前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[TCP IP套接字编程实践]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MySQL
...的SQL查询功能。 套接字路径(如/var/run/mysqld/mysqld.sock) , 在计算机网络编程中,套接字是一种进程间通信机制,允许不同进程之间进行双向数据传输。在MySQL的上下文中,套接字路径通常指的是MySQL服务监听客户端连接的本地文件路径,MySQL服务器通过这个套接字文件与其他应用程序(如PHP、Python等)建立本地连接,而非通过TCP/IP端口进行远程连接。 find命令 , find命令是Linux及类Unix操作系统中的一个强大实用程序,用于在指定目录下查找满足特定条件的文件或目录。在文章中提到的场景中,find ./ -name mysqld这条命令是在/usr/bin目录及其子目录下搜索名为\ mysqld\ 的文件,以便确定MySQL服务器二进制文件的确切路径。该命令根据用户提供的条件来遍历文件系统树,返回符合条件的文件或目录的完整路径名,从而帮助用户找到MySQL的安装路径。
2023-12-31 14:25:35
112
软件工程师
Netty
...可用性 在高性能网络编程领域,Netty作为一款异步事件驱动的网络应用框架,在处理高并发、高负载场景时表现卓越。本文将围绕如何通过配置ChannelOption.SO_REUSEADDR这一参数来提升Netty服务的可用性进行深入探讨,并结合实际代码示例以增强理解和实践效果。 1. SO_REUSEADDR的含义与作用 首先,让我们揭开SO_REUSEADDR这个神秘面纱。在咱们的TCP/IP协议这套体系里,有个叫SO_REUSEADDR的小功能,可别小瞧它。简单来说,就是允许咱在同一台电脑的不同程序里头,即使之前某个连接还在“TIME_WAIT”这个等待状态没完全断开,也能重新使用同一个IP地址和端口进行绑定。这就像是同一家咖啡馆,即使前一位客人还没完全离开座位,服务员也能让新客人坐到同一个位置上。这对于服务器程序来说,可是个大大的关键点。想象一下,如果服务器突然罢工或者重启了,如果我们没把这个选项给设置好,新的服务在启动时就可能遇到些小麻烦。具体是什么呢?就是那些旧的、还没彻底断开的TIME_WAIT连接可能会霸占着端口不放,导致新服务无法立马投入使用,这样一来,咱的服务连续性和可用性可就大打折扣啦! 2. Netty中的SO_REUSEADDR配置 在Netty中,我们可以通过ChannelOption.SO_REUSEADDR来启用这个特性。下面是一段典型的Netty ServerBootstrap配置SO_REUSEADDR的代码示例: java EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 配置SO_REUSEADDR选项 .option(ChannelOption.SO_REUSEADDR, true) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { // 初始化通道处理器等操作... } }); ChannelFuture f = b.bind(PORT).sync(); f.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } 在这段代码中,我们在创建ServerBootstrap实例后,通过.option(ChannelOption.SO_REUSEADDR, true)设置了SO_REUSEADDR选项为true,这意味着我们的Netty服务器将能够快速地重新绑定到之前被关闭或异常退出的服务器所占用的端口上,显著提升了服务的重启速度和可用性。 3. 应用场景分析及思考过程 想象这样一个场景:我们的Netty服务因某种原因突然宕机,此时可能存在大量未完全关闭的连接在系统中处于TIME_WAIT状态,如果立即重启服务,未配置SO_REUSEADDR的情况下,服务可能会因为无法绑定端口而无法正常启动。当咱们给服务开启了SO_REUSEADDR这个神奇的设置后,新启动的服务就能对那些处于TIME_WAIT状态的连接“视而不见”,直接霸道地占用端口,然后以迅雷不及掩耳之势恢复对外提供服务。这样一来,系统的稳定性和可用性就蹭蹭地往上飙升了,真是给力得很呐! 然而,这里需要强调的是,虽然SO_REUSEADDR对于提升服务可用性有明显帮助,但并不意味着它可以随意使用。当你在处理多个进程或者多个实例同时共享一个端口的情况时,千万可别大意,得小心翼翼地操作,不然可能会冒出一些你意想不到的“竞争冲突”或是“数据串门”的麻烦事儿。因此,理解并合理运用SO_REUSEADDR是每个Netty开发者必备的技能之一。 总结来说,通过在Netty中配置ChannelOption.SO_REUSEADDR,我们可以优化服务器重启后的可用性,减少由于端口占用导致的延迟,让服务在面对故障时能更快地恢复运行。这不仅体现了Netty在实现高性能、高可靠服务上的灵活性,也展示了其对底层网络通信机制的深度掌握和高效利用。
2023-12-02 10:29:34
440
落叶归根
转载文章
...入理解了Python编程中的闭包、装饰器、设计模式(如单例模式和工厂模式)、多线程、Socket编程、正则表达式以及递归等核心概念后,进一步的探索可以聚焦于这些技术在实际项目开发与前沿研究中的应用。以下是一些建议的延伸阅读方向: 1. 实战案例:查阅近期开源项目中如何运用闭包实现状态管理或函数封装,例如在数据库连接池的设计中闭包的作用尤为关键。同时,可关注GitHub上的热门Python库,了解装饰器在权限控制、性能监控等方面的实践。 2. 并发与并行编程发展:随着异步IO模型(如asyncio)的广泛应用,多线程编程在Python中有了新的发展趋势。阅读相关文章或教程,掌握协程的概念及其在高并发场景下的优势,并了解如何结合异步Socket通信提升网络服务性能。 3. 设计模式新解:近年来,领域驱动设计(DDD)、响应式编程等思想对传统设计模式提出了新的挑战与机遇。阅读有关如何将单例模式、工厂模式等经典设计模式融入现代架构的文章,以适应复杂软件系统的需求。 4. 网络通信深度解析:深入学习Socket编程底层原理,包括TCP/IP协议栈的工作机制,以及WebSocket、QUIC等新型传输协议的特点及其实现。实时跟进Python对于这些新技术的支持与发展动态。 5. 正则表达式的高级用法与优化:通过阅读最新的正则表达式优化指南,掌握如何编写高性能且易于维护的正则表达式,同时关注re模块的新特性,如regex库提供的扩展功能。 6. 递归算法在数据科学与人工智能中的作用:递归不仅在遍历目录结构时发挥作用,更在深度学习框架、图论算法、自然语言处理等领域有广泛的应用。阅读相关的学术论文或博客文章,了解递归在现代AI领域的具体实践案例。 总之,理论知识与实践相结合才能更好地理解和运用上述编程技术,时刻关注行业动态和最新研究成果,将有助于提高技术水平和应对不断变化的技术挑战。
2023-05-28 18:35:16
90
转载
转载文章
...cket()//创建套接字 2、Setsockopt()//将套接字属性设置为允许和特定地点绑定 3、Bind()//将套接字绑定特定地址端口 4、Listen()//打开监听端口属性 以下重复进行 5、Accept()//接收客户端的连接请求 6、Read()//从客户端读数据 7、Write()//将处理好的结果发送给客户端 二、HTTP传输协议 基于socket的TCP通信,按HTTP传输协议格式化传输内容。 示例: 1、客户端发送HTTP请求 GET/txt?hal=1000HTTP/1.1 Host:localhost:1024 User-Agent:Mozilla/5.0(X11;Linuxi686;rv:2.0)Gecko/20100101Firefox/4.0 Accept:text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8 Accept-Language:zh-cn,zh;q=0.5 Accept-Encoding:gzip,deflate Accept-Charset:GB2312,utf-8;q=0.7,;q=0.7 Keep-Alive:115 Connection:keep-alive GET:发送HTTP请求的方法,还可以是SET或者POST /txt?hal=1000是请求根目录下的txt文件内容并传入参数hal=1000 HTTP/1.1表示HTTP版本是1.1 2、服务端传回HTTP响应 HTTP/1.0200OK Server:ReageWebServer Content-Type:text/html <!DOCTYPEhtmlPUBLIC"-//W3C//DTDXHTML1.0Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <htmlxmlns="http://www.w3.org/1999/xhtml"> <!--Copyright(c)2000-2008QuadralayCorporation.Allrightsreserved.--> <head> <title>WebWorksHelp5.0</title> </head> <body>wuff</body> </html> 前面四行(包括空行)是消息体,后面是消息。一般要指明消息体的长度,方便客户端的接收处理。 三、示例程序 ====================================================================== / 主要实现功能,处理浏览器的get请求信息,发送网页文件。处理404、403等错误。 1.实现绑定本机机器的1024端口作为ReageWeb服务提供网页服务的端口。(避免与机器上装有web服务器产生端口冲突) 2.实现get获取网页方式。 3.实现index.html作为网站的首页面 作者:Reage blog:http://blog.csdn.net/rentiansheng / include<stdio.h> include<stdlib.h> include<string.h> include<sys/types.h> include<sys/socket.h> include<sys/un.h> include<netinet/in.h> include<arpa/inet.h> include<fcntl.h> include<string.h> include<sys/stat.h> include<signal.h> defineMAX1024 intres_socket; voidapp_exit(); / @description:开始服务端监听 @parameter ip:web服务器的地址 port:web服务器的端口 @result:成功返回创建socket套接字标识,错误返回-1 / intsocket_listen(charip,unsignedshortintport){ intres_socket;//返回值 intres,on; structsockaddr_inaddress; structin_addrin_ip; res=res_socket=socket(AF_INET,SOCK_STREAM,0); setsockopt(res_socket,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); memset(&address,0,sizeof(address)); address.sin_family=AF_INET; address.sin_port=htons(port); address.sin_addr.s_addr=htonl(INADDR_ANY);//inet_addr("127.0.0.1"); res=bind(res_socket,(structsockaddr)&address,sizeof(address)); if(res){printf("portisused,nottorepeatbind\n");exit(101);}; res=listen(res_socket,5); if(res){printf("listenportiserror;\n");exit(102);}; returnres_socket; } / @description:向客户端发送网页头文件的信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 / voidsend_http_head(intconn_socket,intstatus,chars_status,charfiletype){ charbuf[MAX]; memset(buf,0,MAX); sprintf(buf,"HTTP/1.0%d%s\r\n",status,s_status); sprintf(buf,"%sServer:ReageWebServer\r\n",buf); sprintf(buf,"%sContent-Type:%s\r\n\r\n",buf,filetype); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送错误页面信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 @msg:错误页面信息内容 / voidsend_page_error(intconn_socket,intstatus,chars_status,charmsg){ charbuf[MAX]; sprintf(buf,"<html><head></head><body><h1>%s</h1><hr>ReageWebServer0.01</body></head>",msg); send_http_head(conn_socket,status,s_status,"text/html"); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送文件 @parameter conn_socket:套接字描述符。 @file:要发送文件路径 / intsend_html(intconn_socket,charfile){ intf; charbuf[MAX]; inttmp; structstatfile_s; //如果file为空,表示发送默认主页。主页暂时固定 if(0==strlen(file)){ strcpy(file,"index.html"); } //如果获取文件状态失败,表示文件不存的,发送404页面,暂时404页面内容固定。 if(stat(file,&file_s)){ send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagedoesnotimplementthismothod\n"); return0; } //如果不是文件或者无读权限,发送无法读取文件 if(!(S_ISREG(file_s.st_mode))||!(S_IRUSR&file_s.st_mode)){ send_page_error(conn_socket,403,"Forbidden","Forbidden<br/>Reagecouldn'treadthefile\n"); return0; } //发送头文件,现在只提供html页面 send_http_head(conn_socket,200,"OK","text/html"); f=open(file,O_RDONLY); if(0>f){ //打开文件失败,发送404页面,其实感觉发送5xx也可以的,服务器内部错误 send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagecouldn'treadthefile\n"); return0; } buf[MAX-1]=0;//将文件内容缓冲区最后的位设置位结束标志。 //发送文件的内容 while((tmp=read(f,buf,MAX-1))&&EOF!=tmp){ write(conn_socket,buf,strlen(buf)); } } / @description:提取url中可用的信息。访问的网页和数据访问方式 @parameter: conn_socket:与客户端链接的套接字 uri:要处理的url,注意不是浏览器中的url,而是浏览器发送的http请求 @resutl: / intdo_uri(intconn_socket,charuri){ charp; p=strchr(uri,'?'); if(p){p=0;p++;} send_html(conn_socket,uri); } voidulog(charmsg){} voidprint(charmsg){ ulog(msg); printf(msg); } intmain(intargc,charargv[]){ intconn_socket; inttmp; intline; structsockaddr_inclient_addr; charbuf[MAX]; intlen=sizeof(client_addr); charmethod[100],uri[MAX],version[100]; charpwd[1024]; res_socket=socket_listen("127.0.0.1",1024); //当按ctrl+c结束程序时调用,使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
90
转载
转载文章
...al lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
Netty
IPv6 , IPv6是Internet Protocol Version 6的缩写,它是互联网协议的第六版,用于解决IPv4地址空间即将耗尽的问题。相较于IPv4,IPv6使用了更长的地址格式(128位),理论上可以提供几乎无限数量的IP地址,以满足全球不断增长的设备联网需求,并为物联网、移动通信、云计算等新兴领域的发展提供了充足地址资源。 Netty , Netty是一个开源的高性能异步事件驱动网络应用框架,主要用于Java和JVM平台上的客户端与服务器端网络通信开发。它支持多种传输协议,如TCP、UDP,以及HTTP、WebSocket等多种上层协议。在本文中,Netty展示了对IPv6的良好支持,通过专门API处理IPv6地址及相关的网络操作,同时兼顾与IPv4环境的兼容性问题。 双栈模式 , 双栈模式是指在同一台设备或操作系统中同时运行IPv4和IPv6两种协议栈,使得设备能够同时支持IPv4和IPv6的连接请求和服务。在网络环境中,采用双栈模式的系统或服务可以根据客户端使用的协议自动选择响应,从而实现IPv4和IPv6的共存与平滑过渡。在文中提到的Netty框架中,可以通过配置双栈模式,使Netty服务器既能接受IPv4连接,也能处理IPv6连接,增强了系统的兼容性和灵活性。
2023-01-06 15:35:06
512
飞鸟与鱼-t
Netty
...Netty进行高效的TCP/UDP通信,还可以在最新的互联网传输协议上构建高速、安全的应用服务。 同时,业界也涌现了不少关于Netty深度优化实践的文章与案例,如某知名互联网公司在大规模并发场景下如何调整线程模型以提升服务器响应速度,或是在特定业务场景下如何通过精细化配置Netty参数来节省内存占用、降低延迟。这些实战经验为开发人员提供了宝贵的参考,帮助他们在实际项目中更好地发挥Netty的优势,实现更优的网络性能表现。
2023-12-21 12:40:26
141
红尘漫步-t
转载文章
...一台主机连接时使用的TCP/IP端口号。(这用于连接到localhost以外的主机,因为它使用 Unix套接字。) -q, --quick 不缓冲查询,直接导出至stdout;使用mysql_use_result()做它。 -S /path/to/socket, --socket=/path/to/socket 与localhost连接时(它是缺省主机)使用的套接字文件。 -T, --tab=path-to-some-directory 对于每个给定的表,创建一个table_name.sql文件,它包含SQL CREATE 命令,和一个table_name.txt文件,它包含数据。 注意:这只有在mysqldump运行在mysqld守护进程运行的同一台机器上的时候才工作。.txt文件的格式根据--fields-xxx和--lines--xxx选项来定。 -u user_name, --user=user_name 与服务器连接时,MySQL使用的用户名。缺省值是你的Unix登录名。 -O var=option, --set-variable var=option设置一个变量的值。可能的变量被列在下面。 -v, --verbose 冗长模式。打印出程序所做的更多的信息。 -V, --version 打印版本信息并且退出。 -w, --where=@where-condition@ 只导出被选择了的记录;注意引号是强制的! "--where=user=@jimf@" "-wuserid>1" "-wuserid<1" 最常见的mysqldump使用可能制作整个数据库的一个备份: mysqldump --opt database > backup-file.sql 但是它对用来自于一个数据库的信息充实另外一个MySQL数据库也是有用的: mysqldump --opt database | mysql --host=remote-host -C database 由于mysqldump导出的是完整的SQL语句,所以用mysql客户程序很容易就能把数据导入了: shell> mysqladmin create target_db_name shell> mysql target_db_name < backup-file.sql 就是 shell> mysql 库名 < 文件名 相关标签:工具 本文原创发布php中文网,转载请注明出处,感谢您的尊重! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28851659/article/details/114329359。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 23:51:06
265
转载
Netty
...分布式系统、高能网络编程或者大数据流处理这些酷炫的东西感兴趣,那Netty可就太值得一试了!它就像是个隐藏的宝藏,能让你在这些领域玩得更溜。 首先,Netty是什么?简单来说,Netty是一个基于Java的异步事件驱动网络应用框架。它可以帮助开发者快速构建可扩展的服务器端应用程序。想象一下,你正在开发一个需要处理海量数据的大数据流处理平台,这时候Netty就显得尤为重要了。它不仅能够帮助我们高效地管理网络连接,还能让我们轻松应对高并发场景。 我第一次接触Netty的时候,真的被它的灵活性震撼到了。哎,说到程序员的烦心事,那肯定得提一提怎么让程序在被成千上万的人同时戳的时候还能稳如老狗啊!这事儿真心让人头大,尤其是看着服务器指标噌噌往上涨,心里直打鼓,生怕哪一秒就崩了。而Netty通过非阻塞I/O模型,完美解决了这个问题。这就像是一个超级能干的服务员,能够在同一时间同时服务上万个客人,而且就算有个客人纠结半天点菜(也就是某个请求拖拉),也不会耽误其他客人的服务,更不会让整个餐厅都停下来等他。 举个栗子: java EventLoopGroup bossGroup = new NioEventLoopGroup(); // 主线程组 EventLoopGroup workerGroup = new NioEventLoopGroup(); // 工作线程组 try { ServerBootstrap b = new ServerBootstrap(); // 启动辅助类 b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) // 使用NIO通道 .childHandler(new ChannelInitializer() { // 子处理器 @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new StringDecoder()); // 解码器 ch.pipeline().addLast(new StringEncoder()); // 编码器 ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); ctx.writeAndFlush("Echo: " + msg); // 回显消息 } }); } }); ChannelFuture f = b.bind(8080).sync(); // 绑定端口并同步等待完成 f.channel().closeFuture().sync(); // 等待服务关闭 } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } 这段代码展示了如何用Netty创建一个简单的TCP服务器。话说回来,Netty这家伙简直太贴心了,它的API设计得特别直观,想设置啥处理器或者监听事件都超简单,用起来完全没压力,感觉开发效率直接拉满! 2. 大数据流处理平台中的挑战 接下来,我们聊聊大数据流处理平台面临的挑战。在这个领域,我们通常会遇到以下几个问题: - 高吞吐量:我们需要处理每秒数百万条甚至更多的数据记录。 - 低延迟:对于某些实时应用场景(如股票交易),毫秒级的延迟都是不可接受的。 - 可靠性:数据不能丢失,必须保证至少一次投递。 - 扩展性:随着业务增长,系统需要能够无缝扩容。 这些问题听起来是不是很让人头大?但别担心,Netty正是为此而生的! 让我分享一个小故事吧。嘿,有次我正忙着弄个日志收集系统,结果一测试才发现,这传统的阻塞式I/O模型简直是“人形瓶颈”啊!流量一大就直接崩溃,完全hold不住那个高峰时刻,简直让人头大!于是,我开始研究Netty,并将其引入到项目中。哈哈,结果怎么样?系统的性能直接翻了三倍!这下我可真服了,选对工具真的太重要了,感觉像是找到了开挂的装备一样爽。 为了更好地理解这些挑战,我们可以看看下面这段代码,这是Netty中用来实现高性能读写的示例: java public class HighThroughputHandler extends ChannelInboundHandlerAdapter { private final ByteBuf buffer; public HighThroughputHandler() { buffer = Unpooled.buffer(1024); } @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { for (int i = 0; i < 1024; i++) { buffer.writeByte((byte) i); } ctx.writeAndFlush(buffer.retain()); } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ctx.write(msg); } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 在这段代码中,我们创建了一个自定义的处理器HighThroughputHandler,它能够在每次接收到数据后立即转发出去,从而实现高吞吐量的传输。 3. Netty如何优化大数据流处理平台? 现在,让我们进入正题——Netty是如何具体优化大数据流处理平台的呢? 3.1 异步非阻塞I/O Netty的核心优势在于其异步非阻塞I/O模型。这就相当于,当有请求进来的时候,Netty可不会给每个连接都专门安排一个“服务员”,而是让这些连接共用一个“服务团队”。这样既能节省人手,又能高效处理各种任务,多划算啊!这样做的好处是显著减少了内存占用和上下文切换开销。 假设你的大数据流处理平台每天要处理数十亿条数据记录,采用传统的阻塞式I/O模型,很可能早就崩溃了。而Netty则可以通过单线程处理数千个连接,极大地提高了资源利用率。 3.2 零拷贝技术 另一个让Netty脱颖而出的特点是零拷贝技术。嘿,咱们就拿快递打个比方吧!想象一下,你在家里等着收快递,但这个快递特别麻烦——它得先从仓库(相当于内核空间)送到快递员手里(用户空间),然后快递员再把东西送回到你家(又回到内核空间)。这就像是数据在网络通信里来回折腾了好几趟,一会儿在系统深处待着,一会儿又被搬出来给应用用,真是费劲啊!这种操作不仅耗时,还会消耗大量CPU资源。 Netty通过ZeroCopy机制,直接将数据从文件系统传递到网络套接字,避免了不必要的内存拷贝。这种做法不仅加快了数据传输速度,还降低了系统的整体负载。 这里有一个实际的例子: java FileRegion region = new DefaultFileRegion(fileChannel, 0, fileSize); ctx.write(region); 上述代码展示了如何利用Netty的零拷贝功能发送大文件,无需手动加载整个文件到内存中。 3.3 灵活的消息编解码 在大数据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
Lua
...1. 引言 在Lua编程的世界里,我们经常需要与各种网络服务进行交互。然而,在捣鼓开发的过程中,网络这家伙可不太靠谱,时不时就闹个小脾气,给我们来个“网络连接已关闭”的幺蛾子,这就是那个烦人的Closed Network Connection Error啦。今天,咱们要一起钻个牛角尖,把这个主题掰扯清楚。咱不光说理论,还会举些实实在在的例子,甚至动手敲代码,让大家伙儿都能掌握在Lua里头如何帅气地对付这类网络异常情况,整得既高效又体面。 2. ClosedNetworkConnectionError简述 “ClosedNetworkConnectionError”是一个常见的网络错误类型,它表示尝试读取或写入一个已经关闭或者断开的网络连接。这种错误呢,常常会在一些长连接、Websocket聊天或者TCP/IP网络通信的过程中冒出来。比如啊,当服务器或者客户端哪边突然决定“拜拜了您嘞”,主动切断了连接,而另一边还傻傻地在那儿继续传数据,这时候,这类错误就华丽丽地登场啦。 3. Lua中的网络连接及错误处理机制 Lua本身并不直接提供网络编程接口,但可以通过诸如LuaSocket库等第三方库来实现。下面,让我们通过一段LuaSocket的示例代码来看看如何在实际操作中创建并管理网络连接,并处理可能发生的ClosedNetworkConnectionError: lua -- 导入LuaSocket库 local socket = require("socket") -- 创建一个TCP客户端连接 local client = socket.tcp() client:settimeout(5) -- 设置超时时间以防止无限等待 -- 尝试连接到服务器 local ok, err = client:connect("localhost", 8080) if not ok then print("连接失败:", err) return end -- 发送数据 local message = "Hello from Lua!" local sent, err = client:send(message) if not sent and err == "closed" then print("网络连接已关闭,无法发送数据!") -- 处理ClosedNetworkConnectionError client:close() -- 关闭失效的连接 return end -- 接收数据(假设服务器会回应) while true do local data, err = client:receive() if err == "closed" then print("服务器关闭了连接。") -- 处理ClosedNetworkConnectionError break elseif not data then print("接收数据时发生错误:", err) break else print("收到服务器响应:", data) end end -- 最后,记得关闭连接 client:close() 在上述代码中,我们注意到在client:send()和client:receive()方法调用后,都会检查返回的错误信息是否为"closed",如果是,则表明网络连接已经被关闭,此时我们会打印出相应的提示信息,并采取相应措施(如关闭连接)。 4. 理解与探讨 在实际项目开发中,应对ClosedNetworkConnectionError的策略往往更加复杂多样。比如,我们能给程序装个“回马枪”功能,一旦发现连接断了,它就自动尝试再连上;甚至还能让它变得更聪明些,比如说在网络抽风的时候先把要发的数据存起来,等网络恢复了,再把这些数据顺顺当当地发送出去。 这就涉及到开发者对网络通信原理的理解深度以及业务需求的细致把控,同时也要求我们具备良好的异常处理习惯和鲁棒性编程思维。记住了啊,真正厉害的程序员,可不只是会写能跑起来的代码那么简单。他们更明白,在编程的世界里,就像生活一样,总会有些意想不到的状况和稀奇古怪的异常情况冒出来,而他们就有那个本事,把这些麻烦事儿处理得既漂亮又从容,这才是高手风范! 总的来说,面对Lua编程中的ClosedNetworkConnectionError,我们需要保持敏锐的洞察力,合理运用Lua及其扩展库的功能特性,结合具体应用场景,灵活制定和实施有效的错误处理策略,才能确保我们的应用程序在网络世界中稳定、可靠地运行。
2023-11-24 17:48:02
132
月影清风
转载文章
...NIDS_WARN_IP = 1, / 表示 IP 数据包异常 / NIDS_WARN_TCP, / 表示 TCP 数据包异常 / NIDS_WARN_UDP, / 表示 UDP 数据包异常 / NIDS_WARN_SCAN / 表示有扫描攻击发生 / }; enum { NIDS_WARN_UNDEFINED = 0, / 表示未定义 / NIDS_WARN_IP_OVERSIZED, / 表示 IP 数据包超长 / NIDS_WARN_IP_INVLIST, / 表示无效的碎片队列 / NIDS_WARN_IP_OVERLAP, / 表示发生重叠 / NIDS_WARN_IP_HDR, / 表示无效 IP首部 ,IP 数据包发生异常 / NIDS_WARN_IP_SRR, / 表示源路由 IP数据包 / NIDS_WARN_TCP_TOOMUCH, / 表示 TCP 数据个数太多 , 因为在Libnids 中在同一时刻捕获的TCP 个数最大值为 TCP 连接参数的哈西表长度的 3/4/ NIDS_WARN_TCP_HDR, / 表示无效 TCP首部 ,TCP 数据包发生异常 / NIDS_WARN_TCP_BIGQUEUE, / 表示 TCP 接受的队列数据过多 / NIDS_WARN_TCP_BADFLAGS / 表示错误标记 / }; /Libnids 状态描述的是连接的逻辑状态, 真正的 TCP 连接状态有 11种 . TCP_ESTABLISHED TCP 连接建立 , 开始传输数据 TCP_SYN_SEND 主动打开 TCP_SYN_RECV 接受 SYN TCP_FIN_WAIT1 TCP_FIN_WAIT2 TCP_TIME_WAIT TCP_CLOSE TCP_CLOSE_WAIT TCP_LAST_ACK TCP_LISTEN TCP_CLOSING / define NIDS_JUST_EST 1 / 表示 TCP 连接建立 , 在此状态下就可以决定是否对此TCP 连接进行数据分析 , 可以决定是否捕获 TCP客户端接收的数据 ,TCP 服务端接收的数据 ,TCP 客户端接收的紧急数据或者TCP 客户端接收的紧急数据 / define NIDS_DATA 2 / 表示接收数据的状态 ,在这个状态可以判断是否有新的数据到达 ,如果有就可以把数据存储起来 , 可以在这个状态之中来分析 TCP 传输的数据 , 此数据就存储在half_stream 数据接口的缓存之中/ define NIDS_CLOSE 3 / 表示 TCP 连接正常关闭 / define NIDS_RESET 4 / 表是 TCP 连接被重置关闭 / define NIDS_TIMED_OUT 5 / 表示由于超时 TCP连接被关闭 / define NIDS_EXITING 6 / 表示 Libnids正在退出 , 在这个状态下可以最后一次使用存储在 half_stream 数据结构中的缓存数据 / / 校验和 / define NIDS_DO_CHKSUM 0 / 表示告诉 Libnids要计算校验和 / define NIDS_DONT_CHKSUM 1 / 表示告诉 Libnids不要计算校验和 / struct tuple4 / 描述一个地址端口对 , 它表示发送发IP 和端口以及接收方 IP 和端口 , 适用 TCP,UDP/ { u_short source; / 源 IP 地址的端口号/ u_short dest; / 目的 IP 地址的端口号/ u_int saddr; / 源 IP 地址 / u_int daddr; / 目的 IP 地址 / }; struct half_stream / 描述在 TCP 连接中一端的所有信息, 可以是客户端 , 也可以是服务端 / { char state; / 表示套接字的状态 , 也就是TCP 的状态 / char collect; / 可以表示有数据到达 , 此数据存放在data 成员中 , 也可以表示不存储此数据到 data中 , 此数据忽略 . 如果大于0 就存储 , 否则就忽略 / char collect_urg; / 可以表示有紧急数据到达 , 此数据就存放在urgdata 中 , 也可以表示不存储此数据到 urgdata中 , 此速数据忽略 . 如果大于0 就存储 , 否则就忽略 / char data; / 用户存储正常接受到的数据 / int offset; / 表示存储在 data 中数据的第一个字节的偏移量/ int count; / 表示从 TCP 连接开始已经存储到data 中的数据的字节数 / int count_new; / 有多少新的数据存储到 data 中, 如果为 0, 则表示没有新的数据到达 / int bufsize; int rmem_alloc; int urg_count; / 用来存储紧急数据 / u_int acked; u_int seq; u_int ack_seq; u_int first_data_seq; u_char urgdata; //存储紧急数据 u_char count_new_urg; / 表示有新的紧急数据到达 , 如果为0 表示没有新的紧急数据 / u_char urg_seen; //新的urg数据,不是以前重复的数据 u_int urg_ptr;/指向urg在流中的位置/ u_short window; u_char ts_on; u_char wscale_on; u_int curr_ts; u_int wscale; struct skbuff list; struct skbuff listtail; }; struct tcp_stream / 描述一个 TCP 连接的所有信息/ { struct tuple4 addr; char nids_state; struct lurker_node listeners; struct half_stream client; / 表示客户端信息 / struct half_stream server; / 表示服务端信息 / struct tcp_stream next_node; struct tcp_stream prev_node; int hash_index; struct tcp_stream next_time; struct tcp_stream prev_time; int read; struct tcp_stream next_free; }; struct nids_prm / 描述了 Libnids 的一些全局参数信息/ { int n_tcp_streams; / 表示哈西表大小 , 此哈西表用来存放tcp_stream 数据结构 , 默认值 1040.在同一时刻 Libnids 捕获的 TCP 数据包的最大个数必须是此参数值的3/4/ int n_hosts; / 表示哈西表的大小 , 此哈西表用来存储IP 碎片信息的 , 默认值为 256/ char device; / 表示网络接口 ,Libnids 将在此网络接口上捕获数据, 默认值为 NULL. 这样 Libnids将使用 pcap_lookupdev来查找可以用的网络接口 . 如果其值为 all, 表示捕获所有网络接口的数据/ char filename; / 表示用来存储网络数据的捕获文件 , 此文件的类型必须与 Libpcap 类型一致 , 如果设置了文件, 与此同时就应该设置 device 为 NULL,默认值为 NULL/ int sk_buff_size; / 表示的是数据接口 sk_buff 的大小 .sk_buff 是Linux 内核中一个重要的数据结构, 是用来进行数据包排队操作的 , 默认值为 168/ int dev_addon; / 表示在数据结构 sk_buff 中用于网络接口上信息的字节数. 如果是 -1( 默认值 ),那么 Libnids 会根据不同的网络接口进行修正 / void (syslog) (); / 是一个函数指针 , 默认值为nids_syslog() 函数 . 在 syslog函数中可以检测入侵攻击 , 如网络扫描攻击 , 也可以检测一些异常情况, 如无效 TCP 标记 / int syslog_level; / 表示日志等级 , 默认值是LOG_ALERT/ int scan_num_hosts; / 表示一个哈西表的大小 ,( 此哈西表用来存储端口扫描信息) 表示 Libnids 将要检测的同时扫描的端口数据 . 如果其值为 0,Libnids将不提供端口扫描功能 . 默认值 256/ int scan_delay; / 表示在扫描检测中 , 俩端口扫描的间隔时间, 以毫秒来计算 , 缺省值为 3000/ int scan_num_ports; / 表示相同源地址必须扫描的 TCP 端口数目 , 默认值为10/ void (no_mem) (char ); / 是一个函数指针 , 当Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
306
转载
Java
...L/TLS连接的最佳实践和指南。 此外,开源社区也在积极推动相关工具和技术的发展,例如Apache HttpClient库已完全兼容TLS 1.3,使得Java开发者能够更加便捷地构建安全的HTTP客户端。另外,学术界和业界专家也不断进行研究和讨论,就如何在未来版本中进一步增强TLS协议的安全性提出新的观点和建议,为Java和其他编程语言在网络通信安全方面奠定了坚实的基础。 因此,对于Java开发者而言,关注TLS协议的最新发展动态、掌握Java中SSL/TLS的高级应用技巧,以及深入了解各种安全漏洞及其解决方案,是构建和维护高安全性网络应用程序的关键所在。
2023-05-26 16:19:14
313
算法侠
Java
在深入理解了Java编程语言中Write和Login函数的原理及应用后,我们可以进一步探索相关的技术和实践。近日,随着Spring Security 6.0版本的发布,用户认证与授权机制成为开发者关注的焦点。此版本提供了更为精细的API设计,允许开发者更灵活地实现自定义登录逻辑,并通过整合加密算法提高密码存储的安全性。 此外,在数据持久化领域,Apache Commons IO库中的FileUtils.writeStringToFile()方法提供了一种便捷、高效的文件写入方式,其内部实现同样利用了Java I/O流机制,与我们之前讨论的Write函数有着异曲同工之妙。同时,为了应对大数据时代下海量数据输出的挑战,Java 17引入了全新的ZGC垃圾回收器,显著提升了大容量数据流处理性能,对于优化系统输出效率具有重要意义。 另外,针对用户隐私保护和数据安全法规日趋严格的大环境,《个人信息保护法》等法律法规要求企业必须强化用户认证体系,妥善保管用户密码信息。因此,在实际开发过程中,Java程序员不仅需要熟练运用Login函数进行基本的身份验证,还需要结合bcrypt、scrypt或Argon2等现代加密算法来增强密码安全性,以满足合规要求并确保系统的安全性。 综上所述,无论是对Java基础功能如Write和Login函数的掌握,还是紧跟前沿技术发展动态,都是Java开发者提升业务处理能力、保证系统稳定性和安全性的关键所在。持续关注相关领域的最新进展,将有助于我们更好地适应市场需求,编写出高效、安全的应用程序。
2023-08-11 21:09:32
331
代码侠
Shell
...inux Shell编程的世界里,进程间的通信和协作往往离不开对系统信号的巧妙运用。在咱们这个领域里,trap命令可是个大宝贝,它能够帮我们把特定的信号给逮住,一旦接收到这些信号,就能按照我们自定义的方式来操作,可灵活多啦!今天,咱们就一块儿来好好唠唠怎么巧妙运用trap命令,让咱的Shell脚本变得更结实、更机灵。 1. trap命令的基本概念 首先,让我们揭开trap命令的神秘面纱。在Shell脚本中,trap命令用于指定在接收到指定信号时要执行的命令或函数。它的基本语法如下: bash trap command signal_list 其中,command是要在接收到信号时执行的命令或函数,而signal_list则是一个或多个以空格分隔的信号名称或数字。 例如,我们可以设置当脚本接收到SIGINT(即用户按下Ctrl+C)时打印一条消息然后退出: bash !/bin/bash trap 'echo "Caught SIGINT, exiting now..."; exit' INT while true; do echo "This is an infinite loop" sleep 1 done 在这个例子中,如果我们试图中断这个无限循环,shell将捕获到SIGINT信号,并执行预设的命令——打印信息并退出脚本。 2. 多个信号的捕获与处理 trap命令可以同时为多个信号指定处理程序,只需将它们列在signal_list中即可: bash !/bin/bash trap 'echo "Caught a signal: $1"; exit' INT TERM HUP 主体代码... 在此例中,脚本会在接收到SIGINT(中断)、SIGTERM(终止)或SIGHUP(挂起)任一信号时,输出相应的信息并退出。 3. 清理操作与临时退出 除了用于直接响应信号外,trap命令还可以用来进行必要的清理工作,比如关闭文件描述符、删除临时文件等。假设我们在脚本中打开了一个日志文件: bash !/bin/bash LOGFILE=log.txt exec 3>> "$LOGFILE" 将文件描述符3关联到日志文件 设置一个trap来清理资源 trap 'echo "Cleaning up..."; exec 3>&-; exit' EXIT 主体代码,往日志文件写入数据 while :; do date >>&3 sleep 1 done 在这段代码中,无论脚本是正常结束还是因信号退出,都会先执行trap中的命令,关闭关联的日志文件,从而确保资源得到妥善释放。 4. 恢复默认信号处理 有时候,我们需要在完成某些任务后恢复信号的默认处理方式。这可以通过重新设置trap命令实现: bash !/bin/bash 首先捕获SIGINT并打印信息 trap 'echo "Interupt received but ignored for now.";' INT 执行一些需要防止被中断的任务 your_critical_task_here 恢复SIGINT的默认行为(即终止进程) trap - INT echo "Now SIGINT will terminate the script." 后续代码... 通过这样的设计,我们可以在关键操作期间暂时忽略中断信号,待操作完成后,再恢复信号的默认处理机制。 总结起来,trap命令赋予了Shell脚本更强大的生存能力,使其能够优雅地应对各种外部事件。要真正把Shell编程这门手艺玩得溜,掌握trap命令的使用绝对是你不能绕过的关键一环,这一步走稳了,你的编程技能绝对能蹭蹭往上涨。希望以上示例能帮助大家更好地理解和应用这一强大功能,让你的脚本变得更加聪明、可靠!
2024-02-06 11:30:03
131
断桥残雪
Apache Solr
...书导致的,如证书中的IP配置错误,不是Solr服务所在的IP,那么客户端访问就可能出现上述的问题。所以在配置证书时,要特别注意配置哪些IP来访问该Solr服务。 例如,在Java中,我们可以使用如下代码创建一个带有自签名证书的SSL套接字工厂: java KeyStore ks = KeyStore.getInstance("JKS"); ks.load(new FileInputStream("/path/to/keystore"), "password".toCharArray()); TrustManagerFactory tmf = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm()); tmf.init(ks); X509ExtendedTrustManager xtm = (X509ExtendedTrustManager) tmf.getTrustManagers()[0]; X509Certificate cert = (X509Certificate) ks.getCertificateChain(ks.aliases().nextElement())[0]; xtm.checkClientTrusted(new X509Certificate[]{cert}, "SSL"); SSLContext sslContext = SSLContext.getInstance("TLS"); sslContext.init(null, new TrustManager[]{xtm}, null); SSLSocketFactory ssf = sslContext.getSocketFactory(); 然后,我们可以在连接Solr服务器时使用这个套接字工厂: java HttpURLConnection conn = (HttpURLConnection) new URL(solrUrl).openConnection(); conn.setSSLSocketFactory(ssf); 5. 尝试其他Solr服务器 如果你无法确定问题出在哪里,你可以尝试在另一台机器上启动一个Solr服务器,看看是否还能出现同样的问题。这可以帮助你排除网络或者硬件故障的可能性。 总结:以上就是解决SolrServerException的一些常见方法。当你遇到这种错误的时候,就得像个侦探一样,把所有可能捣乱的因素都给排查一遍,然后根据实际情况,灵活地采取最适合的解决办法。希望这篇文章能对你有所帮助。
2023-03-23 18:45:13
462
凌波微步-t
HessianRPC
...TTP和Socket编程的支持,使得大数据量在网络中的传输更为快速和节省资源。 序列化(Serialization) , 将数据结构或对象状态转换为可以存储(如存入文件或数据库)或传输(如网络数据包)的形式的过程。在文章中,Hessian支持Java对象的序列化,即将复杂的业务对象转换为简单的字符串格式,以便在网络中高效传输。 反序列化(Deserialization) , 与序列化相反的过程,即把从外部源(如文件、数据库或网络流)读取的已序列化的数据恢复成原始的数据结构或对象状态。在使用Hessian时,接收端会将接收到的字符串形式的数据通过反序列化操作还原成原来的Java对象,以供进一步处理或使用。 HTTP请求(HTTP Request) , HTTP(超文本传输协议)是互联网上应用最为广泛的一种网络协议,用于客户端(如浏览器)和服务器端之间的通信。在本文中,Hessian允许将对象作为HTTP请求体发送,这样能够在Web服务场景下进行跨平台的数据交换。 Socket编程 , Socket编程是一种网络通信方式,它允许程序员通过TCP/IP协议在不同的计算机之间建立可靠的双向通信链接。在文中,Hessian可以通过Socket编程来实现更加灵活、实时的数据传输,尤其适用于需要持续、低延迟交互的场景。
2023-11-16 15:02:34
468
飞鸟与鱼-t
Netty
...网络领域的经典著作《TCP/IP详解》和《Unix网络编程》中关于连接管理和复用的章节,为读者提供了更深层次的理解,有助于开发者在实际运用Netty搭建客户端连接池时,更好地遵循网络通信的最佳实践,从而设计出更为稳定且高效的系统架构。
2023-12-01 10:11:20
85
岁月如歌-t
Go Gin
...技术思考的过程,正是编程的魅力所在。面对每一个技术挑战,只要我们保持探索精神,总能找到合适的解决方案。而Go Gin这个框架,它的灵活性和强大的功能简直就像个超级英雄,在我们实现各种需求的时候,总能给力地助我们一臂之力。
2023-01-14 15:57:07
517
秋水共长天一色
Netty
...,进一步了解现代网络编程中的地址配置和协议选择对于提升应用性能与稳定性至关重要。近期,随着云原生架构的普及以及微服务、容器化技术的发展,如何在动态环境中高效、准确地进行服务发现与连接成为开发者关注的重点。 例如,Istio服务网格项目提供了一套强大的服务间通信管理机制,其中的服务发现组件可以通过Sidecar代理自动管理和更新服务地址列表,有效避免了手动配置带来的“CannotFindServerSelection”类错误。此外,对于大规模分布式系统,Consul等服务注册与发现工具也能够帮助开发者实时获取目标服务器地址,实现灵活且健壮的网络连接。 同时,深入研究Netty对多种传输层协议的支持(如TCP、UDP以及Unix Domain Socket),以及如何根据实际业务场景合理选用,也是提高网络编程实践能力的重要环节。尤其在高并发、低延迟的场景下,理解并优化这些底层细节往往能带来显著的性能提升。 综上所述,掌握正确的服务器选择策略并结合先进的服务治理理念和技术,将有助于我们在复杂多变的网络编程实践中应对自如,构建出更稳定、高效的分布式系统。
2023-06-18 15:58:19
172
初心未变
Netty
...ion { ch.pipeline().addLast(new SimpleChannelInboundHandler() { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); } }); } }); // Bind and start to accept incoming connections. ChannelFuture f = b.bind(8080).sync(); f.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } 在这段代码里,我们创建了一个NioServerSocketChannel,它是一个基于NIO的非阻塞服务器套接字通道。用bind()方法把Channel绑在了8080端口上。这样一来,每当有新连接请求进来,Netty就会自动接手,然后把这些请求转给对应的Channel去处理。 3. EventLoop是什么? 3.1 EventLoop的概念 EventLoop是Netty的核心组件之一,负责处理Channel上的所有I/O事件,包括读取、写入以及连接状态的变化。简单地说,EventLoop就像是个勤快的小秘书,不停地检查Channel上有没有新的I/O事件发生,一旦发现就马上调用对应的回调函数去处理。一个EventLoop可以管理多个Channel,但是一个Channel只能由一个EventLoop来管理。 3.2 EventLoop的例子 java EventLoopGroup group = new NioEventLoopGroup(); try { EventLoop eventLoop = group.next(); // 获取当前EventLoopGroup中的下一个EventLoop实例 eventLoop.execute(() -> { System.out.println("Executing task in EventLoop"); // 这里可以执行任何需要在EventLoop线程上运行的任务 }); eventLoop.schedule(() -> { System.out.println("Scheduled task in EventLoop"); // 这里可以执行任何需要在EventLoop线程上运行的任务 }, 5, TimeUnit.SECONDS); // 5秒后执行 } finally { group.shutdownGracefully(); } 在这段代码中,我们创建了一个NioEventLoopGroup,并从中获取了一个EventLoop实例。接着呢,我们在EventLoop线程上用execute()方法扔了个任务进去,还用schedule()方法设了个闹钟,打算5秒后自动执行另一个任务。这展示了EventLoop如何用来执行异步任务和定时任务。 4. Channel和EventLoop的区别 现在让我们来谈谈Channel和EventLoop之间的主要区别吧! 首先,Channel是用于表示网络连接的抽象类,而EventLoop则负责处理该连接上的所有I/O事件。换个说法就是,Channel就像是你和网络沟通的桥梁,而EventLoop就像是那个在后台默默干活儿的小能手。 其次,Channel可以拥有多种类型,如NioSocketChannel、OioSocketChannel等,而EventLoop则通常是固定类型的,比如NioEventLoop。这就意味着你不能随便更改一个Channel的类型,不过你可以换掉它背后的那个EventLoop。 最后,一个EventLoop可以管理多个Channel,但一个Channel只能被一个EventLoop所管理。这种设计让Netty用起来特别省心,既能高效使用系统资源,又避开了多线程编程里头那些头疼的竞态条件问题。 5. 结语 好了,到这里我们已经探讨了Netty中Channel和EventLoop的基本概念及其主要区别。希望这些内容能帮助你在实际开发中更好地理解和运用它们。如果你有任何疑问或者想要了解更多细节,请随时留言讨论!
2025-02-26 16:11:36
60
醉卧沙场
Netty
...带你从理论一步步走到实践,把这个问题掰开揉碎了详细讲明白,保证让你一听就懂、一学就会! 二、Netty服务器的基本原理 Netty是Apache的一个子项目,它提供了一种用于快速开发TCP/IP和其他传输协议应用程序的异步事件驱动模型。Netty这个家伙,它可是搭建在NIO(非阻塞式输入输出)这个强大基石上的,这样一来,它能够在单个线程里边同时应对多个连接请求,大大提升了程序处理并发任务的能力,让效率噌噌噌地往上涨。 三、Netty服务器的网络中断问题 当网络发生中断时,Netty服务器通常会产生两种异常: 1. ChannelException: 由于底层I/O操作失败而抛出的异常。 2. UnresolvedAddressException: 当尝试打开一个到不存在的地址的连接时抛出的异常。 这两种异常都会导致服务器无法正常接收和发送数据。 四、处理Netty服务器的网络中断问题 1. 使用ChannelFuture和FutureListener 在Netty中,我们可以使用ChannelFuture和FutureListener来处理网络中断问题。ChannelFuture是创建了一个用于等待特定I/O操作完成的Future对象。FutureListener是一个接口,可以监听ChannelFuture的状态变化。 例如,我们可以使用以下代码来监听一个ChannelFuture的状态变化: java channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 连接成功 } else { // 连接失败 } } }); 2. 使用心跳检测机制 除了监听ChannelFuture的状态变化外,我们还可以使用心跳检测机制来检查网络是否中断。实际上,我们可以这样理解:在用户的设备上(也就是客户端),我们设定一个任务,定期给服务器发送个“招呼”——这就是所谓的心跳包。就像朋友之间互相确认对方是否还在一样,如果服务器在一段时间内没有回应这个“招呼”,那我们就推测可能是网络连接断开了,简单来说就是网络出小差了。 例如,我们可以使用以下代码来发送心跳包: java // 创建心跳包 ByteBuf heartbeat = Unpooled.buffer(); heartbeat.writeInt(HeartbeatMessage.HEARTBEAT); heartbeat.writerIndex(heartbeat.readableBytes()); // 发送心跳包 channel.writeAndFlush(heartbeat); 3. 使用重连机制 当网络中断后,我们需要尽快重新建立连接。为了实现这个功能,我们可以使用重连机制。换句话说,一旦网络突然掉线了,我们立马麻溜地开始尝试建立一个新的连接,并且持续密切关注着新的连接状态有没有啥变化。 例如,我们可以使用以下代码来重新建立连接: java // 重试次数 int retryCount = 0; while (retryCount < maxRetryCount) { try { // 创建新的连接 Bootstrap bootstrap = new Bootstrap(); ChannelFuture channelFuture = bootstrap.group(eventLoopGroup).channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, backlog) .childHandler(new ServerInitializer()) .connect(new InetSocketAddress(host, port)).sync(); // 监听新的连接状态变化 channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 新的连接建立成功 return; } // 新的连接建立失败,继续重试 if (future.cause() instanceof ConnectException || future.cause() instanceof UnknownHostException) { retryCount++; System.out.println("Failed to connect to server, will retry in " + retryDelay + "ms"); Thread.sleep(retryDelay); continue; } } }); // 连接建立成功,返回 return channelFuture.channel(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } 五、总结 在网络中断问题上,我们可以通过监听ChannelFuture的状态变化、使用心跳检测机制和重连机制来处理。这些方法各有各的好和不足,不过总的来说,甭管怎样,它们都能在关键时刻派上用场,就是在网络突然断开的时候,帮我们快速重新连上线,确保服务器稳稳当当地运行起来,一点儿不影响正常工作。 以上就是关于如何处理Netty服务器的网络中断问题的文章,希望能对你有所帮助。
2023-02-27 09:57:28
137
梦幻星空-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除连续重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"