前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Scala插件]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Gradle
...,Gradle还支持Scala、Kotlin等多种编程语言。 c) 丰富的插件库:Gradle拥有丰富的插件库,可以满足各种复杂的构建需求。 d) 强大的依赖管理能力:Gradle可以有效地处理项目中的依赖关系,避免了重复的编译和部署。 三、Gradle在大型项目中的实践应用 1. 建立构建脚本 首先,我们需要建立一个Gradle构建脚本(build.gradle),在这个脚本中,我们可以定义构建任务,指定构建步骤,以及配置项目的相关信息。以下是一个简单的Gradle构建脚本的例子: groovy plugins { id 'java' } group = 'com.example' version = '1.0-SNAPSHOT' sourceCompatibility = 1.8 repositories { mavenCentral() } dependencies { implementation 'org.springframework.boot:spring-boot-starter-web' } 2. 定义构建任务 在构建脚本中,我们可以通过apply方法来添加Gradle插件,然后通过tasks方法来定义构建任务。例如,我们可以通过下面的代码来定义一个名为"clean"的任务,用于清理构建目录: groovy task clean(type: Delete) { delete buildDir } 3. 使用Gradle进行版本控制 Gradle可以与Git等版本控制系统集成,这样就可以方便地跟踪项目的更改历史。以下是如何使用Gradle将本地仓库与远程仓库关联起来的例子: groovy allprojects { repositories { maven { url "https://repo.spring.io/libs-milestone" } mavenLocal() jcenter() google() mavenCentral() if (project.hasProperty('sonatypeSnapshots')) { maven { url "https://oss.sonatype.org/content/repositories/snapshots/" } } maven { url "file://${projectDir}/../libs" } } } 四、结论 总的来说,Gradle作为一个强大的构建工具,已经成为了大型项目不可或缺的一部分。用Gradle,咱们就能像变魔术一样,让项目的构建流程管理变得更溜、更稳当。这样一来,开发速度嗖嗖提升,产品质量也是妥妥的往上蹭,可带劲儿了!此外,随着Gradle社区的日益壮大和活跃,它的功能会越来越强大,实用性也会越来越高,这无疑让咱们在未来做项目时有了更多可以挖掘和利用的价值,绝对值得咱们进一步去探索和尝试。
2024-01-13 12:54:38
481
梦幻星空_t
Scala
Scala编程语言:IDE环境问题详解与实战 1. 引言 Scala,这款集函数式和面向对象特性于一身的强类型编程语言,在大数据处理(如Apache Spark)以及分布式系统开发中占据着重要地位。然而,在实际动手开发的时候,为Scala编程选个趁手的IDE环境,同时把那些随之而来的问题妥妥搞定,这可是每个Scala开发者无论如何都逃不掉的一道坎儿。本文咱们要钻得深一点,好好聊聊如何挑选、捯饬那个Scala IDE环境,还有可能会碰到哪些小插曲。我还会手把手带你,通过实实在在的代码实例,让你在IDE里舒舒服服、开开心心地写出Scala程序来。 2. Scala IDE的选择 2.1 IntelliJ IDEA with Scala插件 IntelliJ IDEA无疑是Java和Scala开发者首选的集成开发环境之一。嘿,你知道吗?这货的智能补全和重构功能贼强大,而且对Scala的支持深入骨髓,这让咱Scala开发者在构建和开发项目时简直如虎添翼,效率嗖嗖地往上涨! scala // 在IntelliJ IDEA中创建一个简单的Scala对象 object HelloWorld { def main(args: Array[String]): Unit = { println("Hello, World!") } } 2.2 Scala IDE (基于Eclipse) Scala IDE则是专为Scala设计的一款开源IDE,它基于Eclipse平台,针对Scala语言进行了大量的优化。虽然现在大伙儿更多地在用IntelliJ IDEA,但在某些特定场合或者对某些人来说,它仍然是个相当不错的选择。 2.3 其他选项 诸如VS Code、Atom等轻量级编辑器配合 Metals 或 Bloop 等LSP服务器,也可以提供优秀的Scala开发体验。根据个人喜好和项目需求,灵活选择适合自己的IDE环境至关重要。 3. Scala IDE环境配置及常见问题 3.1 Scala SDK安装与配置 在IDE中,首先需要正确安装和配置Scala SDK。例如,在IntelliJ IDEA中,可以通过File > Project Structure > Project Settings > Project来添加Scala SDK。 3.2 构建工具配置(SBT或Maven) Scala项目通常会依赖SBT或Maven作为构建工具。确保在IDE中正确配置这些工具,以便顺利编译和运行项目。 sbt // 在SBT构建文件(build.sbt)中的示例配置 name := "MyScalaProject" version := "0.1.0" scalaVersion := "2.13.8" 3.3 常见问题及解决方案 - 代码提示不全:检查Scala插件版本是否最新,或者尝试重新索引项目。 - 编译错误:确认Scala SDK版本与项目要求是否匹配,以及构建工具配置是否正确。 - 运行报错:查看控制台输出的错误信息,通常能从中找到解决问题的关键线索。 4. 探讨与思考 在Scala开发过程中,IDE环境的重要性不言而喻。它不仅影响到日常编码效率,更直接影响到对复杂Scala特性的理解和掌握。作为一个Scala程序员,咱得积极拥抱并熟练掌握各种IDE工具,就像是找到自己的趁手兵器一样。这需要咱们不断尝试、实践,有时候可能还需要捣鼓一阵子,但最终目的是找到那个能让自己编程效率倍增,用起来最顺手的IDE神器。同时呢,也要懂得巧用咱们社区的丰富资源。当你碰到IDE环境那些头疼的问题时,得多翻翻官方文档、积极加入论坛里的讨论大军,甚至直接向社区里的大神们求救都是可以的。这样往往能让你更快地摸到问题的答案,解决问题更高效。 总的来说,选择并配置好IDE环境,就如同给你的Scala编程之旅铺平了道路,让你可以更加专注于代码逻辑和算法实现,享受编程带来的乐趣和成就感。希望这篇文章能够帮助你更好地理解和应对Scala开发过程中的IDE环境问题,助你在Scala世界里游刃有余!
2023-01-16 16:02:36
104
晚秋落叶
Mahout
...础代码示例: scala import org.apache.mahout.sparkbindings._ import org.apache.mahout.math.drm._ val data: RDD[Rating] = ... // 初始化用户-物品评分数据 val drmData = DistributedRowMatrix(data.map(r => (r.user, r.product, r.rating)).map { case (u, i, r) => ((u.toLong, i.toLong), r.toDouble) }, numCols = numProducts) val model = ALS.train(drmData, rank = 10, iterations = 10) 2.2 挑战 然而,看似美好的融合背后,版本兼容性问题如同暗礁般潜藏。你知道吗,Mahout和Spark这两个家伙一直在不停地更新升级自己,就像手机系统一样,隔段时间就蹦出个新版本。这样一来呢,新版的接口或者内部构造可能就会变变样,这就意味着不是所有版本都能无缝衔接、愉快合作的,有时候也得头疼一下兼容性问题。如若不慎选择不匹配的版本组合,可能会出现运行错误、性能低下甚至完全无法运行的情况。 3. 版本冲突实例及其解决之道 3.1 实际案例 假设我们在一个项目中尝试将Mahout 0.13.x与Spark 2.4.x进行集成,可能会遇到如下错误提示(这里仅为示例,并非真实错误信息): Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$sc()Lorg/apache/spark/SparkContext; 这是因为Mahout 0.13.x对Spark的支持仅到2.3.x版本,对于Spark 2.4.x的部分接口进行了更改,导致调用失败。 3.2 解决策略 面对这类问题,我们需要遵循以下步骤来解决: - 确认兼容性:查阅Mahout官方文档或相关社区资源,明确当前Mahout版本所支持的Spark版本范围。 - 降级或升级:根据兼容性范围,决定是回退Spark版本还是升级Mahout版本以达到兼容。 - 依赖管理:在构建工具如Maven或SBT中,精确指定对应的依赖版本,确保项目中所有组件版本一致。 - 测试验证:完成上述操作后,务必进行全面的功能与性能测试,确保系统在新的版本环境中稳定运行。 4. 结论与思考 尽管Mahout与Spark集成过程中的版本冲突可能会带来一些困扰,但只要我们理解其背后的原理,掌握正确的排查方法,这些问题都是可预见且可控的。所以,在我们实际动手开发的时候,千万要像追星一样紧盯着Mahout和Spark这些技术栈的版本更新,毕竟它们一有动静,可能就会影响到兼容性。要想让Mahout和Spark这对好搭档火力全开,就得提前把这些因素琢磨透彻了。 以上内容仅是一个简要的探讨,实际开发过程中可能还会遇到更多具体问题。记住啊,当咱们碰上那些棘手的技术问题时,千万要稳住心态,有耐心去慢慢摸索,而且得乐在其中,把解决问题的过程当成一场冒险探索。这正是编写代码、开发软件让人欲罢不能的魅力所在!
2023-03-19 22:18:02
80
蝶舞花间
Scala
...至关重要的一步。对于Scala来说,它的一个独特之处在于它的隐式转换。那么,到底啥是隐式转换呢?今天咱们就来唠唠这个话题,打算从实际应用场景和背后原理两个角度,好好地接地气地解读一下Scala语言中的隐式转换是怎么一回事儿。 序号2:Scala中的隐式转换应用场景 Scala中的隐式转换可以帮助我们处理很多常见的编程问题。以下是Scala中的隐式转换的一些常见应用场景: 1)类型参数的自动推导:当我们调用一个带有类型参数的方法时,Scala会尝试寻找与该类型参数匹配的隐式值。例如: java def foo[T](t: T): Unit = { println(s"The type of t is $t") } foo("Hello, World!") 在这个例子中,Scala会尝试找到一个可以将字符串转换为T类型的隐式转换,并且找到了scala.Predef.StringOpstoString的隐式转换。 2)隐式转换类:Scala中的隐式转换不仅可以应用于类型参数,也可以应用于对象。例如: java class RichString(val str: String) extends AnyVal { def startsWith(prefix: String): Boolean = str.startsWith(prefix) } object RichString { implicit val stringRich: RichString = new RichString("") } val richStr = "Hello, World!" richStr.startsWith("Hello") 在这个例子中,Scala会尝试找到一个可以将String转换为RichString类型的隐式转换,并且找到了RichString对象。 3)隐式参数解析:我们可以通过在方法或函数的参数列表中声明一个类型为隐式的参数,然后让编译器在编译期间自动推导出该隐式参数的值。例如: java import scala.math.sqrt def area(radius: Double)(implicit ev: => Double = sqrt(4)): Double = { Math.PI radius radius } area(5) 在这个例子中,Scala会尝试找到一个可以将Double转换为Double类型的隐式转换,并且找到了scala.math.sqrt的隐式转换。 序号3:Scala中的隐式转换原理 Scala中的隐式转换是一种编译时机制,它允许我们在代码中省略某些显式类型声明。当你在用Scala编程时,如果编译器找不到一个恰好匹配特定类型的明确类型声明,它就会像个侦探一样,在当前的作用域范围内搜寻一番,看看是否藏着符合要求的隐式类型转换“小秘密”。如果碰巧找到了这样一个隐式转换,编译器就会在程序运行的时候,悄无声息地执行这个转换操作,把参数的类型自动变成目标类型所需要的样子。 例如,考虑下面的代码片段: java class MyClass { val myVar: Int = 5 } val obj = new MyClass() println(obj.myVar + " Hello") // 编译错误 在这个例子中,Scala编译器无法将MyClass的实例转换为String类型,因为没有定义这样的转换。如果我们想要使用隐式转换来解决这个问题,我们可以这样做: java object MyImplicits { implicit val intToString: Int => String = _.toString } val obj = new MyClass() println(MyImplicits.intToString(obj.myVar) + " Hello") // 输出:5 Hello 在这个例子中,我们定义了一个名为intToString的隐式转换,它可以将Int类型转换为String类型。然后我们将这个隐式转换引入到我们的代码中,使得在调用println(obj.myVar + " Hello")时,Scala编译器可以找到这个隐式转换并将其用于将obj.myVar转换为String类型。 总的来说,Scala中的隐式转换是一个强大的工具,它可以帮助我们写出更简洁、更易于理解的代码。但是,咱们也得留个心眼儿,别乱用隐式转换,要不然代码可能会变得让人摸不着头脑,维护起来也够你头疼的。
2023-02-01 13:19:52
120
月下独酌-t
Scala
...并发集合的正确使用:Scala中的ParSeq、ParMap深度探索 1. 引言 在现代编程世界中,高效地处理大量数据和充分利用多核处理器的并发能力已成为程序员的重要技能。Scala这门语言可厉害了,它巧妙地融合了函数式和面向对象两大特性,让编程变得更加灵活高效。你知道吗,它还自带了一些杀手锏,比如ParSeq和ParMap这些并发集合工具。在多核处理器的环境下,它们能够轻松实现并行处理,让你的程序速度嗖嗖地提升,性能简直不要太赞!这篇东西会手把手带你,通过实实在在的探讨和鲜活的例子,让你彻底领悟并熟练掌握如何准确、巧妙地把这些并发集合用起来。 2. Scala并发集合简介 2.1 ParSeq(并行序列) ParSeq是Scala标准库scala.collection.parallel.immutable.ParSeq的一部分,它是一个不可变且能够进行并行操作的序列。你知道吗,传统Seq就像是个单手拿大勺炒菜的厨师,一勺一勺慢慢来。而ParSeq呢,更像是拥有无数双手的超级大厨,可以同时在多个灶台上翻炒。这样一来,对于那种海量数据处理的大工程,ParSeq就显得特别游刃有余,效率倍增,妥妥的大数据处理神器啊! 2.2 ParMap(并行映射) 同样地,ParMap是scala.collection.parallel.immutable.ParMap的一个组件,它提供了一种并行化的、不可变的键值对集合。ParMap支持高效的并行查找、更新和聚合操作,尤其适合于大规模键值查找和更新场景。 3. 并发集合实战示例 3.1 使用ParSeq进行并行化求和 scala import scala.collection.parallel.immutable.ParSeq val seq = (1 to 100000).toList.to(ParSeq) // 创建一个ParSeq val sum: Int = seq.par.sum // 使用并行计算求和 println(s"The sum of the sequence is $sum") 在这个例子中,我们首先创建了一个包含1到100000的ParSeq,并通过.par.sum方法进行了并行求和。这个过程会自动利用所有可用的CPU核心,显著提高大序列求和的速度。 3.2 使用ParMap进行并行化累加 scala import scala.collection.parallel.immutable.ParMap val mapData: Map[Int, Int] = (1 to 10000).map(i => (i, i)).toMap val parMap: ParMap[Int, Int] = ParMap(mapData.toSeq: _) // 将普通Map转换为ParMap val incrementedMap: ParMap[Int, Int] = parMap.mapValues(_ + 1) // 对每个值进行并行累加 val result: Map[Int, Int] = incrementedMap.seq // 转换回普通Map以查看结果 println("The incremented map is:") result.foreach(println) 上述代码展示了如何将普通Map转换为ParMap,然后对其内部的每个值进行并行累加操作。虽然这里只是抛砖引玉般举了一个简简单单的操作例子,但在真实世界的应用场景里,ParMap这个家伙可是能够轻轻松松处理那些让人头疼的复杂并行任务。 4. 思考与理解 使用并发集合时,我们需要充分理解其背后的并发模型和机制。虽然ParSeq和ParMap可以大幅提升性能,但并非所有的操作都适合并行化。比如,当你手头的数据量不大,或者你的操作特别依赖先后顺序时,一股脑儿地追求并行处理,可能会适得其反,反而给你带来更多的额外成本。 此外,还需注意的是,虽然ParSeq和ParMap能自动利用多核资源,但我们仍需根据实际情况调整并行度,以达到最优性能。就像在生活中,“人多好办事”这句话并不总是那么灵验,只有大家合理分工、默契合作,才能真正让团队的效率飙到最高点。 总结来说,Scala的ParSeq和ParMap为我们打开了并发编程的大门,让我们能在保证代码简洁的同时,充分发挥硬件潜力,提升程序性能。但就像任何强大的工具一样,合理、明智地使用才是关键所在。所以呢,想要真正玩转并发集合这玩意儿,就得不断动手实践、动脑思考、一步步优化,这就是咱们必须走的“修行”之路啦!
2023-03-07 16:57:49
130
落叶归根
Scala
1. 引言 在Scala编程的世界中,递归是一种强大的工具,它允许我们在解决问题时通过函数自身调用来表述问题的迭代本质。不过呢,就像咱们手里的硬币有正反两面一样,递归这玩意儿要是用得不对劲儿,也可能暗藏玄机。特别是当你忘了给它设定个合理的退出门槛时,那可就大事不妙了,可能会引发“栈溢出”这个小恶魔,让咱精心编写的程序瞬间歇菜,陷入崩溃的窘境。今天,我们将一起探讨这个问题,并通过实例代码来揭示如何有效规避这种风险。 2. 递归的基本概念和应用场景 在Scala中,递归函数是指在函数体内直接或间接地调用自身的函数。例如,计算阶乘是一个经典的递归示例: scala def factorial(n: Int): Int = { if (n == 0) 1 else n factorial(n - 1) } 上述代码简洁明了地展示了阶乘的定义:0的阶乘是1,其他数的阶乘是该数乘以其减1后的阶乘。但是,万一你忘了给递归函数设定一个收手的条件(就拿这里的n == 0来说吧),这货就会无休止地自我调用下去,一直调用到天荒地老。最后的结果就是把系统的栈空间消耗殆尽,然后boom!——栈溢出就发生了。 3. 栈溢出 一个生动的例子 为了更直观地理解栈溢出是如何发生的,让我们看一个没有正确退出条件的递归函数例子: scala def infiniteRecursion(n: Int): Int = { println(s"Current level: $n") infiniteRecursion(n + 1) } // 调用 infiniteRecursion(1) 这段代码中,我们创建了一个始终递归调用自己的函数,没有任何终止条件。当你运行这段代码,会看到控制台不断打印递归层级,直到程序因栈溢出而崩溃。这就是没有设置恰当退出条件的递归函数可能会带来的灾难性后果。 4. 如何避免栈溢出? - 设定明确的退出条件:每个递归函数都应该有一个或多个能确保递归过程最终停止的条件。在上述阶乘函数中,n == 0就是这样一个退出条件。 - 尾递归优化:Scala支持尾递归优化,这意味着在满足一定条件下,编译器能够将尾递归转化为循环以避免栈空间的持续增长。要实现尾递归优化这个小目标,首先你得确保递归调用乖乖地待在函数的最后一行,一步都不能乱跑。然后呢,你要给这个函数加上一个特殊的“身份标签”——@annotation.tailrec,这就像给它戴了个魔法小徽章。最后但同样重要的是,得保证每次递归调用的时候,不会像叠罗汉那样不断生成新的堆栈帧,这样才能让尾递归顺利进行,不带来额外的负担。例如: scala import scala.annotation.tailrec @tailrec def tailRecursiveFactorial(n: Int, acc: Int = 1): Int = { if (n == 0) acc else tailRecursiveFactorial(n - 1, n acc) } 5. 总结与思考 递归在Scala乃至整个编程领域都有着重要的地位,但我们也应时刻警惕其潜在的危险——栈溢出。只有当我们真正搞明白递归的精髓,小心翼翼地给它设定一个退出的门槛,才能既爽快地享受递归带来的那种简洁明了的表达方式,又不至于一脚踩空,掉进那个无休止的循环黑洞里。所以,在我们真正动手编程的时候,千万要对递归函数保持敬畏之心,就像对待一把双刃剑。瞅准时机,灵活运用尾递归这些神奇的小技巧,这样一来,我们的程序就能跑得既结实又飞快,像只敏捷的小猎豹。
2023-11-28 18:34:42
105
素颜如水
Flink
...va import scala.concurrent.Future; import ExecutionContext.Implicits.global; public class DatabaseClient { public Future query() { return Future.successful(System.currentTimeMillis() / 1000); } } 在这个例子中,我们使用了Scala的Future来模拟异步操作。当我们调用query方法时,其实并不会立即返回结果,而是会返回一个Future对象。这个Future对象表示了一个异步任务,当异步任务完成后,就会将结果传递给我们。 五、在DataStream上应用异步I/O操作 有了异步IO操作之后,我们还需要在DataStream上应用它。 java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); DataStream input = env.socketTextStream("localhost", 9999); DataStream output = input.map(new AsyncMapFunction() { @Override public void map(String value, Collector out) throws Exception { long result = databaseClient.query().get(); out.collect(result); } @Override public Future asyncInvoke(String value, ResultFuture resultFuture) { Future future = databaseClient.query(); future.whenComplete((result, error) -> { if (error != null) { resultFuture.completeExceptionally(error); } else { resultFuture.complete(result); } }); return null; } }); output.print(); env.execute("Socket Consumer"); 在这个例子中,我们创建了一个DataStream,然后在这个DataStream上应用了一个异步Map函数。这个异步Map函数就像是个勤劳的小助手,每当它收到任何一项输入数据时,就会立刻派出一个小小的异步查询小分队,火速前往数据库进行查找工作。当数据库给出回应,这个超给力的异步Map函数就会像勤劳的小蜜蜂一样,把结果一个个收集起来,接着马不停蹄地去处理下一条待输入的数据。 六、总结 总的来说,Flink的异步I/O操作可以帮助我们在处理大量外部系统交互时,减少系统间的通信延迟,提高系统的吞吐量和实时性。当然啦,异步I/O这东西也不是十全十美的,它也有一些小瑕疵。比如说,开发起来可没那么容易,你得亲自上阵去管那些异步任务的状态,一个不小心就可能让你头疼。再者呢,用了异步操作,系统整体的复杂程度也会噌噌往上涨,这就给咱们带来了一定的挑战性。不过,考虑到其带来的好处,我认为异步I/O操作是非常值得推广和使用的。 附:这是部分HTML格式的文本,请注意核对
2024-01-09 14:13:25
492
幽谷听泉-t
Scala
Scala编程中的MalformedURLException: URL格式错误 引言 嘿,各位程序员们!今天我们要聊一个在Scala编程中可能遇到的小麻烦——MalformedURLException(URL格式错误)。这事儿可不只是搞定个异常处理那么简单,它还能让我们好好琢磨琢磨URL的构造、字符串怎么摆弄,还有怎么管好各种异常呢。在这过程中,我们会学到怎么正确处理URL,还会分享一些编程小窍门,让我们的代码变得更结实耐用,不容易出问题。 什么是MalformedURLException? 1. 定义与背景 MalformedURLException是Java世界里常见的一个异常,当程序尝试解析一个不符合标准格式的URL时,就会抛出这个异常。简单来说,就是你的URL地址格式不对,程序就无法识别它。在Scala中,由于Scala本质上是基于JVM的,因此我们也会遇到这个问题。 2. 实际案例分析 假设你正在编写一个Web爬虫程序,需要从网页上抓取链接并进行进一步处理。要是链接格式不对劲,比如忘了加“http://”这样的协议头,或者是里面夹杂了一些奇怪的字符,那你创建URL对象的时候就可能会碰到MalformedURLException这个麻烦事儿。想象一下,你满怀期待地运行程序,结果却因为一个小小的URL格式错误而崩溃,那种感觉就像是你心爱的代码花园里突然被一只调皮的小猫撒了泡尿,真是让人抓狂啊! 如何避免MalformedURLException? 3. 预防措施 检查URL格式 首先,我们需要确保提供的URL字符串是有效的。最简单的方法就是在生成URL对象之前,自己先手动检查一下这个字符串是不是符合咱们想要的格式。这里我们可以借助正则表达式来完成这一任务: scala import scala.util.matching.Regex val urlRegex: Regex = """https?://[\w.-]+(/[\w.-])""".r def isValidUrl(url: String): Boolean = url match { case urlRegex() => true case _ => false } // 测试 println(isValidUrl("http://example.com")) // 输出: true println(isValidUrl("www.example.com")) // 输出: false 使用try-catch块 其次,在实际创建URL对象时,可以将这部分代码包裹在一个try-catch块中,这样即使发生MalformedURLException,程序也不会完全崩溃,而是能够优雅地处理错误: scala try { val url = new java.net.URL("http://example.com") println(s"URL is valid: $url") } catch { case e: java.net.MalformedURLException => println("MalformedURLException occurred.") } 4. 处理异常 除了基本的异常捕获之外,我们还可以采取一些额外措施来增强程序的鲁棒性。例如,在catch块内部,我们可以记录错误日志,甚至向用户提供友好的提示信息,告知他们输入的URL存在格式问题,并建议正确的格式: scala try { val url = new java.net.URL("http://example.com") println(s"URL is valid: $url") } catch { case e: java.net.MalformedURLException => println("MalformedURLException occurred. Please ensure your URL is properly formatted.") // 记录错误日志 import java.io.PrintWriter import java.io.StringWriter val sw = new StringWriter() val pw = new PrintWriter(sw) e.printStackTrace(pw) println(sw.toString) } 进阶技巧:自定义URL验证函数 5. 自定义验证逻辑 为了进一步提高代码的可读性和复用性,我们可以封装上述功能,创建一个专门用于验证URL的函数。该函数不仅会检查URL格式,还会执行一些额外的安全检查,比如防止SQL注入等恶意行为: scala import java.net.URL def validateUrl(urlString: String): Option[URL] = { if (!isValidUrl(urlString)) { None } else { try { Some(new URL(urlString)) } catch { case _: MalformedURLException => None } } } // 测试 validateUrl("http://example.com") match { case Some(url) => println(s"Valid URL: $url") case None => println("Invalid URL.") } 结论 通过本文的学习,希望大家对Scala中处理URL相关的问题有了更深刻的理解。记住,预防总是优于治疗。在写代码的时候,提前想到可能会出的各种岔子,并且想办法避开它们,这样我们的程序就能更稳当、更靠谱了。当然,面对MalformedURLException这样的常见异常,保持冷静、合理应对同样重要。希望今天的分享能帮助大家写出更好的Scala代码! 最后,别忘了在日常开发中多实践、多总结经验,编程之路虽充满挑战,但每一步都值得骄傲。祝大家代码愉快!
2024-12-19 15:45:26
23
素颜如水
转载文章
...al;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
JQuery插件下载
JQuery插件介绍 基于Bootstrap3的滚动监听(Scrollspy)jQuery插件dynamic-scrollspy旨在简化和增强原生Bootstrap框架中的滚动监听功能。这款插件设计用于实现页面滚动时动态交互的导航效果,特别适合具有长滚动内容和侧边栏导航的网站布局。当用户滚动页面浏览不同内容区域时,dynamic-scrollspy能够自动检测并高亮当前视窗内对应的侧边栏导航链接,为用户提供直观的浏览位置提示。开发者只需简单配置和集成该插件到Bootstrap3环境中,即可轻松创建出响应式、智能联动的滚动监听特效,提升用户体验和网站整体的交互性。 点我下载 文件大小:302.47 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-05 08:05:11
124
本站
JQuery插件下载
JQuery插件介绍 "jQuery仿Android样式扁平风格图标插件”是一个专注于实现MaterialDesign设计规范中扁平化图标的jQuery扩展组件,名为“Flatify”。这款插件以轻量、灵活和高效著称,特别适合在Web项目中快速构建具有Android系统般扁平化视觉效果的图标元素。通过简单直观的API配置,开发者能够便捷地定制出多样化的扁平风格图标,从而增强网站或应用的用户体验与整体设计感,紧跟现代UI/UX设计潮流。借助Flatify,无需复杂的手动绘制或CSS编写,即可轻松实现与AndroidMaterialDesign界面一致的图标表现,大大提升了开发效率及设计的一致性。 点我下载 文件大小:39.39 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-11 15:27:07
111
本站
JQuery插件下载
JQuery插件介绍 TimeTo是一款专为jQuery设计的高性能倒计时插件,以其精确到毫秒级的时间计算和独特的翻页式动画效果而受到开发者青睐。这款插件提供了便捷的方式来实现网页中各类动态倒计时功能,不仅适用于活动促销、限时抢购等场景,还可应用于诸如赛事计时、任务截止日期提醒等多种场合。通过TimeTo,开发者能够轻松配置并启动多个独立且精确的倒计时实例,同时保持代码的简洁与高效。该插件兼顾实用性和视觉体验,使得网页中的倒计时元素既信息明确又富有吸引力,从而有效提升用户交互体验。 点我下载 文件大小:81.05 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-28 12:59:01
121
本站
JQuery插件下载
JQuery插件介绍 这款创新的jQuery插件,名为'炫酷网格布局',将现代前端技术完美融合,为您的网站带来独特的视觉体验。它基于JavaScript和CSS3的强大功能,实现了动态且交互式的网格设计。当用户浏览时,鼠标悬停在网格项上,精致的文字动画效果立即激活,为浏览过程增添了生动与趣味。更令人惊叹的是,每项点击都会触发无缝的过渡,引领用户进入精心设计的详细内容页面,让用户沉浸在沉浸式的内容探索中。无论是提升用户体验,还是打造高端网站,'炫酷网格布局'都是设计师们的得力工具。 点我下载 文件大小:953.47 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-18 18:55:31
53
本站
JQuery插件下载
JQuery插件介绍 jQuery插件OnePageScroll.js是一款专注于实现整页滚动效果并结合视觉差特效的网页交互工具。它专为构建单页面、多屏内容切换的网站而设计,使得用户通过一次鼠标滚轮的滚动动作,即可平滑地向上或向下翻动整个页面内容,仿佛浏览一系列连续的全屏画面。在页面滚动过程中,OnePageScroll.js会智能应用视觉差效果,让背景和前景元素产生层次错落感,增强了用户的沉浸式体验,尤其适用于故事叙述型或作品展示类网站的设计中。该插件轻量、易用且兼容性良好,能够赋予网页动态而现代的观感与交互方式。 点我下载 文件大小:346.70 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-03 17:08:30
330
本站
JQuery插件下载
JQuery插件介绍 MaterialDesign风格下拉菜单jquery插件(menu.js)是一款专为实现MaterialDesign视觉规范而设计的jQuery插件,它能够帮助开发者和设计师便捷地在Web项目中创建出具有GoogleMaterialDesign独特动画效果与视觉风格的下拉菜单及下拉列表。通过集成该插件,用户可以轻松定制动态、响应式且具有良好交互体验的下拉导航组件,无论是桌面端还是移动端界面都能展现出一致且高质量的设计感。只需简单的配置和调用,menu.js就能助力提升网页的整体用户体验,并确保与MaterialDesign体系的无缝接轨。 点我下载 文件大小:47.30 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-07-15 15:38:14
128
本站
JQuery插件下载
JQuery插件介绍 jQueryAnimator插件是一款专门用于增强和控制CSS3动画效果的工具,它建立在流行且强大的Animate.css库基础上。通过这款插件,开发者能够便捷地将Animate.css中预设的丰富、跨浏览器的CSS3动画应用到网页中的DOM元素上。jQueryAnimator.js不仅简化了对Animate.css动画效果的选择与调用过程,还特别提供了额外的功能,即当指定的DOM元素进入浏览器视口时自动触发相应的动画效果,极大地增强了用户体验和动态网页设计的灵活性。只需简单的jQuery语法调用,开发者就能够轻松实现复杂的动画交互,让网页元素以更为生动和吸引人的方式展示出来。 点我下载 文件大小:62.61 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-21 12:32:20
80
本站
JQuery插件下载
JQuery插件介绍 "jQuery-peeper"是一款专为增强表单交互体验而设计的jQuery插件,它针对表单中的密码字段提供了便捷的显示与隐藏功能。通过集成此插件,用户可以在输入密码时自由切换是否以明文形式查看已输入的内容,增强了对密码输入的控制权和可视性。此外,该插件还具备独特的复制密码至剪贴板功能,允许用户直接复制已输入的密码,从而简化了在不同平台或应用间转移密码的操作流程。开发者可以根据需求灵活配置并集成到项目中,使得网页表单更加人性化且易于使用,同时保持了良好的浏览器兼容性和用户体验一致性。 点我下载 文件大小:47.06 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-06 08:07:44
77
本站
JQuery插件下载
JQuery插件介绍 jquery中国省份地图插件是一款适用于浏览器的JavaScript插件,基于jQuery库开发,特别优化以兼容InternetExplorer8及更高版本。该插件通过巧妙利用多张PNG格式图片拼接构建出一幅完整的中国省份地图,并实现了丰富的鼠标交互效果。当用户鼠标滑过地图上的各个省份区域时,相应的省份会自动高亮显示,为用户提供直观且生动的视觉反馈。这一特性使得该插件非常适合应用于数据可视化、地理信息展示、以及各类需要与地域信息相结合的网页项目中,带给用户便捷而有趣的地图导航和数据探索体验。 点我下载 文件大小:355.08 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-19 10:53:11
337
本站
JQuery插件下载
JQuery插件介绍 CaptionerJs是一款轻量级且实用的jQuery插件,专注于为网页中的图片提供富有动画效果的标题展示。相比于其他同类插件,CaptionerJs以其简洁和语义化的HTML代码结构脱颖而出,它不依赖于额外的div层来构建图片标题,从而确保了代码的高效与规范。这款插件能够轻松实现各种动态、美观的图片标题动画效果,增强了用户在浏览图片时的信息获取体验,同时也提升了网站整体的设计感和交互性。开发者可以借助CaptionerJs快速创建既符合现代网页标准,又具有视觉吸引力的图片标题元素,无需繁琐的手动编码,只需简单的配置和调用即可实现丰富的功能,是提升网页图片展示品质的理想选择。 点我下载 文件大小:230.61 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-03-08 11:41:33
38
本站
JQuery插件下载
JQuery插件介绍 "SmoothScrollbar"是一款专注于提升用户体验的高性能纯JavaScript滚动条美化插件,专为现代浏览器设计与优化。它通过纯JavaScript实现滚动条功能,不仅提供流畅、平滑的滚动效果,还允许开发人员进行深度定制和灵活配置。这款插件兼容广泛,支持包括桌面端及移动端在内的各种现代浏览器环境,确保用户无论在何种设备上都能获得一致且美观的滚动体验。其小巧精悍且高效的特性使其成为网页和应用程序中替换原生滚动条的理想选择,赋予开发者对滚动区域外观及行为的完全控制权,从而实现更个性化的界面设计与交互效果。 点我下载 文件大小:111.49 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-19 17:48:23
319
本站
JQuery插件下载
JQuery插件介绍 这款jQuery和CSS33D旋转画廊插件能让你的网站图片展示效果更加炫酷夺目。通过这款插件,你可以创建出如同旋转木马一般的3D画廊,让访客们在浏览图片时享受到独特的视觉体验。用户可以使用前后导航按钮轻松地切换图片,仿佛置身于一个立体的画廊中。此外,当你点击某张图片时,它会自动放大并显示出详细的图片标题信息,使你能够更清晰地欣赏每一张图片。不仅如此,这款插件还支持键盘操作,用户只需轻触方向键就能浏览不同的图片,极大地提升了用户体验。无论是用于展示产品还是个人作品集,这款插件都能让你的网站内容变得更加生动有趣。 点我下载 文件大小:611.70 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-20 10:57:54
128
本站
JQuery插件下载
JQuery插件介绍 这款名为“gototop”的jQuery插件是一款专为提升用户体验而设计的轻量级解决方案,专注于提供平滑且富有视觉吸引力的返回顶部功能。当用户在浏览网页并向下滚动超过一定距离后,该插件会以CSS3动画的形式优雅地显示一个返回顶部的按钮。此动画效果流畅自然,能够有效吸引用户的注意力并引导其操作。点击这个动态出现的返回顶部按钮时,页面将运用jQuery和CSS3技术实现无缝、平滑的滚动过渡效果,迅速将用户带回页面顶端,大大增强了网页的互动性和易用性。作为一个简单易用、兼容性强的插件,"带CSS3动画效果的炫酷jquery返回顶部插件"无疑是各类网站尤其是长页面设计中提高用户体验的理想工具。 点我下载 文件大小:44.74 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-26 14:09:06
115
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz file_or_directory
- 将文件或目录打包并压缩为gzip格式。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"