前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据库压力缓解的缓存技术实现]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Go-Spring
...断攀升,对于服务器的压力也越来越大。为了提升系统性能和响应速度,我们需要考虑引入缓存技术。本文将以Go-Spring框架为例,详细讲解如何配置和使用缓存。 二、什么是缓存 简单来说,缓存就是将常用的数据存储到内存中,下次再需要时直接从内存中获取,避免了频繁地去数据库或其他资源中读取数据,从而提升了系统的响应速度。 三、为什么使用缓存 我们都知道,数据库是最稳定也是最慢的资源之一。当我们频繁地对数据动手脚时,就像是给数据库不断增压,这样一来,整个系统的运转速度和表现力可就被拖后腿啦。其实,通过运用缓存这个小妙招,我们就能把那些经常要用到的数据提前放在内存里头,这样一来,读取数据的速度就能嗖嗖地提升上去,快得飞起! 四、Go-Spring中的缓存配置 在Go-Spring中,我们可以使用ehcache作为缓存组件。首先,我们需要在Spring配置文件中添加ehcache的相关依赖: xml net.sf.ehcache ehcache 2.6.9 然后,我们可以在Spring配置文件中定义ehcache的配置: xml 最后,我们可以通过@Autowired注解注入ehcache实例,并将其注册为一个Service: java @Service("myService") public class MyService { @Autowired private CacheManager cacheManager; public void doSomething() { // 使用缓存 Cache cache = cacheManager.getCache("myCache"); String result = (String) cache.get("key"); if (result == null) { // 如果缓存中没有这个key,就去数据库查询 result = queryFromDatabase(); // 将结果放入缓存 cache.put("key", result); } // 使用缓存的结果 ... } private String queryFromDatabase() { // 查询数据库 } } 五、缓存的生命周期管理 缓存的生命周期管理主要涉及到缓存的创建、更新和删除。在Go-Spring这套工具里,我们可以巧妙地利用ehcache自带的生命周期回调机制来达到这个目的。例如,当缓存被创建时,我们可以在afterCreate方法中添加一些初始化逻辑: java @EventListener(CacheEvent.CacheCreatedEvent.class) public void onCacheCreate(CacheCreatedEvent event) { Cache cache = event.getSource(); // 在这里添加一些初始化逻辑 } 六、结论 通过上述步骤,我们在Go-Spring中成功地配置并使用了缓存。有了缓存的帮助,我们的Web应用在处理大量请求时,可以更快地响应,提高用户体验。同时,缓存也可以减轻数据库等资源的压力,保证系统的稳定性。所以,在咱们实际做开发的时候,咱得积极地把缓存技术用起来,这样一来,就能让系统的运行速度和响应效率蹭蹭往上涨,用户体验更上一层楼。
2023-12-01 09:24:43
447
半夏微凉-t
MemCache
...之后,您可能对分布式缓存系统的最新发展和技术动态产生了更浓厚的兴趣。近期,Memcached社区发布了1.6.13版本,该版本强化了内存管理机制,并修复了一系列性能问题,使得Memcached在高并发场景下的表现更为出色。同时,随着云原生技术的发展,越来越多的企业开始探索将Memcached与Kubernetes等容器编排平台结合,通过StatefulSet实现自动化的集群部署与扩展,进一步提升了运维效率。 此外,对于寻求更高一致性保证的用户,可以关注新兴的开源项目如Redis或Cassandra,它们在提供内存级速度的同时,还具备更强的数据持久化能力和多数据中心同步功能。例如,Redis 6.2版本引入了客户端缓存、Stream数据结构改进等特性,为开发者提供了更多元化的缓存解决方案。 而在实际应用层面,有文章深入剖析了大型互联网公司在处理海量数据时如何借助分布式缓存系统进行架构优化,如淘宝、京东等电商平台利用Memcached集群有效缓解数据库压力,保障了业务高峰期的服务稳定性和用户体验。 综上所述,在掌握Memcached集群搭建的基础上,持续关注相关领域的技术创新和行业实践,能够帮助我们更好地应对复杂应用场景,提升系统性能和可用性。
2024-02-28 11:08:19
89
彩虹之上-t
Sqoop
...析 1. 引言 在大数据处理的日常工作中,Apache Sqoop作为一种高效的数据迁移工具,广泛应用于Hadoop生态系统中,用于在关系型数据库与Hadoop之间进行数据导入导出。在实际动手操作的时候,我们常常会碰上一个让人觉得有点反直觉的情况:就是那个Sqoop作业啊,你要是把它的并发程度调得过高,反而会让整体运行速度慢下来,就像车子轮胎气太足,开起来反而颠簸不稳一样。这篇文章咱们要一探究竟,把这个现象背后的秘密给挖出来,还会借助一些实际的代码案例,让大家能摸清楚它内在的门道和规律。 2. 并发度对Sqoop性能的影响 Sqoop作业的并发度,即一次导入或导出操作同时启动的任务数量,理论上讲,增加并发度可以提高任务执行速度,缩短总体运行时间。但事实并非总是如此。过高的并发度可能导致以下几个问题: - 网络带宽瓶颈:当并发抽取大量数据时,网络带宽可能会成为制约因素。你知道吗,就像在马路上开车,每辆 Sqoop 任务都好比一辆占用网络资源的小车。当高峰期来临时,所有这些小车同时挤上一条有限的“网络高速公路”,大家争先恐后地往前冲,结果就造成了大堵车,这样一来,数据传输的速度自然就被拖慢了。 - 源数据库压力过大:高并发读取会使得源数据库面临巨大的I/O和CPU压力,可能导致数据库响应变慢,甚至影响其他业务系统的正常运行。 - HDFS写入冲突:导入到HDFS时,若目标目录下的文件过多且并发写入,HDFS NameNode的压力也会增大,尤其是小文件过多的情况下,NameNode元数据管理负担加重,可能造成集群性能下降。 3. 代码示例与分析 下面以一段实际的Sqoop导入命令为例,演示如何设置并发度以及可能出现的问题: bash sqoop import \ --connect jdbc:mysql://dbserver:3306/mydatabase \ --username myuser --password mypassword \ --table mytable \ --target-dir /user/hadoop/sqoop_imports/mytable \ --m 10 这里设置并发度为10 假设上述命令导入的数据量极大,而数据库服务器和Hadoop集群都无法有效应对10个并发任务的压力,那么性能将会受到影响。正确的做法呢,就是得瞅准实际情况,比如数据库的响应速度啊、网络环境是否顺畅、HDFS存储的情况咋样这些因素,然后灵活调整并发度,找到最合适的那个“甜蜜点”。 4. 性能调优策略 面对Sqoop并发度设置过高导致性能下降的情况,我们可以采取以下策略进行优化: - 合理评估并设置并发度:基于数据库和Hadoop集群的实际硬件配置和当前负载情况,逐步调整并发度,观察性能变化,找到最佳并发度阈值。 - 分批次导入/导出:对于超大规模数据迁移,可考虑采用分批次的方式,每次只迁移部分数据,减小单次任务的并发度。 - 使用中间缓存层:如果条件允许,可以在数据库和Hadoop集群间引入数据缓冲区(如Redis、Kafka等),缓解两者之间的直接交互压力。 5. 结论与思考 在Sqoop作业并发度的设置上,我们不能盲目追求“越多越好”,而是需要根据具体场景综合权衡。其实说白了,Sqoop性能优化这事可不简单,它牵扯到很多方面的东东。咱得在实际操作中不断摸爬滚打、尝试探索,既得把工具本身的运行原理整明白,又得瞅准整个系统架构和各个组件之间的默契配合,才能让这玩意儿的效能噌噌噌往上涨。只有这样,才能真正发挥出Sqoop应有的效能,实现高效稳定的数据迁移。
2023-06-03 23:04:14
154
半夏微凉
MemCache
...构的融合 随着云计算技术的快速发展,微服务架构、容器化部署、以及Serverless计算模式逐渐成为企业数字化转型的主流趋势。在这种背景下,如何高效地管理和优化分布式缓存,成为了支撑云原生应用稳定运行的关键因素。Memcached作为一款经典的分布式内存对象缓存系统,其在云原生环境中的应用与优化,成为当前IT领域研究的热点话题。 微服务与分布式缓存的挑战 在微服务架构中,服务的解耦和模块化带来了巨大的灵活性和可扩展性,但也带来了通信成本增加、服务间依赖复杂等问题。分布式缓存作为微服务间数据共享和状态一致性维护的重要手段,对于提升系统响应速度、降低数据库压力具有不可替代的作用。然而,在分布式系统中,缓存的一致性、失效策略、以及缓存穿透等问题日益凸显,成为影响系统稳定性和性能的关键因素。 Memcached在云原生环境中的应用 面对上述挑战,Memcached通过其轻量级的设计和高效的数据访问特性,在云原生环境中找到了新的应用场景和优化路径。例如,结合Kubernetes和Docker容器技术,Memcached可以被方便地部署到集群中,实现资源的动态扩展和负载均衡。通过使用Kubernetes的服务发现和自动缩放功能,可以确保Memcached服务在高并发场景下保持良好的性能和稳定性。 同时,借助现代云平台提供的监控和日志服务,如Prometheus和ELK Stack,可以实时监控Memcached的运行状态,及时发现并定位性能瓶颈,实现故障快速响应和自动化优化。此外,通过集成Redisson等开源库或自定义实现,Memcached可以支持更多高级特性,如事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
38
人生如戏
Java
...va开发过程中,随着数据规模的增长和安全要求的提高,上述根据多个ID查找用户名和密码的方法需要进一步优化和强化。例如,在使用HashMap存储用户数据时,尽管查询速度快,但内存占用可能成为瓶颈,尤其对于亿级甚至更大规模的数据。因此,可以考虑引入分布式缓存系统如Redis,利用其高效的KV存储和检索能力,既能实现快速查找,又能缓解内存压力。 此外,针对数据库查询方法,JDBC虽然基础且通用,但在高并发场景下,频繁创建和销毁数据库连接将严重影响性能。为此,开发者可以采用数据库连接池技术(如HikariCP、C3P0等),预先创建并管理一定数量的数据库连接,按需分配给各个线程,从而极大提升系统的响应速度和稳定性。 在信息安全层面,直接存储明文密码是极其危险的做法。最新的密码存储规范推荐使用加盐哈希算法(例如bcrypt或Argon2)对用户密码进行加密处理,并在数据库中仅存储加密后的密文。这样即使数据库被泄露,攻击者也无法直接获取到原始密码。 近期,随着GDPR等相关隐私法规的出台,用户数据的安全保护与合规处理也成为了开发者必须面对的重要议题。在设计和实现多ID查询功能时,应确保遵循最小权限原则,只返回必要的信息,并在日志记录、传输加密等方面加强安全措施,以符合法规要求并保障用户的隐私权益。 综上所述,针对Java中根据多个ID查找用户名和密码的实际应用,我们不仅要关注查询效率,更要重视数据安全和隐私保护,同时结合最新技术和最佳实践持续优化系统设计与实现。
2023-10-25 12:49:36
342
键盘勇士
MyBatis
...Batis在处理大量数据时的性能瓶颈问题? 当我们使用MyBatis作为持久层框架处理大数据量业务场景时,可能会遇到性能瓶颈。本文将深入探讨这一问题,并通过实例代码和策略性建议来揭示如何有效地优化MyBatis以应对大规模数据处理挑战。 1. MyBatis处理大数据时的常见性能瓶颈 在处理大量数据时,MyBatis可能面临的性能问题主要包括: - 数据库查询效率低下:一次性获取大量数据,可能导致SQL查询执行时间过长。 - 内存消耗过大:一次性加载大量数据到内存,可能导致Java Heap空间不足,甚至引发OOM(Out Of Memory)错误。 - 循环依赖与延迟加载陷阱:在实体类间存在复杂关联关系时,如果不合理配置懒加载,可能会触发N+1查询问题,严重降低系统性能。 2. 针对性优化策略及示例代码 2.1 SQL优化与分页查询 示例代码: java @Select("SELECT FROM large_table LIMIT {offset}, {limit}") List fetchLargeData(@Param("offset") int offset, @Param("limit") int limit); 在实际应用中,尽量避免一次性获取全部数据,而是采用分页查询的方式,通过LIMIT关键字实现数据的分批读取。例如,上述代码展示了一个分页查询的方法定义。 2.2 合理设置批量处理与流式查询 MyBatis 3.4.0及以上版本支持了ResultHandler接口以及useGeneratedKeys、fetchSize等属性,可以用来进行批量处理和流式查询,有效减少内存占用。 示例代码: java @Select("SELECT FROM large_table") @Results(id = "largeTableResult", value = { @Result(property = "id", column = "id") // 其他字段映射... }) void streamLargeData(ResultSetHandler handler); 在这个例子中,我们通过ResultSetHandler接口处理结果集,而非一次性加载到内存,这样就可以按需逐条处理数据,显著降低内存压力。 2.3 精细化配置懒加载与缓存策略 对于实体间的关联关系,应合理配置懒加载以避免N+1查询问题。另外,咱们也可以琢磨一下开启二级缓存这招,或者拉上像Redis这样的第三方缓存工具,这样一来,数据访问的速度就能噌噌噌地往上提了。 示例代码: xml 以上示例展示了如何在实体关联映射中启用懒加载,只有当真正访问LargeTable.detail属性时,才会执行对应的SQL查询。 3. 总结与思考 面对MyBatis处理大量数据时可能出现的性能瓶颈,我们应从SQL优化、分页查询、批量处理、懒加载策略等方面综合施策。同时呢,咱们得在实际操作中不断摸索、改进,针对不同的业务场景,灵活耍起各种技术手段,这样才能保证咱的系统在面对海量数据挑战时,能够轻松应对,游刃有余,就像一把磨得飞快的刀切豆腐一样。 在此过程中,我们需要保持敏锐的洞察力和持续优化的态度,理解并熟悉MyBatis的工作原理,才能逐步克服性能瓶颈,使我们的应用程序在海量数据面前展现出更强大的处理能力。同时,咱也得留意一下性能优化和代码可读性、维护性之间的微妙平衡,目标是追求那种既高效又易于理解和维护的最佳技术方案。
2023-08-07 09:53:56
56
雪落无痕
Apache Atlas
...,我们不难发现,在大数据领域中,元数据管理的重要性以及其对系统资源的有效利用有着深远的影响。实际上,随着企业数字化转型的加速,大数据环境中的元数据规模呈指数级增长,使得如何优化资源配置、防止类似内存溢出等问题成为业界关注的焦点。 近期,Apache Atlas社区正积极推动项目升级与优化工作,发布了新版本以改善内存管理和扩展性。例如,新版本通过改进内部数据结构和算法,降低了在处理大规模元数据时的内存消耗,并引入了更灵活的分布式缓存策略,有效缓解了单一服务器内存压力。 同时,行业专家也在不断研究基于云原生架构下的元数据管理最佳实践,提倡采用容器化、微服务化等技术手段来分散系统负载,实现资源动态调度,从而避免因单点故障导致的服务中断。此外,结合AI和机器学习技术预测并优化元数据访问模式,也是当前研究的一个热门方向,有望在未来进一步提升Apache Atlas等元数据管理工具的性能和稳定性。 因此,对于正在使用或计划部署Apache Atlas的企业而言,除了掌握基础的故障排查和调优技巧,还应持续关注官方发布的最新动态和技术趋势,以便更好地适应快速变化的大数据环境,确保元数据管理系统的高效稳定运行。
2023-02-23 21:56:44
521
素颜如水-t
Go-Spring
...代分布式系统架构中,缓存服务的稳定性和高效性对于系统的整体性能至关重要。近期,随着微服务和云原生架构的普及,越来越多的开发者关注到如Redis、Memcached等主流缓存解决方案在高并发场景下的实践与优化策略。例如,一篇发表在InfoQ的技术文章深入探讨了如何在Go-Spring框架下结合使用Redis集群实现分布式缓存,并通过TTL(Time To Live)机制有效管理数据过期问题,从而降低由于缓存异常引发的系统风险。 同时,也有不少研究者和开发者开始关注缓存一致性和安全性的问题。今年早些时候,一项关于缓存污染攻击的研究揭示了攻击者可能利用恶意数据导致缓存失效或误导系统行为的风险,进一步强调了在设计和使用缓存服务时,不仅要考虑性能优化,还需兼顾安全防护措施的重要性。 此外,随着Service Mesh技术的发展, Istio等服务网格解决方案提供了对缓存治理更精细的控制能力,允许开发人员在不修改应用代码的情况下,动态配置缓存策略,增强了分布式缓存管理的可观测性和可控性。 综上所述,在面对缓存服务异常问题时,除了及时发现与修复外,紧跟业界最新研究成果和技术趋势,深入了解并合理运用各类工具与最佳实践,才能确保在复杂多变的分布式环境中,我们的缓存服务能够持续稳定地发挥其提升系统性能的关键作用。
2023-11-23 18:26:05
511
心灵驿站-t
MemCache
...在多实例部署下实例间数据分布混乱问题的探讨 1. 引言 Memcached,这个久经沙场、被广大开发者所钟爱的高性能、分布式内存对象缓存系统,在提升应用性能和降低数据库压力方面有着卓越的表现。然而,在真正动手部署的时候,特别是在多个实例一起上的情况下,我们很可能碰上个让人头疼的问题,那就是数据分布乱七八糟的。这种情况下,如何保证数据的一致性和高效性就显得尤为重要。本文打算深入地“解剖”一下Memcached的数据分布机制,咱们会配合着实例代码,边讲边演示,让大伙儿能真正理解并搞定这个难题。 2. Memcached的数据分布机制 Memcached采用哈希一致性算法(如 Ketama 算法)来决定键值对存储到哪个节点上。在我们搭建Memcached的多实例环境时,其实就相当于给每个实例分配了自己独立的小仓库,它们都有自己的一片存储天地。客户端这边呢,就像是个聪明的快递员,它会用一种特定的哈希算法给每个“包裹”(也就是键)算出一个独一无二的编号,然后拿着这个编号去核对服务器列表,找到对应的“货架”,这样一来就知道把数据放到哪个实例里去了。 python 示例:使用pylibmc库实现键值存储到Memcached的一个实例 import pylibmc client = pylibmc.Client(['memcached1:11211', 'memcached2:11211']) key = "example_key" value = "example_value" 哈希算法自动处理键值对到具体实例的映射 client.set(key, value) 获取时同样由哈希算法决定从哪个实例获取 result = client.get(key) 3. 多实例部署下的数据分布混乱问题 尽管哈希一致性算法尽可能地均匀分配了数据,但在集群规模动态变化(例如增加或减少实例)的情况下,可能导致部分数据需要迁移到新的实例上,从而出现“雪崩”现象,即大量请求集中在某几个实例上,引发服务不稳定甚至崩溃。另外,若未正确配置一致性哈希环,也可能导致数据分布不均,形成混乱。 4. 解决策略与实践 - 一致性哈希:确保在添加或删除节点时,受影响的数据迁移范围相对较小。大多数Memcached客户端库已经实现了这一点,只需正确配置即可。 - 虚拟节点技术:为每个物理节点创建多个虚拟节点,进一步提高数据分布的均匀性。这可以通过修改客户端配置或者使用支持此特性的客户端库来实现。 - 定期数据校验与迁移:对于重要且需保持一致性的数据,可以设定周期性任务检查数据分布情况,并进行必要的迁移操作。 java // 使用Spymemcached库设置虚拟节点 List addresses = new ArrayList<>(); addresses.add(new InetSocketAddress("memcached1", 11211)); addresses.add(new InetSocketAddress("memcached2", 11211)); HashAlgorithm hashAlg = HashAlgorithm.KETAMA_HASH; KetamaConnectionFactory factory = new KetamaConnectionFactory(hashAlg); factory.setNumRepetitions(100); // 增加虚拟节点数量 MemcachedClient memcachedClient = new MemcachedClient(factory, addresses); 5. 总结与思考 面对Memcached在多实例部署下的数据分布混乱问题,我们需要充分理解其背后的工作原理,并采取针对性的策略来优化数据分布。同时,制定并执行一个给力的监控和维护方案,就能在第一时间火眼金睛地揪出问题,迅速把它解决掉,这样一来,系统的运行就会稳如磐石,数据也能始终保持一致性和准确性,就像咱们每天检查身体,小病早治,保证健康一样。作为开发者,咱们得不断挖掘、摸透和掌握这些技术小细节,才能在实际操作中挥洒自如,更溜地运用像Memcached这样的神器,让咱的系统性能蹭蹭上涨,用户体验也一路飙升。
2023-05-18 09:23:18
89
时光倒流
Beego
...发布了一项针对其开源数据库连接池库“pgx”的新特性,通过智能预热、并发控制等技术显著提升了数据库连接复用效率,这对于使用类似Beego框架进行开发的项目具有极高的参考价值和实践意义。 同时,随着HTTP/3协议的逐步普及,其基于QUIC的低延迟传输特性为Web请求处理带来了新的优化可能。例如,Cloudflare等云服务提供商已经开始支持HTTP/3,并公开分享了在实际业务场景中采用HTTP/3后带来的性能提升数据,这对于Beego这类Web框架在HTTP请求处理层面的优化提供了前瞻性的指导。 此外,对于缓存策略的研究也在不断深化,Redis Labs近期推出的RediSearch模块,增强了Redis对复杂查询的支持,使得开发者能够在缓存层实现更高效的检索操作,从而在保证响应速度的同时减轻数据库压力,这也是Beego应用性能优化的一个重要方向。 总之,在持续探索性能优化的过程中,密切关注行业前沿技术和最佳实践,结合具体应用场景灵活运用,才能确保我们的应用程序始终保持高效稳定的运行状态。
2024-01-18 18:30:40
537
清风徐来-t
MemCache
... MemCache与缓存雪崩风险:深入探讨及实战示例 1. 引言 --- MemCache,这位久经沙场的高性能分布式内存对象缓存系统,因其卓越的性能和简单易用的API深受开发者的喜爱。在应对那种很多人同时在线、数据量贼大的情况时,这个家伙可机灵了,它会先把那些经常被访问的热点数据暂时存到内存里头。这样一来,数据库的压力瞬间就减轻了不少,系统的反应速度也是蹭蹭地往上飙,效果拔群!然而,就像任何一把锋利的工具一样,如果使用方法不对头,就可能惹出些麻烦来。这当中一个常见的问题就是所谓的“缓存雪崩”。 2. 缓存雪崩的概念解析 --- 缓存雪崩是指缓存系统在同一时刻大面积失效或者无法提供服务,导致所有请求直接涌向后端数据库,进而引发数据库压力激增甚至崩溃的情况。这种情况如同雪崩一般,瞬间释放出巨大的破坏力。 3. 缓存雪崩的风险源分析 --- - 缓存集中过期:例如,如果大量缓存在同一时间点过期,那么这些原本可以通过缓存快速响应的请求,会瞬时全部转向数据库查询。 - 缓存集群故障:当整个MemCache集群出现故障或重启时,所有缓存数据丢失,也会触发缓存雪崩。 - 网络异常:网络抖动或分区可能导致客户端无法访问到MemCache服务器,从而引发雪崩效应。 4. MemCache应对缓存雪崩的策略与实战代码示例 --- (1)设置合理的过期时间分散策略 为避免大量缓存在同一时间点过期,可以采用随机化过期时间的方法,例如: python import random def set_cache(key, value, expire_time): 基础过期时间 base_expire = 60 60 1小时 随机增加一个范围内的过期时间 delta_expire = random.randint(0, 60 5) 在0-5分钟内随机 total_expire = base_expire + delta_expire memcache_client.set(key, value, time=total_expire) (2)引入二级缓存或本地缓存备份 在MemCache之外,还可以设置如Redis等二级缓存,或者在应用本地进行临时缓存,以防止MemCache集群整体失效时完全依赖数据库。 (3)限流降级与熔断机制 当检测到缓存雪崩可能发生时(如缓存大量未命中),可以启动限流策略,限制对数据库的访问频次,并返回降级内容(如默认值、错误页面等)。下面是一个简单的限流实现示例: python from ratelimiter import RateLimiter limiter = RateLimiter(max_calls=100, period=60) 每分钟最多100次数据库查询 def get_data_from_db(key): if not limiter.hit(): raise Exception("Too many requests, fallback to default value.") 实际执行数据库查询操作... data = db.query_data(key) return data 同时,结合熔断器模式,如Hystrix,可以在短时间内大量失败后自动进入短路状态,不再尝试访问数据库。 (4)缓存预热与更新策略 在MemCache重启或大规模缓存失效后,可预先加载部分热点数据,即缓存预热。另外,我们可以采用异步更新或者懒加载的方式来耍个小聪明,处理缓存更新的问题。这样一来,就不会因为网络偶尔闹情绪、卡个壳什么的,引发可怕的雪崩效应了。 总结起来,面对MemCache中的缓存雪崩风险,我们需要理解其根源,运用多维度的防御策略,并结合实际业务场景灵活调整,才能确保我们的系统具备更高的可用性和韧性。在这个过程里,我们不断摸爬滚打,亲身实践、深刻反思,然后再一步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
88
蝶舞花间
MemCache
近期,随着云计算和大数据技术的快速发展,缓存系统的优化和管理变得更加关键。最近的一份报告指出,某知名电商网站在“双十一”购物节期间遭遇了严重的缓存雪崩事件,导致大量用户无法正常访问商品信息,严重影响了用户体验和业务运营。此次事件暴露出在高并发场景下,单一缓存系统的设计缺陷和应急响应机制的不足。为了避免类似问题再次发生,该企业迅速采取了多项改进措施,包括引入多级缓存架构、优化缓存过期策略以及增强系统监控和报警机制。这些举措不仅提升了系统的稳定性,也为其他面临相似挑战的企业提供了宝贵的参考经验。 与此同时,有研究团队针对缓存击穿现象进行了深入分析,发现热点数据的频繁访问是导致缓存击穿的主要原因之一。研究人员提出了一种基于机器学习的预测模型,能够提前识别出潜在的热点数据,并采取预加载等策略进行预防。这一创新方法已经在多个实际应用场景中得到了验证,显著降低了缓存击穿的风险,提高了系统的整体性能和可用性。 此外,根据Gartner发布的最新报告,未来几年内,随着边缘计算和物联网技术的普及,缓存系统将面临更加复杂和多变的环境。因此,企业需要不断优化现有的缓存策略,探索新的技术和方法,以应对日益增长的数据处理需求和更高的性能要求。例如,采用分布式缓存方案、引入内存数据库以及利用容器化技术提高系统的灵活性和扩展性,都是值得考虑的方向。这些技术的应用不仅能有效缓解缓存雪崩和缓存击穿问题,还能为企业带来更高效、更稳定的IT基础设施支持。
2024-11-22 15:40:26
59
岁月静好
Nginx
...地利用分布式架构下的缓存策略。例如,在全球最大的电商平台亚马逊AWS上,许多开发者正在尝试将类似Nginx的缓存机制与Lambda函数结合,以实现更灵活的服务端渲染。这种做法不仅提升了用户体验,还大幅降低了带宽成本。 与此同时,国内也有不少公司在探索类似的解决方案。阿里巴巴旗下的云服务平台阿里云最近推出了一款名为“云缓存”的新产品,专门针对大规模分布式系统设计。这款产品借鉴了开源项目如Varnish和Nginx的经验,并在此基础上增加了智能化调度算法,使得缓存命中率提高了约30%。此外,华为云也在积极布局边缘计算领域,推出了基于Kubernetes的边缘节点服务,允许用户轻松部署和管理分布在不同地理位置的应用程序实例。 从技术角度来看,这类创新背后离不开近年来机器学习的进步。例如,通过引入深度强化学习模型,系统可以自动调整缓存策略,确保在高并发场景下依然保持稳定的响应时间。这不仅解决了传统缓存面临的冷启动问题,还有效缓解了热点资源争夺带来的性能瓶颈。 当然,这一切并非没有挑战。隐私保护法规日益严格,企业在采用新的缓存技术时必须确保符合GDPR等相关法律法规的要求。特别是在处理跨境数据传输时,如何平衡效率与合规成为了一个亟待解决的问题。 总之,无论是国际巨头还是本土企业,都在努力寻找适合自身业务发展的最佳实践。未来几年内,随着5G网络普及以及物联网设备数量激增,缓存技术将迎来更多发展机遇。而像Nginx这样的经典工具,无疑将继续扮演重要角色,在这场数字化转型浪潮中发挥不可替代的作用。
2025-04-18 16:26:46
97
春暖花开
Hibernate
“大数据时代的缓存策略:深度解析与最新趋势” 在当今信息爆炸的时代,数据处理与分析的速度与效率成为了企业竞争力的关键因素。而在这个过程中,缓存技术作为一种重要的优化手段,扮演着至关重要的角色。随着大数据的普及,数据规模的指数级增长,传统的缓存策略已难以满足需求,因此,大数据时代下的缓存策略面临着全新的挑战与机遇。 一、缓存的演变与挑战 传统的缓存策略主要集中在内存与磁盘之间的数据交换,通过预先加载热点数据到内存中,以减少对磁盘的访问,从而提升数据读取速度。然而,在大数据场景下,数据量的急剧膨胀导致了传统缓存策略的局限性。一方面,大规模数据的实时处理要求缓存系统具备极高的吞吐量与低延迟特性;另一方面,数据的动态变化与频繁更新对缓存的有效性和持久性提出了更高要求。 二、分布式缓存的兴起 为应对大数据带来的挑战,分布式缓存系统应运而生。与传统的单机缓存相比,分布式缓存能够跨越多台服务器进行数据存储与分发,有效解决了数据量大、分布广的问题。通过负载均衡、数据分区等策略,分布式缓存能够在保证数据一致性的前提下,显著提升数据访问速度与系统扩展性。 三、NoSQL与缓存整合 在大数据处理中,NoSQL数据库因其强大的数据存储与处理能力而受到青睐。与传统的关系型数据库相比,NoSQL数据库在高并发、海量数据存储等方面表现出色。为了充分利用NoSQL数据库的性能优势,缓存与NoSQL数据库的整合成为了一种趋势。通过缓存系统对NoSQL数据库的热点数据进行预加载,可以大幅度减少数据库的访问压力,同时提升整体系统的响应速度与稳定性。 四、智能缓存与预测性维护 随着人工智能与机器学习技术的发展,智能缓存策略开始崭露头角。通过分析历史数据与用户行为模式,智能缓存系统能够预测热点数据的产生时间与访问频率,实现动态调整缓存策略,进一步优化资源分配与数据访问效率。此外,智能缓存还能够支持预测性维护,提前发现潜在的缓存问题,保障系统的稳定运行。 五、结论 在大数据时代,缓存策略不再仅仅是数据访问速度的优化工具,而是成为了一个集性能优化、资源管理、预测分析为一体的复杂系统。面对不断演进的技术环境与市场需求,缓存策略需要不断地创新与完善,以适应大数据、云计算、人工智能等新技术的挑战,为企业提供更加高效、可靠的解决方案。 随着技术的不断进步,大数据时代的缓存策略将持续进化,从单一的数据访问优化转向全面的数据管理和智能决策支持。在这个过程中,缓存技术将成为推动大数据应用发展的关键力量,为企业创造更大的价值。
2024-10-11 16:14:14
102
桃李春风一杯酒
MemCache
...进一步关注近期分布式缓存技术在性能优化领域的最新进展和实践。例如,Amazon近期发布了ElastiCache for Memcached的增强功能,通过提供自动发现、自动故障转移以及可扩展性优化等功能,显著降低了由于节点失效或负载不均导致的CPU资源飙升的可能性。 同时,业界也正积极研究如何结合硬件加速技术以优化Memcached等内存数据库系统的性能。一项来自Intel实验室的研究表明,采用Optane持久内存可以有效提高Memcached处理大量数据时的效率,从而降低对CPU资源的依赖。而在软件层面,开源社区也在不断探索和改进Memcached的内部算法,以减少不必要的计算开销,比如更智能的数据淘汰策略和更高效的网络通信协议。 此外,对于大规模服务架构而言,除了调整Memcached配置与控制客户端访问频率之外,还可以考虑采用多级缓存策略,如将Redis、Memcached与SSD本地缓存相结合,根据数据热度和访问模式合理分配存储资源,从整体上降低系统对单一组件(如Memcached)的CPU压力,实现更优的性能表现。 综上所述,解决Memcached CPU占用过高问题不仅需要我们对现有技术有深刻理解和熟练运用,更应紧跟行业发展趋势,适时引入新的技术和架构方案,以应对日益复杂的应用场景和不断提高的性能需求。
2024-01-19 18:02:16
95
醉卧沙场-t
Spark
近期,随着云计算和大数据技术的快速发展,分布式缓存技术的应用场景愈发广泛。除了Spark之外,Redis、Memcached等工具也在企业级应用中占据了重要地位。最近的一项研究表明,全球分布式缓存市场预计将在未来五年内以超过15%的年复合增长率扩张,这表明越来越多的企业开始意识到数据高效管理的重要性。 例如,亚马逊AWS最近推出了全新的DynamoDB Accelerator(DAX)服务,这是一种托管的缓存解决方案,专为高吞吐量、低延迟的数据库查询设计。DAX能够将响应时间缩短至毫秒级别,这对于实时数据分析和大规模用户交互场景至关重要。这一举措不仅展示了云服务商在提升数据处理效率上的持续投入,也为开发者提供了更多灵活的选择。 与此同时,国内互联网巨头阿里巴巴也宣布对其自主研发的Tair缓存系统进行全面升级。新版Tair支持更高的并发能力,并引入了更先进的冷热数据分离机制,大幅降低了内存占用率。这一改进尤其适用于电商促销活动期间的流量洪峰场景,有效缓解了服务器的压力。 此外,学术界对于分布式缓存的研究也在不断深入。一篇发表于《IEEE Transactions on Parallel and Distributed Systems》的论文提出了一种基于机器学习的缓存预取算法,可以根据历史访问模式预测未来的请求热点,从而提前将数据加载到缓存中。这种方法理论上可以进一步降低查询延迟,但实际部署仍面临模型训练成本高昂等问题。 值得注意的是,尽管分布式缓存带来了诸多便利,但它并非没有挑战。隐私保护、数据一致性以及跨地域同步等问题仍然是业界亟待解决的难题。随着GDPR等法规的出台,企业在使用缓存技术时还需格外注意合规性,确保用户数据的安全与合法使用。在未来,我们或许可以看到更多结合区块链技术的去中心化缓存解决方案,为用户提供更加透明和安全的服务体验。
2025-05-02 15:46:14
81
素颜如水
转载文章
...畅 5.网络响应慢,数据和画面展示慢、 6.过渡动画生硬。 7.界面不可交互,卡死,等等现象。 卡顿是如何发生的 卡顿产生的原因一般都比较复杂,如CPU内存大小,IO操作,锁操作,低效的算法等都会引起卡顿。 站在开发的角度看: 通常我们讲,屏幕刷新率是60fps,需要在16ms内完成所有的工作才不会造成卡顿。 为什么是16ms,不是17,18呢? 下面我们先来理清在UI绘制中的几个概念: SurfaceFlinger: SurfaceFlinger作用是接受多个来源的图形显示数据Surface,合成后发送到显示设备,比如我们的主界面中:可能会有statusBar,侧滑菜单,主界面,这些View都是独立Surface渲染和更新,最后提交给SF后,SF根据Zorder,透明度,大小,位置等参数,合成为一个数据buffer,传递HWComposer或者OpenGL处理,最终给显示器。 在显示过程中使用到了bufferqueue,surfaceflinger作为consumer方,比如windowmanager管理的surface作为生产方产生页面,交由surfaceflinger进行合成。 VSYNC Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,VSYNC是一种在PC上很早就有应用,可以理解为一种定时中断技术。 tearing 问题: 早期的 Android 是没有 vsync 机制的,CPU 和 GPU 的配合也比较混乱,这也造成著名的 tearing 问题,即 CPU/GPU 直接更新正在显示的屏幕 buffer 造成画面撕裂。 后续 Android 引入了双缓冲机制,但是 buffer 的切换也需要一个比较合适的时机,也就是屏幕扫描完上一帧后的时机,这也就是引入 vsync 的原因。 早先一般的屏幕刷新率是 60fps,所以每个 vsync 信号的间隔也是 16ms,不过随着技术的更迭以及厂商对于流畅性的追求,越来越多 90fps 和 120fps 的手机面世,相对应的间隔也就变成了 11ms 和 8ms。 VSYNC信号种类: 1.屏幕产生的硬件VSYNC:硬件VSYNC是一种脉冲信号,起到开关和触发某种操作的作用。 2.由SurfaceFlinger将其转成的软件VSYNC信号,经由Binder传递给Choreographer Choreographer: 编舞者,用于注册VSYNC信号并接收VSYNC信号回调,当内部接收到这个信号时最终会调用到doFrame进行帧的绘制操作。 Choreographer在系统中流程: 如何通过Choreographer计算掉帧情况:原理就是: 通过给Choreographer设置FrameCallback,在每次绘制前后看时间差是16.6ms的多少倍,即为前后掉帧率。 使用方式如下: //Application.javapublic void onCreate() {super.onCreate();//在Application中使用postFrameCallbackChoreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));}public class FPSFrameCallback implements Choreographer.FrameCallback {private static final String TAG = "FPS_TEST";private long mLastFrameTimeNanos = 0;private long mFrameIntervalNanos;public FPSFrameCallback(long lastFrameTimeNanos) {mLastFrameTimeNanos = lastFrameTimeNanos;mFrameIntervalNanos = (long)(1000000000 / 60.0);}@Overridepublic void doFrame(long frameTimeNanos) {//初始化时间if (mLastFrameTimeNanos == 0) {mLastFrameTimeNanos = frameTimeNanos;}final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;if (jitterNanos >= mFrameIntervalNanos) {final long skippedFrames = jitterNanos / mFrameIntervalNanos;if(skippedFrames>30){//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...次攻击,拿到用户隐私数据。 攻击者需要诱骗点击 反馈率低,所以较难发现和响应修复 盗取用户敏感保密信息 为了防止出现非持久型 XSS 漏洞,需要确保这么几件事情: Web 页面渲染的所有内容或者渲染的数据都必须来自于服务端。 尽量不要从 URL,document.referrer,document.forms 等这种 DOM API 中获取数据直接渲染。 尽量不要使用 eval, new Function(),document.write(),document.writeln(),window.setInterval(),window.setTimeout(),innerHTML,document.creteElement() 等可执行字符串的方法。 如果做不到以上几点,也必须对涉及 DOM 渲染的方法传入的字符串参数做 escape 转义。 前端渲染的时候对任何的字段都需要做 escape 转义编码。 escape 转义的目的是将一些构成 HTML 标签的元素转义,比如 <,>,空格 等,转义成 <,>, 等显示转义字符。有很多开源的工具可以协助我们做 escape 转义。 持久型 XSS 持久型 XSS 漏洞,也被称为存储型 XSS 漏洞,一般存在于 Form 表单提交等交互功能,如发帖留言,提交文本信息等,黑客利用的 XSS 漏洞,将内容经正常功能提交进入数据库持久保存,当前端页面获得后端从数据库中读出的注入代码时,恰好将其渲染执行。 主要注入页面方式和非持久型 XSS 漏洞类似,只不过持久型的不是来源于 URL,refferer,forms 等,而是来源于后端从数据库中读出来的数据。持久型 XSS 攻击不需要诱骗点击,黑客只需要在提交表单的地方完成注入即可,但是这种 XSS 攻击的成本相对还是很高。攻击成功需要同时满足以下几个条件: POST 请求提交表单后端没做转义直接入库。 后端从数据库中取出数据没做转义直接输出给前端。 前端拿到后端数据没做转义直接渲染成 DOM。 持久型 XSS 有以下几个特点: 持久性,植入在数据库中 危害面广,甚至可以让用户机器变成 DDoS 攻击的肉鸡。 盗取用户敏感私密信息 为了防止持久型 XSS 漏洞,需要前后端共同努力: 后端在入库前应该选择不相信任何前端数据,将所有的字段统一进行转义处理。 后端在输出给前端数据统一进行转义处理。 前端在渲染页面 DOM 的时候应该选择不相信任何后端数据,任何字段都需要做转义处理。 基于字符集的 XSS 其实现在很多的浏览器以及各种开源的库都专门针对了 XSS 进行转义处理,尽量默认抵御绝大多数 XSS 攻击,但是还是有很多方式可以绕过转义规则,让人防不胜防。比如「基于字符集的 XSS 攻击」就是绕过这些转义处理的一种攻击方式,比如有些 Web 页面字符集不固定,用户输入非期望字符集的字符,有时会绕过转义过滤规则。 以基于 utf-7 的 XSS 为例 utf-7 是可以将所有的 unicode 通过 7bit 来表示的一种字符集 (但现在已经从 Unicode 规格中移除)。 这个字符集为了通过 7bit 来表示所有的文字, 除去数字和一部分的符号,其它的部分将都以 base64 编码为基础的方式呈现。 <script>alert("xss")</script>可以被解释为:+ADw-script+AD4-alert(+ACI-xss+ACI-)+ADw-/script+AD4- 可以形成「基于字符集的 XSS 攻击」的原因是由于浏览器在 meta 没有指定 charset 的时候有自动识别编码的机制,所以这类攻击通常就是发生在没有指定或者没来得及指定 meta 标签的 charset 的情况下。 所以我们有什么办法避免这种 XSS 呢? 记住指定 XML 中不仅要指定字符集为 utf-8,而且标签要闭合 牛文推荐:http://drops.wooyun.org/papers/1327 (这个讲的很详细) 基于 Flash 的跨站 XSS 基于 Flash 的跨站 XSS 也是属于反射型 XSS 的一种,虽然现在开发 ActionScript 的产品线几乎没有了,但还是提一句吧,AS 脚本可以接受用户输入并操作 cookie,攻击者可以配合其他 XSS(持久型或者非持久型)方法将恶意 swf 文件嵌入页面中。主要是因为 AS 有时候需要和 JS 传参交互,攻击者会通过恶意的 XSS 注入篡改参数,窃取并操作cookie。 避免方法: 严格管理 cookie 的读写权限 对 Flash 能接受用户输入的参数进行过滤 escape 转义处理 未经验证的跳转 XSS 有一些场景是后端需要对一个传进来的待跳转的 URL 参数进行一个 302 跳转,可能其中会带有一些用户的敏感(cookie)信息。如果服务器端做302 跳转,跳转的地址来自用户的输入,攻击者可以输入一个恶意的跳转地址来执行脚本。 这时候需要通过以下方式来防止这类漏洞: 对待跳转的 URL 参数做白名单或者某种规则过滤 后端注意对敏感信息的保护, 比如 cookie 使用来源验证。 CSRF CSRF(Cross-Site Request Forgery),中文名称:跨站请求伪造攻击 那么 CSRF 到底能够干嘛呢?你可以这样简单的理解:攻击者可以盗用你的登陆信息,以你的身份模拟发送各种请求。攻击者只要借助少许的社会工程学的诡计,例如通过 QQ 等聊天软件发送的链接(有些还伪装成短域名,用户无法分辨),攻击者就能迫使 Web 应用的用户去执行攻击者预设的操作。例如,当用户登录网络银行去查看其存款余额,在他没有退出时,就点击了一个 QQ 好友发来的链接,那么该用户银行帐户中的资金就有可能被转移到攻击者指定的帐户中。 所以遇到 CSRF 攻击时,将对终端用户的数据和操作指令构成严重的威胁。当受攻击的终端用户具有管理员帐户的时候,CSRF 攻击将危及整个 Web 应用程序。 CSRF 原理 下图大概描述了 CSRF 攻击的原理,可以理解为有一个小偷在你配钥匙的地方得到了你家的钥匙,然后拿着要是去你家想偷什么偷什么。 csrf原理 完成 CSRF 攻击必须要有三个条件: 用户已经登录了站点 A,并在本地记录了 cookie 在用户没有登出站点 A 的情况下(也就是 cookie 生效的情况下),访问了恶意攻击者提供的引诱危险站点 B (B 站点要求访问站点A)。 站点 A 没有做任何 CSRF 防御 你也许会问:「如果我不满足以上三个条件中的任意一个,就不会受到 CSRF 的攻击」。其实可以这么说的,但你不能保证以下情况不会发生: 你不能保证你登录了一个网站后,不再打开一个 tab 页面并访问另外的网站,特别现在浏览器都是支持多 tab 的。 你不能保证你关闭浏览器了后,你本地的 cookie 立刻过期,你上次的会话已经结束。 上图中所谓的攻击网站 B,可能是一个存在其他漏洞的可信任的经常被人访问的网站。 预防 CSRF CSRF 的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
转载文章
...L的LIMIT关键字实现分页查询的基础上,我们可以进一步探索数据库分页技术的最新发展和优化策略。近年来,随着大数据应用的普及,对于海量数据的高效分页展示需求日益凸显。例如,在2023年,MySQL 8.0版本对LIMIT的性能优化进行了重大改进,通过增强索引排序和查询优化器的智能分析,显著减少了大表分页查询时的延迟。 此外,针对分页查询可能导致的性能瓶颈问题,许多开发者和数据库专家提出了新的解决方案,如利用覆盖索引避免回表操作、使用内存表或临时表存储中间结果以提升效率、结合缓存机制减少数据库访问压力等。 同时,现代Web应用中的无限滚动加载(Infinite Scroll)模式也对分页查询提出了新的挑战。为了实现无缝的数据加载体验,一些前沿的技术方案采用了“分段查询”配合前端动态渲染的方式,替代传统的静态分页,有效减轻了数据库的压力,并提升了用户体验。 综上所述,MySQL的LIMIT关键字是实现分页查询的基础工具,但面对大规模数据处理和复杂的用户交互场景,我们需要不断跟进最新的数据库优化技术和设计理念,才能确保系统的稳定性和响应速度。而随着数据库技术的持续演进,诸如OFFSET关键字的替代方案以及云原生环境下的分布式数据库分页策略等前沿话题,都值得我们关注并深入研究。
2023-10-29 14:04:02
647
转载
MySQL
...程语言读取MySQL数据库后,我们可以进一步关注MySQL在现代技术环境下的最新发展动态与应用实践。近日,随着MySQL 8.0版本的不断更新迭代,其性能、安全性及兼容性等方面均得到了显著提升,尤其在云原生环境下支持更高效的数据处理能力。 例如,AWS近期宣布对其Amazon RDS for MySQL服务进行升级,全面支持MySQL 8.0版本,用户可以利用其增强的窗口函数、JSON功能以及安全审计特性来构建更为复杂且安全的企业级应用。此外,Google Cloud也发布了关于优化MySQL在GCP(Google Cloud Platform)上的最佳实践指南,强调了如何结合Cloud SQL与缓存技术如Memcached或Redis,以实现数据的快速读取与响应。 与此同时,对于大数据场景下的MySQL应用,业界正积极探索将其与Apache Spark、Hadoop等大数据框架深度整合的可能性,通过建立高效的数据管道,实现SQL查询与大数据分析任务的无缝对接。这种趋势使得MySQL不仅局限于在线交易处理(OLTP),也开始在在线分析处理(OLAP)领域展现潜力。 综上所述,MySQL作为关系型数据库的重要代表,在面对云计算、大数据等新兴技术挑战时,持续演进并展现出强大的适应力。深入研究MySQL的新特性及其在不同技术栈中的集成应用,将有助于开发者更好地应对实际业务需求,提升系统性能与稳定性。
2024-02-28 15:31:14
130
逻辑鬼才
MySQL
...况后,进一步深入探讨数据库性能优化和内存管理的重要性显得尤为关键。近期,随着数据量的爆炸性增长,许多企业级应用开始面临数据库响应速度下降的问题,其中内存管理和有效利用虚拟内存成为解决这一问题的核心策略之一。 2022年,Oracle官方发布的MySQL 8.0版本中,对内存管理机制进行了大幅优化升级,引入了一系列新特性,如改进的查询缓存策略、更精细的内存分配控制以及智能内存压缩技术等,使得MySQL能够更高效地在物理内存与虚拟内存之间进行切换,极大提升了大容量数据处理时的性能表现。 同时,业界专家建议,在系统层面合理配置交换空间大小以支持MySQL虚拟内存需求,并结合监控工具实时分析MySQL及其所在服务器的内存使用状况,以便及时发现并调整潜在的内存瓶颈。例如,通过定期审查query_cache_size等关键参数,根据实际业务负载动态调整其值,避免无谓的内存浪费或过度依赖虚拟内存导致性能下滑。 此外,对于大型分布式数据库系统而言,采用内存计算、混合存储架构以及先进的内存池技术也是提升数据库整体性能的有效手段。比如,阿里云自主研发的PolarDB-X数据库产品,就借助了智能内存管理和分布式缓存技术,实现了对大规模数据访问场景下虚拟内存使用的深度优化,从而确保了服务端的稳定高效运行。 综上所述,掌握MySQL虚拟内存查看方法仅仅是性能调优的第一步,了解并运用最新的内存管理技术、紧跟数据库发展趋势,才能更好地应对大数据时代带来的挑战,确保数据库系统的高性能、高可用与可扩展性。
2023-03-15 10:31:00
95
程序媛
MySQL
...了如何判断MySQL数据库是否存在之后,进一步深入MySQL数据库管理与优化的世界,我们可以关注以下延伸阅读内容: 最近,MySQL 8.0版本发布了一系列重大更新,包括增强的安全特性、性能改进以及对JSON数据类型更强大的支持。MySQL 8.0引入了新的缓存机制和并行复制功能,大大提升了数据库的查询速度和数据同步效率。此外,对于数据库管理员而言,新版本提供了更为精细的资源组管理和审计功能,使得对数据库实例的监控和维护更加便捷。 与此同时,随着云服务的普及和发展,越来越多的企业开始将MySQL部署到云端,如阿里云RDS MySQL版、AWS RDS等服务。这些云数据库服务不仅提供了高可用性、自动备份及恢复等功能,还简化了数据库创建、扩容、迁移等日常运维操作,用户可以方便地通过控制台或API检查数据库实例的状态,包括是否存在特定数据库。 另外,在数据库设计阶段,合理规划数据库架构也至关重要。针对大型系统或者高并发场景下的MySQL数据库设计,业界推崇的分库分表策略以及读写分离技术,能够有效应对数据量激增和访问压力大的问题。相关研究和实践案例表明,结合实际业务需求,灵活运用这些策略,可以在保证数据库稳定性和高效性的前提下,实现MySQL数据库的最佳实践。 综上所述,无论是紧跟MySQL最新版本特性以提升数据库性能,还是适应云环境进行数据库运维管理,亦或是从架构层面深度优化数据库设计,都是现代数据库管理人员需要持续关注和学习的方向。只有不断探索和实践,才能更好地驾驭MySQL数据库,使其在复杂多变的应用环境中发挥出最大的价值。
2023-01-14 14:51:54
105
代码侠
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz dir
- 压缩目录至gzip格式的tar包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"