RV0CZEilemMc8dsciuf034i+JPDcgsdftmv7VcIXfiRQMD72Oen8XPuK+pJYkkXDgEHiuU8Q+BdM12Flnt0MhGA4HPtRYDxk+GvBvjqBrnw9cLYXpG57ULtXA2/ejzwOcbkOASeteg/DTV5tFSPwdrMgTU7dS1sWbK3EWTjYepxz8pCkDHBwTXnviH4OanpMkmoaPM2+D97GIyRICvPy47/AORzXL6Lqurxa9p/iPUnvbyGylRJZ0l/eRKD9193ABB+h3Ebic4QH16ar3rmOzmcc7UY8ewNWGGRWbr8xt/DupTKSrR2srA+hCE05LRiaT0Pn7U9Qs9Ds7a1gzc3EqGTKH5CQxQnJ5xlSB9M98nCn8QXt1lV8qLjosYJ/M5/nV29/sxtO03F15t7JB5bh0+S1Uyu2c4yScg8DueoPC2tjo0LsJdVtSgQgHypXyx+qcD6V5PsYp3sepBYPBUYOcbt9zdtnNnbxJfWrSzqgMkieWozjITlu2QD+faktdSsNRjuJIRtkiZVIMak5bjcTkjqf0P1OLe3ELx3L/2zbyTTKUziUYXuPuc9vyFZj2VobdFg1giUxkSNtkbLE5P8AzzmqjRi9zy5Vabk7M9E0Z4ZY/KMSRhgCMZAY44GcYB4rV8Bvv8AitrRH3fs0g/J48f1rgfCMZ0mWcpP9qhk2/OqMpY+jA9ecflXf/Di6ifxtfRoP3k1q88jf8DTA/I0UqkFVUE7syqK8os9ZFef/F7VINI8Nabc3IkMB1FY3MbAEAxS88j9RgjqCCBXoAryv4/7B4Dsi6qf+JlHjdyAfKl7d/px9a9Rq6sbJnNz67Fc6UJf7XW9ecyTbRbiaUDqqiNxlMBh1yMZIyMGoLuSO1uLe3uZprjYFMjSfIiYwVl2JuKnIYHcgLKoOTg14pGWtpEkhOyVDvDhuQwPBVh3yMjH4muj0/xRqF4IdGvL2LyjPkXd35r7OP7mdpzyfmXOTyR2xdNo0UkdrqmoxQgvb30drCbSOFdswlaIDuoKhlbIPA+YbuB0xn22l6rq2mC/1ETjTynnxX1xGZ5JGKgsOPlOcclwx6gZYFRc8JWnhu7kvri5v/7QvJh5QySrtudlzjbhVIA7cbh6V3EkEjiJBYW8pt2BE8KNbGT5CMbMn5SNvz7jkYHOQKjbcowvCV7fWQXTrXVJbQ6dlmlgt3eBwyNkyAsFYEgYYAkeuOa9CtfH0FlFIviIR2gV5FjuolZoZQrYz04OMHglfmHzZOBwF1p1nbxfZIJYbeNJGgimASYpI25sDCjGXyDuOOmcAnFC3fVYLL7XOWtbyU+XHHGNxZwpL7lK5RgcFWHI+UEHjCW2hLR79aXVveQrNazxzQsMq8bhlP4irHevnDTvE9z4blfUYc2kb4S5Eb+XG8iqMMo2kEt1xzzu4GTXVQfHhEikN1oFwSrcMhKgjseVP9KadxWPZ6KKK6iAooooAKKKKAA0mBS0UAFFFFABRRRQAUUUUAFFFFABRRRQBHJCki4ZQR7141490X/hB9aXxZpaRva3UoivrJuFlznkfzOe9e01zvjLwoni7w/NpbXX2YyMrCXy9+0g+mRnjI696QHRGud8b3jWPg7U5I4nllkhMMaIMlmf5Rge2c/hXRVFPbw3MRjmjV0PYimTJXTR8nXehas4JXSb8HqcQNWcdF1lODp16v8AvQkfzr61Ogaaf+Xc/wDfbf40x/D2nMm1Y2T3DZP65rD2COiniasaapztJLuj5FjS9JdVRwUYq/H3T71NBE8citM5bHRQc5/OvqSPwNosDSNbwmFpTukMSopc+pwvNSnwhpxx8844x95f8Kl4dPQmdadrU0o+iPm+HxQ9lBHFb2iEqP8AWZG5vc59K7P4S60lx4+YzRrC9xZPFGFXG5gVbHHH3UP5V6yfBenM2WknbHTJXj9K0bDQrLT3DxKzyDgPIckD+VKlhYU5cy3OT2dRyTm7mivJzXK/EHS9J1jw/DY6xCJYZLkeWN5Vlk2PgrjqwG7jBzzkEZrrK5zxp4V/4S/R4dP+2/ZPLuFn3+VvzhWGMbhj73XPat583K+Xc6Fa+p85eI/hJqmnebdaFJ/almScw4xcJyeMdHA4yV5PPyjFefIwhmw6vuT5cZ+6Rx/P/Ir610n4f6lpvyy+JDdIPul7PDg/72/kfX86Z4i+E+jeKIy2ovtu+Nt5BEEl46buSHHGPmBIHAIrODqbSQ2l0PlhmlgjWWOSSFiuCeccg8K3XBB+nuc11Ok+Pr/SrgLHbQ3MMMewC4IOwA9VI+5wegP5kA16Gf2axxjxZgZyR/Z2fw/1vSnn9m9ZCzSeKQzEADGm7QMY7eZWjgmCkQReL9G1+1065EzaWbSQST22UiVUXONr4KEYYfKACQWypHI5bW/FEV032PS4PtSmSSKK5bfsfeeeAep/3sYJG3HJ7GH9nJoOV8WZPqdPP9Ja0I/gGqv8/iIPD5gmaH7GwV3BJGT52cYJ4BB561Hs2PmPE7u7u7x4zeCU+SfJQSDChlByuG75K5GCecHjGZreZIoFvbG4Rj92S3lYw7uP7ybNx4/HGa9hPwCnZog3izEcRJSNNO2hcnPA83A5A7dh7Yav7PFuokH/AAkCFX7GwIx+Uoq+W2wrnttFFFWSeYfHfVtR0bwJa3GmX11ZTvqCRmW2maNipjkOMqQcZA/KvnQeOvF//Q1a5/4MJf8A4qvf/wBoj/kntmB1/tOP/wBFS18xJjcN2duRnFJj6G9/wnXi/wD6GrXP/BhL/wDFUjeOvF/H/FVa5/4MJf8A4qsJsbm2525OM009RSGjof8AhOfF2P8Akatc/wDBhL/8VT4vHHi4tg+Kdb/8GEv/AMVXO0qkq3BwaCjqH8b+LPMwPFGtcf8AT/L/APFVA3jnxd5hx4p1vH/YQl/+KrC88liSOTTCckmkDOotfGvi1uW8Ua0frfy//FV9nV8LWwCwF8j0xmvumqRDCiiimIKKjllSJMs6r9TXHeKPF+o6Pq2nWmn2MM8Fykkss0jMDEI8F/lOOzLjJGSwHHGSwHa0lYur+IodH0y5v54ZmitkLyKoG7A6/wBM+n6V57rvxmtbfSft2mmKdHQNEPPjjLHOCMMd/wD4775pNAesyyxwrukkVF7ljgVy+pfEfwppF2tteaxEJi2wpGrOVPuFBIHv0rxrRdT1f4oXk1veeITYRqM+VCGVdgBJZn5zwD8ucHHbqNHxP4L8I+HfCF1YaW7XWuzqoiu5SS3yupby1XjHGMgcBuWx1Bnt2tSyRWaNG7IxkAypx2NYC3d2MD7XMQOpMhrd10Zso/8ArqP5GuOleY6pHbxuYo2jJLAjG7jjnqcZ4FbR2O/DRUoal0ancySvAl5MZEBDjzDkZ6fzH5VR1/Vr6y0m7lS8nXy4WKt55UlsYxnPHPT3rM2Sx6zI9vARIPmwZMqq7eOegyc/p14FVNQ1CK50bUotTjMkQtnkfauMKq549cdiM4PfNNNJo7ZYdct10PNpvGXiO20/Y2v6s06qxd/tshw+7kZDdgoH/Aq9T8G6nrEul3Md5qV1cNHOYopmnZiwVI1Jzn+9u/HPvXP+GPD+nWumWmtarKkdxJGG2tthQLkbQTwW6L1JHPTueui1zQxsih1OxG1dqIlxHxjoAM9Pp+VXJHJGMY6yRF4v16903wubqK+ukmlkjVCkrAglwx79Nu78q4jXPEXiKKH7KNY1GKe1EKyOl24Lny2GOD1yMn6itXXvEGlyPDdXFws0BTNlZYba5/56PtPflQGyu3cTntyETXPirWI7m3huFE12rZVSUVcYY7uTwAOvPPWtIpKLuVDlvsey6Tdaj/ZVmZ724kl8tfMYyHJOPr9a6vW8nTigkkjEh2Fo5CjAEEcEEEH6c+nNcjK5trKR0j3si/KoJyfyBP5An2PSuv1n/j0T/roP5Gud2ukc+MVrNeZxWla1e6fqh0LVb2drhy0lrO8pIuEz79GHcDIGeMAqo6IXVwf+W8v/AH0aytZ0dNZ08Qecbe4jdZba5UAtBKPusM9epBHcEjvUGha0+o20tvdLFFq1o/lXcCtwG7OuedjdVJ+nBBqtDhN77RcY/wBfJ/32aPtM/wDz3k/77NVQW3gO5Vc8dCT169vT39advUsdrA45xnPWiwyY3dxjiaU/8CNNa+mjyzXDLH6mQk/lTCM46c1Tnkjhzt/eSKOFGBzjPXoMgfmaVgNQXM5GRPIR6hzinC4nHJnkx6ljXPaLqEz6hd2NwEA/11sV6Mn3WXoOVO0nk8v1IxjI+J2qHS/CkbC6uLXzrpYvNt5vKYfI7Y3YPB2+lJger0UUVkM8j/aK/wCSf2H/AGFY/wD0VLXiOj/DHxdrthBfWGlF7SZd0cjzRpvGcZAZgf0r6Y+JGg23iHQ7K0uoWliS9Eu0MQAfLkAJwQT97+WeM1m6FapodglnIrC3DFUEbEBB2B5HToMdhnvUSlYasfOWs/DrxXoFs1xqOkSJCuS0kbrKFABJJ2EkDAPJ4/SuYI59+/tX2fex2txat9njknkJyg8w4Q9jyenHoa+ZvFnw9vdCle4sg91YEEpJwSMZyCB6DOeBgAngCpjIq3U4kYzzSnAPymnxW8s8yQwxSSSvwqINxb6AVtad4Q1rU1aSOyeOJc5aU7cH06Z/SrdhGDRX0Svwh8HXWi26i11KKcIN9zBKWZzjqVIYDPsvFeZ+PfhvN4SRr20uTcWDSbVEibZIwckBuxwByeD7VKkmUjgq++K+B/8APFffFWiZCHpWde6gI5BDEw8zq3PQVot0x6mvKPFPiOHRfFz2F1df2fdMDJbS3PMF5E5zglQfLZW3LkjkDP8AEKqO5D2OgTWpofFjadfTWojuEBs1Dnz2YAlsjpjg8nb0xWB8Vb8WPh+HULUyC6jkWINEWyqsyucgEAqTEoweeevY07uS8utRtLw2ubmNSqSwMjhlYdAQSSOfbvxVO81O9t8/abS9RR1dgkaj1OZHUelacqJcr7I7jTtah/sOw3qIZBbR7oghTYdoyNp5XHPB5+tY9y3hq1me9Ol6ek5JZpltk3EnrzjOTWFpcV9rEYlgityjAuhS5+0MwBwRtiG3Oev7ytbVfDX9kabZ6gbh5dRluIIbaRod0UDSyKgYplR/Fj+JhuGDgGjRE3kZdromnXev2thZaRBb62y3F8PLYRG2jJVAXK8ncGyMgkZIwO/oPh/wRpeiyfaHT7XfcZuZxubjGOpPIwOSSfp0rH8KXzv8UfFenXEiEW9rZiyQRgYi2sz4IHI3vk5JPI9K9A71m9zRGXr/APx4J/11H8jXC63eG0WLa5RXJyBnc2OcDj0BrutfGdPUf9NB/I1yl3YW16U86LzPLIIxkfy6j2PHtWkNj1cFJRjqefR+JLiHUWll2KCPKYW2IpCBjOPU9D7/AJCumimjvNHSXR5I5WONzn7/AD1zg59Bjjp19eI1iy8jUr6BAUiDs27ajKf4gPmXOcEcZ6+3NUtB1u60jXjOimW1lx5iKn8HHOMZz6nnoeTiuudK6TR6NV8rTS0LGt3lzpmpRsEFxdNklZI12uQcBuB1zk47YyTS3niTVJraJjOLe1uXBKxYQSDp8uDvHzAg9/QnNehzWmn6mtrd3ENpd25woMyK+S2MFcg87toxx174ArN8R+Gf7WlTyYcJDGreWMojcMAAR6cZBAGB15NSptaM5qnvyd9jlby58zRLjVIIk8xJXF0sJ8sx4XAbIAC5YZwODvI68i14Yu2XWomtWP2edFjAePO7ggk4xj2HI4Iye+r4S8OzRW99HeFZIZwVkXafnY43EqRg45B7c47YGhF4Vt9Ib7TZmeVUlDsu0SMy98EYJ+Yb/rnrnBUp30IpQUNGdRkDGAR/Dnt7j/Pr2rf8Si9/s1GsPs5lWUEpPuCuNp43DO05xzhuh45yMCM+YoOTgqCN/DY7ZBxjr3FP+KXixfB3hD+0RAZp5JhBbrxtEhRyC3IO0bTnHP8AOueWjRxYvoZU3iy306ZLfW4ZNKdvl86U74WJz92VflUHB5k2njgVyHiKz/4RnU7fxX4fFvJp1w+JsvtTcxwSH7I5xgngPtbIV3B5fw/8Wora3Eeu6fJczSlFe8YhmeMEh8gj6gAZHzHpyTYvfFngN7V5dE/tPS7y5wj28KJHC42sB50ZJiZDkE5DcfjQ2cVj1mwvodTsIr2BCYpE4Zm2lPmO4N02kN1HOCCCOCKSbXLW2uWtERp51O0pEFAGMZy2cDG7ocHg4z38Y0fxF/ZUE8E8SXFhKiO0+l3DR79gxJJ5TdXxs3KCnyjdgqWNemeG/EvhHVYre3sryGGbC+Xbzx+XJyueA33u/IznPX1Exm1crLeRAzSTJFj544AcEEY4wN5wSeVK/lUN3I8AVlQeWpBbC5w2Qeg4HJ654PuasrbXuplit41pZE/u/IVWkmI4LbmBAU4IwASQAc9qo65pV1pOmTalpF5IZLOJpXtbgh0mRQSVBxuRsZ2kEDPUYPDAz0k+x+IdH1A3zOksjW2TtKmN1AUKV45kER+hqL4vwTP4Mgmt22yW19FMpyBjhkzz7vVPWbme38PwalCkc8izRXotwNgIV93GeAFxyw9M85q78Sdc0y4+H84inhn+2GNooySpYCQNnb1wCBn0B96TYmew0UUVkM5fxxaR32nafbSxtJFJfIGAI4+V/m59Dg/h0PSsm4tNSvI7uMW0EkDgYeQMuR2G056c9hzjrkYtfE2/TT/DtrJIyqr3gQlmAA/dyHv16YxXIaXrcV1YmOQXSwwnCLaO8PHOMFWTOcdB6j8c5XuZyim3c7G2iurbTFsElBuzku8EfCDOcbTkL1wAfqM4OMXW47fTdAmubi7Q5LSO6naFcA9BnAAKtkDPT2NXDZ28awusmoMwIPzXs+AO+75zn0x6n8a8l+JnisTzy6TZr5bFh9pdQFY7eAGI6nv+WOME5O7djWMEtibwQLDXG1eOwVLd5Loyyog/ePH8pB5HCkg/LyAfqM99Y2EOnXiLFaQJF5ZlmnlwJFjAPDd8fKOSAMHp1NeA+HLma01hfJd1aQEDaSDwQeMEYPccjmvfNLu7tT9slaGeeSAQGRnMbqN5Y4YZXA3cDZk4GWNXbUmatsaSatDBEk1hcW6W7sys24KQcklgpyCSc5475yc1B4x0KLxHoDx37SzxqgIijC8OP+Wg4zuAJ7kcHIPNXHGlC1Mh0uWAxyjLyQCYyjOSwEZZu/cDHoASafNDbaktndSBU8gq6RbJFZCMHjcFI/75HAGRSdkEOdK71PmzxR4Kv/DYFxkT2jEYmUYKk/3h/Ijg+2cD7QYkLkV85/EjxDp9tFe2QjEjTRPGtuQdxJB/ecjG1eCCM8gY7lfo2tIO6Kfoc14zv9dsNE87QrBryXePNEeDIseCSyKfvHIXjuCcc188+LLC81UL4hvbTUoLeEiOW9mt2kLENt5GcDDHHzMuQRgHGK+q8Vz3jnRP+Ei8D6zpSwedLPav5Me7bmVRuj5/3wv9eKsRi/CWeS7+H2nT+but/wB4kCfKSqK5XDEAZOVY5wOG9s1T+Nek/wBo/DPUXWNpJbRkukUdtrAMT/wAtWJ+zvqX2jwZf6e8xeS0vWIQnOxHVSPzYPXpviLThq3h/UNNLiMXdtJb7yPu71K5/WmB5f8AAHUPtXg2aBwP9FvXVBnOAwDZ/NmrtPiCCvg/ULiM4ktEF7H7tCwlUfmn6145+z9fCDVtXsHcq7pHIqHttJDcf8CWvbfFN3p9t4fu5dUliisREyTtI3GDwR6nOcYHcjHNMk5q2Bt/jrBcmP5L3QXhDqOrLMrEn8No/KvSwa8w+Gt43ia/t9VBMkWk6eNOknYAie5cRPLtOc4TYozj5vM4JAyfUKTGjL14ZsY+QP3o6/Q1zTj5TzkHt2NdLr3/AB4p/wBdR/I1zLyIhClhvOSBnritYao9LDfwzkvGdlaRwjUWnkhuNyhShAU+hPQ9AwznuK8+LwOWieaVDIMkbAAxxgncecHjB579a7zxsGVLWQFljG8bjlQpOOT/AJ7etef2Gny6nq8EceEiY/PgHk7sHnGcYPfsG6fdrtpv3LnqrSkjXtfFGoaLFBpiMbjyZDLJtxu2AH5eRxzznHPODmtM/Ea5WKZoNMWOKNW/10j79/Ixkj5jwPzFZN7CkFtfl1ZfL1Bba1wMBUUYyOOOGBJHXOcZrNMUF+qSmNfOQ7g/que/vwfxHTmmoRkrmcI8+q3Oy0L4gWTL5dzbSRAMS8hJbGSfr/PvXbWd9bahAs9tOs0YOQynp9eBzXjTWJR/MVzkHryrHnoTnP8AXoDnrXZeDtIvor5L4CNLR927gAvxjkD3GaidJJXuXPDpRbkzvc7hkEFawvj9PDbeBbCSe2WdP7UjGxiR/wAspeRjv9c1vDPBCj65rS8caHpGv6LDba3AJrWK4EwUysgDBWGcqQTwTxXHNao8bF9D4/0/SdZ8T38i2FlPdzMxaRkHCk/3mPA/E16jo/wIklt1l1nVDFMT80NsA23npuPX8vzr1jTFW2iaC0iggsI8JbxRQ7BGBkNnnB+YHsO/Xqbckvl7eHeRh97aCPbP48fjQo3OK9tWeP3fwetbO8jbSdYuIpIvmHmqku49sLxwSGBDZ69+lZeqeHtZ03SotNt0SdhIW/sy6iSRIQwyfKZslQcMQQ2cCQdY2ZvX7N1jjScQRxLKzgSGQSFsO2MHJyDkkc8cjA4zj+LmtZtNMk0gh1OIbrdy20kjDbC3TnaCOu0gMAStDjbyGmnsZfhW/sNP0+0lbxFd6RPHEDdWOqA+QZMbfkMmBtypwEfnGOMGtmL4keHdQnutN/tC0aXDIrJIWRwSFUcqCzNk8KGAxye9ZCXsupaZBqV2vlo+IJHkwMMHG5dpB2E45X2GGYfPXP65oHhlFg+22tujSMdrIrgYwAR8uDgfLjr9Bmleyuyo05TklFXZ1OrI0c0MV1ArBsCJUQHzAcK3GOQBzxjIAOARzx7aFYadqj6nq8BueNzWx5UdwScHcGI7YGCwyQeKuiXkNlObHTr3UfsfSO0ursLFMCeRgjbGeQevOCOMim6vf2Omlr3XZVvtTV3UadD/AKuMbQcOTjaBkr/e4xwBUKalszavhatB8tRWPqOiiikc55P+0FuHgKxZc5GpxnIHT91LXmngvXdO+yrb3euXlhOsexi8RmQMCcFdpyvbquOOp616b+0AwXwHY7gCDqcYOf8ArlL7GvnRJ0+VW3bV+6vp+tRJ9DWNJTR6T4m8eyWFu1to+ry3kzN81y8GxFXGPlVmZs9PQDPfIx5rJM9xI0szs7sdzM5yST1NWw1pK67ygwMYAx/UfzqaPTraZWeK4jLKCRGu8n9Aw/Ws9DRUrbGarGORZY22yIQyt6H1r0DSPGVyLaOSS2MaE4WcFiokB+6oBwcnB7da5aTw1crDGUeOaSXiKOCWKVifQhX3A/8AAas2kuveErhljE1tLKmJIXiIBGO4lXafyNUmRUpOSPYNJ8R2wtgPtFuIwoOIgz87iDjuT/s4yOCQMjNDxh49t9JtHitXjmupAQiK2SPdvTnt/Pt5prPi2+1S3Ft9jsoCq5Z7O2QO3QklxkqT324HtXMiJ2RmIPy9flP6fpQ9TOFLl3Kmp3d3fXst3dyvLLMdzOec/wD6q+7q+Fbk+WgKEkj7wP8AhX3VWiE9wpG6UtFMR5lq/h3WfB3iS/8AFnhOzW+hv1LalpIba0jjJEsTd2yT8uCTuOOSNuPqfx6sbOOa2fw3q66nEQslrMFRUPcFwWI7/wAPavZcCk2r6D8qAPjHTtf1s+M7zU/DkAs7+9kk22tvH5hIZtxVVYNzkDt9B2rv7H4Z+OvH95Fd+KtQns7HO/bdMfMUHdwkIwEOVGeF4OeelfR+AOwpcU7isZmg6JZeHdGtdI06Py7W1j2ICck85LE+pJJPuTWnRgelFIZl69/x4p1/1g6A+hryHV764uNZnR4zmM/6NIDgxtjpxjjcpzn1HX+H1TxddrZaMsrFf9aAAzYBOD35/kfpXi80bCSa5SNnSWVpPmUOG3ElhwAcEcbuCS2M4ANduHVo8zPYy+F4XsdZfu2rWlvYLGBcXOCXK5WIAKWI6E8MB269RTNJ8N2WhyGVnWSXhY5GULtHXjOeevP1985dxr81hYJHgyTxAoJTE+OABuyAQSck4yOCcmsieRnAnuIZ7sEkmQy8J0H/ACz6DIJ5P41UYykmnsdjhPlcVsP8fmWS9APEMaKQwwQwJ6n06tz7VQ0HR5bnUreJIMIrjcE5CoAMknsfkwD7V2mo6LZ3K6RaTqd7koOrF41UsQTycenPetzTdHtNMRktIBEGO5myWJxzyTzx2Huap1FGIvaQhG63GQaNp9tc/aYbWOOVh1UcfgOgPHUetaC4QYAx6c1Xur61so91zcxQBuQCwGecfjz/ACpljqVrfxmazuY51xyUbP49sD8KwtJ6s5m5PVlxR/eA/Cug8QyxRWMQlmji3yhFMjABmIOAPf6Z+lYBboQAfp0p3xQ0u71bwbNDZLA06M0ipNAsu/EbjaoYHDHOARzWUt1Y4MX0sc5NqFsmqvaWWp2xm3nzmmuP3lsxKqsQTqCWyRnuQDneM8P4g1e7u7uS2nmkMVvIy4ZslmBI3HAAz16YGOgxXk41ONngeS2XfGMNIAOSDkNjoGPQnkH0zzWtD4u8s+XLbKYhgII2I8tMcLg8nAAHXPuetehl2Io0qjlVR5WKp1JxSgzv9I1n+x2upnl2RNbu2TjG5VLJweM5AH0Y+tQWya34wmlu7aMtZrKUaeVtiODjrkkgAxg7FzkN2H3vPtR8Ry6jGLaOIRRscsWPLY/kM8/1r0r4c+KLV7EaRcSwwXCtutyZMefk/j83I4z/ACrzuIMeoxdXDxvb+r2NsvoSUeSoyWLR/FOgW+o3cd1p7wShZJ7bLFcpgiRdwHzDABBwrDg9qyNYxq1vFcaZbTSW8ckpeQDhjlc4P8XzbuRx6Y5r02WeBdkEhVvNyioFLZ45yOSAB1JwAO4ry/X/ABbaG6FzaXymCB8W0UOAFOBluOg/qB2zXgZTja+NhKFZW63tp6HrKawlWNWGtjn8Yx3z0/p+tMvda2M5PlzXqbUE7FTsUKABuIPYgcYK7Md8DD1K/S8uWk86fbIxyg4Gf8n/ADmqCRyXc6W9uju7thIlG4sx6AAdycCvWpUOR7nTmearFw5IxskfeVFFFaniHJ/EHwWfHWgwaYNR+weVdLceZ5AlzhXXbjcP7+c57V5v/wAM5jv4pH4adj/2rXulFKyGpNbHhf8AwzkgbK+KSPrYZ/8AalPH7O5Gf+Kq/wDKf/8AbK9xopciK9pJdTxUfAKdYREPF8gQHIUWOAD9PMp6fAe6ifdF4uMZ9U04KfzEma9noo5EP2s+54u3wEkdiX8UK5bqX0/cT+JlNMP7PqkHHiXBPcWPP/oyva6KOVB7SXc8Nl/Z181Cp8Vde50/JH/kWvcqKKaViG7hRRRTEFFFFABRRRQAUUUUAZHiHQk8QWEVq8oj8uUSglN4yAR0yP71ctD8MQl59ol1ffxtKLahQFwRgDccda9AorRVZqPKnodFPFVqceWDsvkeen4WW/niZdQVJByHW2+bOAOfm5HGMVai+G9vb3a3UN9sk2bGTyMxt6kjdn1713FFNVppWuU8bXe8vyOXfwpdmEGPVIkuQxxKLTIK7cYK789cHqKoX3gnWLuxlhi8SrazShVaSKyOABvztBk+UncvIOfl9+O3orOUnJ3ZH1mr3POL74VyXhtydefMMXlBnhcscksTlZF/iZj6Y2jtk6WgfD1NCinA1WW5lm275JIlHTOMYPuepNdrRWjrTatcPrNW1rmJ/wAI/wDNk3Of+2f/ANetG+s/tsCx+Zsw27OM54Ix+tWqKzcmzOdSU/iPG/FPwBtPEGuTalaa5/Z/n/PLELPzAXPVh864z/PmsX/hmf8A6m7/AMpv/wBtr36ii7IPAR+zOR08Xf8AlN/+21Mn7OEsUiyx+MWWZSGWQaedykdCD5vB4Fe8UUnqFzx7UvgnqWqMZJ/FtuJnh8mWZdGQSSDuS3mZBI4JGMjg1hn9mjJz/wAJdz/2Df8A7bXvtFKKUVZDbbPAh+zRg5/4S7P103/7bXceDvhBpHhBRPHP9r1HnN3LDgrkYwgydoxnuTyeccV6LRVXEFFFFIAttCQAsiQotwsxujAwSy0JzgD/2QoK'img_data = base64.b64decode(url) 返回的是二进制数据print(type(img_data))fn = open('code.png','wb')fn.write(img_data)fn.close()'''我们打开了一个有base64加密的图片数据''' 本篇文章为转载内容。原文链接:https://blog.csdn.net/httpsssss/article/details/116136614。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:40:55
563
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
unalias alias_name
- 删除已定义的别名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"