前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[嵌套列表列的DataFrame展开操作 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
DataFrame , 在Python Pandas库中,DataFrame是一种二维的表格型数据结构,它可以容纳不同类型的列,并且每一列都可以有不同的数据类型。DataFrame就像一个表格或者电子表格,拥有行索引和列标签,使得数据操作和分析极为方便。在本文中,DataFrame用于表示订单信息,其中包含订单ID和每个订单内商品列表等多列数据。 explode()函数 , 在Pandas库中,explode()是一个专门处理列表型或Series型数据的函数,它能够将DataFrame某一列中的嵌套列表“展开”为多行,即实现一行数据转换为多行数据的效果。在文中,通过调用explode( items )方法,将DataFrame中 items 列存储的商品列表分别扩展成独立的行,便于进一步进行商品级别的数据分析。 json_normalize()函数 , 虽然在原始文章中没有详细描述,但在实际应用中,json_normalize()是pandas库提供的一个用于处理嵌套JSON数据的工具函数(现已被pd.json_normalize()替代)。该函数可以将JSON格式的数据转换成扁平化的DataFrame结构,以便于对复杂、非结构化的JSON数据进行分析和处理。在更复杂的数据拆分行处理场景下,如果遇到嵌套字典或其他混合类型的数据,可以利用类似json_normalize()的方法进行预处理,从而适应各种复杂数据需求。
2023-05-09 09:02:34
234
山涧溪流_
JQuery插件下载
...要用于构建和展示多级列表树结构。该插件充分利用了Bootstrap框架的美观与响应式特性,提供了一种直观且用户友好的方式来组织和导航层次数据。它能够优雅地呈现复杂的继承或嵌套关系,如文件目录结构、组织架构、菜单层级视图等。开发者可以通过JSON格式的数据源轻松配置和动态加载树形结构,实现对列表项的折叠、展开以及节点选择等功能。其简洁而灵活的设计风格使得bootstrap-treeview易于集成到各种Web项目中,尤其适合那些需要清晰展示层级关联信息的后台管理系统或前端交互界面。总之,bootstrap-treeview是一个功能强大且高度定制化的jQuery插件,它极大地简化了在Bootstrap基础上创建和操作多级列表树的过程,提升了用户体验和页面交互效率。 点我下载 文件大小:116.88 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-15 20:12:45
329
本站
JQuery插件下载
...L5的div标签进行嵌套结构布局,构建出一种新颖且互动性强的下拉列表框特效。当用户与下拉框交互时,该插件将展示其独特的动画性能:在点击或悬停触发后,下拉菜单会以流畅且富有弹性的动态效果展开,呈现出一系列选项供用户选择。而在用户选定某个选项后,插件不仅会快速响应并更新选中状态,还会添加一些酷炫的弹性动画反馈,增强视觉上的吸引力与操作的直观性。凭借jQuery强大的DOM操作能力和CSS3丰富的动画特性,此插件能够在各种现代浏览器上实现高性能、低延迟的交互体验,并且易于集成到现有的Web项目中,为开发者提供了一种便捷的方式来美化和增强传统的HTML下拉框元素,从而提升整体网站的品质感与专业度。 点我下载 文件大小:142.13 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-21 13:48:24
91
本站
转载文章
... 5.0,其中对数组操作进行了优化,引入了Span等新特性以提高内存管理和性能。例如,《.NET 5.0中的数组与内存管理优化》一文详细解读了这些改进,并提供实例说明如何在实际开发中运用以提升效率。 其次,在Web开发领域,动态数据加载和前端用户体验优化始终是热门话题。《前端性能优化:动态构建下拉菜单的最佳实践》一文介绍了现代Web开发中,利用Vue.js、React或Angular等框架构建高性能、响应式下拉菜单的具体策略和技术细节。 再者,对于数据库查询优化,SQL Server 2019引入的新功能,比如窗口函数和索引视图,使得复杂查询排序更加高效。一篇名为《SQL Server 2019新特性助力下拉列表动态排序》的文章探讨了如何借助这些新特性,更好地满足类似“特定值优先显示”的需求。 此外,对于ASP.NET Core下的UI组件集成,微软官方文档和社区博客提供了大量实用教程和案例,如《ASP.NET Core MVC 中嵌套控件的高级用法》,通过解析此类文章,开发者能深入了解如何在实际项目中灵活组合各种控件以满足复杂的业务逻辑展示要求。
2023-06-20 18:50:13
307
转载
转载文章
...正确的位置。 下面的列表提供了有关本课程针对谁的一些一般指导。 如果您没有完全匹配这些点,请不要惊慌,您可能只需要在一个或另一个区域刷牙以跟上。 知道如何编写一些代码的开发人员。这意味着,一旦您了解基本语法,就可以选择像Python这样的新编程语言,这对您来说并不重要。这并不意味着您是一名向导编码员,而是可以毫不费力地遵循基本的类似于C的语言。 懂一点机器学习的开发人员。这意味着您了解机器学习的基础知识,例如交叉验证,一些算法和偏差方差折衷。这并不意味着您是机器学习博士,而是您知道地标或知道在哪里查找。 这门迷你课程既不是Python的教科书,也不是机器学习的教科书。 从一个懂一点机器学习的开发人员到一个可以使用Python生态系统获得结果的开发人员,Python生态系统是专业机器学习的新兴平台。 在Python机器学习方面需要帮助吗? 参加我为期2周的免费电子邮件课程,发现数据准备,算法等(包括代码)。 单击立即注册,并获得该课程的免费PDF电子书版本。 立即开始免费的迷你课程! 迷你课程概述 该微型课程分为14节课。 您可以每天完成一堂课(推荐),也可以在一天内完成所有课程(核心!)。这实际上取决于您有空的时间和您的热情水平。 以下是14个课程,可帮助您入门并提高使用Python进行机器学习的效率: 第1课:下载并安装Python和SciPy生态系统。 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 第3课:从CSV加载数据。 第4课:了解具有描述性统计信息的数据。 第5课:通过可视化了解数据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
JQuery插件下载
...tstrap框架下拉列表功能扩展的jQuery插件,旨在增强用户交互体验。原生Bootstrap的下拉菜单默认仅在用户点击时展开,而这款插件则赋予了下拉列表框新的行为特性——当鼠标光标滑过指定的下拉触发元素时,下拉菜单能够自动展开,为用户提供更为直观和便捷的操作方式。开发者无需对原始Bootstrap代码进行深度定制,只需简单地引入该插件,并遵循其使用说明配置,即可实现这一效果。通过“bootstrap-dropdown-hover”,网页设计者能够轻松提升网站导航或功能菜单的可用性,使用户在浏览过程中享受到更为流畅、响应灵敏的交互过程。 点我下载 文件大小:227.26 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-03-28 13:56:19
69
本站
JQuery插件下载
...能够轻松创建出可滑动展开和收起的侧边栏导航,还支持多级子菜单的展示与操作,极大地提升了网站在移动端的用户体验。该插件具有高度的定制性和灵活性,允许开发者根据项目需求调整侧边栏的各项样式、动画效果以及交互逻辑。不论是简单的菜单列表还是包含复杂元素的侧边栏组件,jQuery.mmenu都能够胜任处理,并确保在各种屏幕尺寸和触屏设备上表现流畅、响应迅速。因此,对于寻求在网页端实现沉浸式、接近原生应用体验的开发人员来说,jQuery.mmenu是一个不可或缺的工具。 点我下载 文件大小:197.15 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-01-21 20:06:57
103
本站
JQuery插件下载
...上都能提供流畅且易于操作的导航体验。无论是在大屏设备上以传统的水平菜单形式展现,还是在小屏移动设备上转换为紧凑的折叠或滑动式菜单,Slinky都能够轻松应对。其核心特点在于支持多级嵌套菜单,用户只需轻点或滑动即可展开子菜单,实现便捷的导航操作。开发者可以快速简便地集成该插件到项目中,无需繁琐配置就能创建出既美观又实用的移动手机样式导航菜单,极大地提升了跨平台网站的可用性和一致性。 点我下载 文件大小:39.95 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-09 22:28:22
69
本站
JQuery插件下载
...yUI的多项选择下拉列表框组件"是一款名为jquery.multiselect.js的高性能浏览器插件,它充分利用了jQueryUI强大的交互和动画功能。该插件专为提升用户在多选或单选场景下的体验而设计,能够将传统的下拉列表转化为功能丰富的可多选下拉框控件,并且特别兼容IE8及更高版本的浏览器。通过集成此插件,开发者可以轻松实现动态、炫酷的下拉框展开与收起动画效果,增强网页视觉吸引力。同时,它支持灵活的选项配置,允许用户进行批量选择或单独选择,例如提供全选/取消全选的功能选项以及便捷的关闭按钮。此外,jquery.multiselect.js提供了全面的API接口,包含一系列丰富的回调函数和其他实用方法,这使得开发者可以根据具体需求定制化下拉列表的行为逻辑,如响应用户的操作事件,处理数据提交等。总之,这款插件是构建复杂Web应用时对多选下拉菜单高效、灵活控制的理想工具。 点我下载 文件大小:93.67 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-18 23:19:30
139
本站
JQuery插件下载
...CSS3炫酷堆叠卡片展开和收缩特效”的插件,专为提升网页设计的互动性和视觉吸引力而设计。它利用前端技术的融合,结合jQuery的动态处理能力和CSS3的动画效果,为用户提供了一种独特的用户体验。初始时,多个卡片以紧凑的堆叠形式呈现,营造出一种有序且紧凑的视觉效果。当用户点击顶部的卡片,插件触发一个流畅的动画,使得该卡片平滑地从堆叠中弹出,如同抽屉般打开,展示其内部的内容。这种交互设计不仅增强了用户的参与感,还展示了卡片的独立性和可操作性。动画过程中,其他卡片会随之动态调整位置,形成一种视觉上的层次感。再次点击任何展开的卡片,它们会以相反的动画方式折叠回原位,恢复到最初的堆叠状态。整个过程既美观又直观,适用于各类网站,如新闻列表、产品展示或者信息面板,能有效提升用户界面的趣味性和易用性。通过简单的集成和定制设置,开发者可以快速为自己的网站增添这一高级功能。 点我下载 文件大小:142.03 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-14 19:04:53
302
本站
JQuery插件下载
...esign风格手风琴列表特效”,它以垂直手风琴的形式展现,采用了MaterialDesign的设计理念,为用户提供了一种简洁而优雅的交互体验。这款插件不仅具备手风琴的基本功能——即点击展开或收起列表项,还加入了独特的点击波效果,增强了用户的操作反馈感。更值得一提的是,这款插件内置了强大的搜索过滤功能。用户可以在顶部的搜索框中输入关键词,实时地筛选出符合要求的列表项,使得在大量数据中快速定位目标成为可能。这种设计极大地提高了用户体验和效率,特别适合用于管理复杂的数据结构或者提供详尽的信息展示。无论是用于网站导航菜单、产品分类展示还是信息查询系统,这款插件都能完美适配,带来既美观又实用的效果。其轻量级的特性也确保了加载速度不会受到影响,使得网页加载更加迅速流畅。总之,这款插件凭借其独特的视觉风格、直观的操作方式以及高效的搜索过滤能力,成为了增强网页互动性和功能性的一个理想选择。 点我下载 文件大小:40.78 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-13 20:57:33
76
本站
JQuery插件下载
...赋予用户熟悉且直观的操作体验。通过folderselect.js,开发者能够轻松地将分层数据结构转化为可交互的选择列表,每个层级均可作为独立的复选单元供用户勾选。该插件不仅在视觉效果上实现突破,还集成了实用的功能特性。例如,它支持异步加载数据(AJAX数据调用),使得即便面对大规模的树形结构数据时,也能保证界面的流畅性和响应速度。此外,folderselect.js提供了丰富的事件回调机制,方便开发者根据用户行为进行定制化处理,如选择状态变更、展开折叠节点等操作。总之,folderselect.js是一个功能强大且极具创新性的jQuery复选框美化插件,它不仅提升了复选框的美观度,更极大地增强了其实用性和交互性,在Web开发中尤其适用于构建复杂的多级选择菜单或组织架构管理场景。 点我下载 文件大小:54.40 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-06 11:05:00
226
本站
JQuery插件下载
...击或者鼠标滑过的方式展开或收起各个元素,从而实现平滑过渡和内容切换。这一特性使得网页空间得以高效利用,尤其适合在首页、产品列表或图片画廊中展示多张图片及其描述信息。此外,fsBanner插件还具有自定义程度高的特点,开发者可以根据项目需求调整手风琴效果的具体表现形式和样式,并轻松地为每一张Banner图片添加相应的标题或描述文字,以增强信息传达的效果与用户的交互性。总结来说,fsBanner作为一款响应式Banner手风琴插件,凭借其良好的跨浏览器兼容性、便捷的操作模式以及灵活的内容扩展能力,无疑是提升网页视觉吸引力与交互体验的理想工具之一。 点我下载 文件大小:443.88 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-05 09:59:34
125
本站
JQuery插件下载
...rap超炫垂直手风琴列表特效"是一款专为提升用户体验而设计的jQuery插件。它结合了Bootstrap网格系统与Collapse插件的力量,创造出一款独特的垂直手风琴列表效果。此插件不仅继承了Bootstrap简洁优雅的设计风格,还通过对其Accordion组件的精心美化,实现了高度定制化与美观性的完美融合。该插件的核心亮点在于其垂直布局的手风琴样式,使得在有限的屏幕空间内,能够展示大量信息而不显得拥挤。用户可以通过点击或滑动操作来展开或折叠不同层级的内容,极大地提高了信息的可读性和交互性。此外,插件还支持自定义样式和动画效果,允许开发者根据自己的需求调整颜色、字体、过渡效果等,以适应各种网站或应用的主题风格。在实际应用中,"Bootstrap超炫垂直手风琴列表特效"广泛适用于需要展示多层次、多内容结构的场景,如产品分类、FAQ页面、知识库等。它不仅能够有效节省空间,提高界面的视觉吸引力,还能增强用户的浏览体验,使得信息获取更加便捷高效。总之,这款插件是任何追求简洁、高效且美观网页设计者的理想选择,无论是企业网站、教育平台还是个人博客,都能从中获益。通过"Bootstrap超炫垂直手风琴列表特效",开发者能够轻松实现复杂信息结构的优雅展现,提升网站的整体用户体验。 点我下载 文件大小:38.24 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-11 10:47:11
73
本站
JQuery插件下载
...的垂直手风琴滑动菜单列表特效"是一个利用jQuery与CSS3技术打造的简洁而优雅的手风琴式菜单解决方案。这款插件专为追求高效、美观的网页设计者量身定制,旨在提供一种既时尚又易于实现的导航方式。该插件的核心功能在于其独特的手风琴滑动效果,用户只需轻触菜单项,即可展开或折叠相应的子菜单,实现流畅的层级导航体验。通过CSS3的强大动画支持,每一步操作都伴随着平滑自然的过渡动画,增强了用户体验的舒适度与趣味性。在设计上,这款插件注重简洁与实用性,其界面风格现代时尚,适用于各类网站,无论是商务展示还是内容丰富的个人博客都能轻松融入。代码结构清晰简洁,便于开发者快速集成到现有项目中,无需复杂的配置即可实现所需效果。此外,"简单实用的垂直手风琴滑动菜单列表特效"还具备良好的兼容性和可扩展性,能够适应不同设备和浏览器环境,确保在各种场景下都能提供一致的优秀表现。对于追求高效开发流程和卓越用户体验的开发者而言,这无疑是一款不可或缺的工具。总之,这款插件凭借其简洁的设计、强大的功能以及易用性,成为构建现代、交互性强的垂直手风琴式菜单的理想选择。无论是提升网站的用户体验,还是优化内容导航结构,它都能发挥出重要作用,是任何专注于网页设计与开发的专业人士的必备工具之一。 点我下载 文件大小:135.34 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-07 11:02:27
40
本站
JQuery插件下载
...ap漂亮的垂直手风琴列表效果”的jQuery插件,专为提升网页交互体验而设计,它充分利用了Bootstrap框架的强大功能和灵活性。该插件以Bootstrap原生的Accordion组件为基础,通过精心定制的CSS样式和jQuery脚本优化,打造出一款既实用又美观的垂直手风琴列表特效。此插件的核心特点是将多个可折叠的内容区域在垂直方向上有序排列,点击标题时对应的内容区域会平滑展开或收起,从而实现内容的高效管理和展示。其代码结构简洁明了,易于理解和集成到项目中,使得开发者无需从零开始编写复杂的交互逻辑,大大节省了开发时间与成本。风格方面,该插件采用了新颖时尚的设计理念,借助CSS3动画技术实现了过渡效果的流畅自然,无论是展开还是闭合动作都能带给用户优雅舒适的视觉享受。尤为适合用于包含大量分层信息的网站或应用界面,如菜单导航、FAQ页面、设置选项等场景,不仅提升了用户体验,同时也彰显出网站的专业水准和细致入微的设计考量。总之,“Bootstrap漂亮的垂直手风琴列表效果”是一个值得推荐给广大前端开发者使用的优秀插件,它能够帮助您快速构建具有吸引力和高度可操作性的垂直手风琴列表,让您的网页内容展现更加生动有趣且富有层次感。 点我下载 文件大小:42.82 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-09 08:03:02
81
本站
Java
...链建设等等,不在这里展开介绍了。 2. 举个例子 比如Google的爬虫,每次来访的时候,都会带着它独有的user-agent,如下: Mozilla/5.0 (Linux; Android 6.0.1; Nexus 5X Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.6099.224 Mobile Safari/537.36 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 从这个user-agent可以看到出,来访者会告知自己身份是Googlebot,即来自谷歌搜索引擎的爬虫。 关于爬虫身份的识别,zac老师整理过一篇非常权威的列表,大家可参考: https://www.seozac.com/course/spider-user-agent-list/ 3.java代码示例 3.1 身份标识枚举类 识别了爬虫身份后,这里封装了一个身份枚举类,作为简单说明和java方法返回值。每个枚举项目后面的注释里都标注着对应爬虫的关键词,可以用来做字符串contains操作。 public static enum UserAgentRole { BAIDU_SPIDER, // Baiduspider/2.0或Baiduspider-render/2.0 GOOGLE_SPIDER, // Googlebot/2.1或Googlebot-Image/1.0 BING_SPIDER, //bingbot/2.0 SOUGOU_SPIDER, // Sogou web spider/4.0或Sogou wap spider/4.0 _360_SPIDER, // 360Spider SHENMA_SPIDER, // YisouSpider/5.0 YANDEX_SPIDER, // YandexBot/3.0 HUAWEI_SPIDER, // PetalBot AMAZON_SPIDER, // Amazonbot/0.1 OTHER_SPIDER, // 未知spider NATURAL_USER, // 非spider的自然用户 UNKNOWN // 没有user-agent头 } 3.2 HttpServletRequest中取得User-Agent HttpServletRequest request = ... String userAgent = request.getHeader("User-Agent"); 3.3 通过userAgent返回UserAgentRole private static UserAgentRole checkUserAgentRole(String userAgent) { if (StringUtils.isEmpty(userAgent)) { return UserAgentRole.UNKNOWN; } userAgent = userAgent.toLowerCase(); if (userAgent.contains("bot") || userAgent.contains("spider")) { if (userAgent.contains("baidu")) { return UserAgentRole.BAIDU_SPIDER; } else if (userAgent.contains("google")) { return UserAgentRole.GOOGLE_SPIDER; } else if (userAgent.contains("bing")) { return UserAgentRole.BING_SPIDER; } else if (userAgent.contains("sougou")) { return UserAgentRole.SOUGOU_SPIDER; } else if (userAgent.contains("360")) { return UserAgentRole._360_SPIDER; } else if (userAgent.contains("yisou")) { return UserAgentRole.SHENMA_SPIDER; } else if (userAgent.contains("yandex")) { return UserAgentRole.YANDEX_SPIDER; } else if (userAgent.contains("petal")) { return UserAgentRole.HUAWEI_SPIDER; } else if (userAgent.contains("amazon")) { return UserAgentRole.AMAZON_SPIDER; } else { return UserAgentRole.OTHER_SPIDER; } } return UserAgentRole.NATURAL_USER; } 4. 不带User-Agent的搜索引擎的爬虫 多说一句,有时候即使是正经搜索引擎的爬虫,也不会带着User-Agent来正经标识自己的爬虫身份。 这是因为,为了在seo里为了避免下面这种情况: 某站长作弊,对普通用户返回一套页面,对搜索引擎,返回一套页面。 对搜索引擎返回的页面是做过特殊优化的,其实是有作弊嫌疑的。 那搜索引擎为了判断是否有作弊嫌疑,就会用正经带有爬虫标识的User-Agent请求一次,再在不定期的时候用普通身份请求一次。
2024-01-26 16:45:09
425
admin-tim
Java
...二维矩阵行与列的删除操作后,我们可以进一步探索矩阵操作在实际应用场景中的重要性和前沿进展。例如,在机器学习和大数据分析领域,矩阵运算作为基础计算单元,其高效处理手段至关重要。近日,Apache Spark 3.2版本发布,其中对Matrix DataFrame API进行了优化升级,支持更灵活、高效的矩阵操作,包括行列裁剪、转置等,大大提升了大规模数据处理性能。 此外,Google Research团队近期发表了一项关于稀疏矩阵高效运算的研究成果,通过创新的数据结构和算法设计,能够在处理亿级维度的稀疏矩阵时实现快速的行删减与列筛选,这对于推荐系统、自然语言处理等领域的模型训练有着重大意义。 同时,学术界对于矩阵理论及其实现的探讨也从未停止。比如,基于Strassen算法或Coppersmith-Winograd算法的矩阵乘法优化,尽管主要应用于理论研究,但也为实际编程中矩阵操作效率提升提供了新的思路和启发。 总的来说,二维矩阵的删除操作只是矩阵运算的一个基础环节,随着技术发展,如何在更大规模、更高维度的矩阵上进行有效且快速的操作,已经成为现代计算机科学和应用领域持续关注和突破的重要课题。
2023-02-17 11:26:36
284
算法侠
JQuery
...作设计和控制 ul 列表样式的手段,包括但不限于列表项的布局、颜色、字体等视觉属性。通过对 ul 菜单应用恰当的 CSS 样式,可以为用户提供直观且吸引人的界面元素。 DOM操作 , DOM (文档对象模型) 是网页文档的编程接口,将 HTML 或 XML 文档表示为树形结构,其中每个节点都是一个对象,允许程序和脚本动态更新、添加或删除页面内容及样式。在本文中,jQuery 进行了 DOM 操作,例如通过选择器找到含有子 ul 元素的 li 节点,然后绑定 click 事件以响应用户的点击动作,进而触发折叠菜单的展开与收缩,这些都属于 DOM 操作的具体应用。
2023-06-21 10:03:27
331
逻辑鬼才
Element-UI
...table组件的点击展开/收起功能后,我们还可以进一步探索更多高级定制和优化方案。例如,结合Vue.js的动态组件特性,可以设计更为灵活多样的展开内容区域,展示不同类型的嵌套数据或操作面板。此外,对于大数据量表格的性能优化也是值得关注的问题,通过懒加载、虚拟滚动等技术提高渲染效率。 近期,Element Plus作为Element-UI的下一代版本,在处理表格组件方面提供了更多的改进与优化,比如更强大的API支持、更流畅的交互体验以及对Tree Table结构的良好兼容性,为实现复杂表格交互提供了新思路。开发者们可以通过学习Element Plus的新特性,升级现有项目以提升用户体验并紧跟前端技术潮流。 同时,针对无障碍设计(Accessibility)的重要性日益凸显,如何确保el-table的展开/收起功能对键盘操作友好,符合WCAG 2.1标准,也成为了现代Web开发中的一个重要议题。通过对焦点管理、ARIA角色属性的合理设置,我们可以使所有用户,无论是否使用鼠标,都能顺畅地与具有展开/收起功能的数据表格进行交互。 综上所述,深入理解和掌握表格组件的扩展功能不仅有助于提升项目的用户体验,也有利于开发者关注前端领域最新技术和无障碍设计的发展趋势,从而打造出更加高效、易用且包容的Web应用。
2023-10-23 16:53:41
404
青山绿水_t
HTML
...不同设备上都能流畅地展开和关闭下拉菜单。 近期,Bootstrap 5框架推出了一种新的下拉组件,它不仅提供了开箱即用的下拉导航功能,而且完全遵循了W3C的无障碍标准,使得视障用户也能通过屏幕阅读器等辅助技术轻松操作。此外,该组件还引入了对Vue.js和React等主流前端框架的良好支持,方便开发者快速构建动态、交互丰富的下拉导航条。 同时,Google Material Design也推出了全新的导航模式,提倡使用临时(暂时显示)和永久(固定显示)两种类型的下拉导航以适应不同的应用场景,并强调了动画过渡效果在提升用户体验上的重要作用。 因此,在实际项目中,除了掌握基本的HTML、CSS和JavaScript实现方式,还需密切关注行业动态,结合最新的设计规范与开发工具,持续优化下拉导航条的用户体验,使其在满足功能需求的同时,更能展现良好的可用性和美观性。
2023-06-06 16:16:22
555
逻辑鬼才
JSON
...对于如何优化这一过程展开了深入研究和实践应用。例如,2023年春季,Google Cloud推出了一款名为“Dataflow for JSON”的服务,该服务能够自动解析复杂JSON结构,并智能映射到BigQuery等云数据库中,极大地简化了JSON至关系型数据库的转换流程,提升了数据集成效率。 同时,一些开源项目也在积极探索这一领域,如PostgreSQL的jsonb数据类型就支持直接存储JSON并进行高效的查询操作,使得JSON数据可以直接在数据库层面进行深度处理,无需预先转换成传统的表结构。 此外,针对嵌套层级较深或动态结构变化频繁的JSON数据,有学者提出了基于NoSQL数据库的解决方案,如MongoDB的文档模型能很好地适应JSON数据的特性,实现灵活且高性能的数据管理。 总的来说,随着技术的发展和应用场景的变化,JSON数据转换为数据库表格式的方法不断演进,无论是通过增强传统关系型数据库的功能,还是借助NoSQL数据库的优势,都在推动着更高效、便捷的数据处理方式的创新与发展。
2023-11-04 08:47:08
443
算法侠
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netcat -l -p port_number
- 启动监听特定端口的简单服务器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"