前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[商品分类系统]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Element-UI
...正在做一个电商网站的商品分类系统,商品分类是一个多级的结构,如:“家用电器->厨房电器->电饭煲”。我们可以使用Element-UI的Cascader级联选择器来实现这个需求。 三、问题分析 首先,我们要明确一点,Cascader级联选择器本身并没有提供搜索功能,如果需要搜索功能,我们需要自定义实现。那么问题来了,为什么自定义的搜索功能会失效呢?下面我们从两个方面来进行分析: 1. 数据源的问题 如果我们的数据源存在问题,比如数据不完整或者错误,那么自定义的搜索功能就无法正常工作。你瞧,搜索这东西就好比是在数据库这个大宝藏里捞宝贝,要是数据源那个“藏宝图”不准确或者不齐全,那找出来的结果自然就像是挖错了地方,准保会出现各种意想不到的问题。 2. 程序逻辑的问题 如果我们对程序逻辑的理解不够深入,或者代码实现存在错误,也会影响搜索功能的正常使用。比如,当我们处理搜索请求的时候,没能把完全对得上的数据精准筛出来,这就让搜出来的结果有点儿偏差了。 四、解决方案 针对以上两种问题,我们可以采取以下措施来解决: 1. 保证数据源的完整性和正确性 我们需要确保数据源的完整性,即所有的分类节点都应该存在于数据源中。同时,我们也需要检查数据是否正确,包括但不限于分类名称、父级ID等信息。如果发现问题,我们需要及时修复。 2. 正确实现搜索功能 在自定义搜索功能时,我们需要确保程序逻辑的正确性。具体来说,我们需要做到以下几点: - 在用户输入搜索关键字后,我们需要遍历所有节点,找出匹配的关键字; - 如果一个节点包含全部关键字,那么它就应该被选中; - 我们还需要考虑到一些特殊情况,比如模糊匹配、通配符等。 五、结论 总的来说,当Element-UI的Cascader级联选择器的搜索功能失效时,我们需要从数据源和程序逻辑两方面进行排查和修复。这不仅意味着咱们得有两把刷子,技术这块儿得扎扎实实的,而且呢,也得是个解决问题的小能手,这样才能把事儿做得漂亮。希望这篇文章能够帮助到大家,让大家在面对此类问题时不再迷茫。
2023-06-04 10:49:05
461
月影清风-t
Java
...业级应用以及复杂管理系统的发展,用户对于数据展示的实时性、高效性和交互性的需求不断提升。例如,在大型电商平台上,商品分类目录往往采用树形表格结构,通过异步加载实现海量商品信息的按需加载,大大提升了用户体验。 事实上,除了Java中的CompletableFuture,其他编程语言和技术栈也提供了强大的异步编程支持。例如,JavaScript环境下的React、Vue等前端框架,借助虚拟DOM和状态管理机制,可以便捷地实现树形表格的异步渲染和节点展开收起功能,并通过IntersectionObserver API实现实时懒加载。 另外,对于数据可视化领域,业界也在积极探索如何将异步加载策略融入更多类型的图表和组件中。例如,D3.js库允许开发者构建高度定制化的可视化界面,结合其内置的异步请求处理机制,能够轻松应对大规模数据集的动态加载与展示。 与此同时,关于数据隐私和安全问题也不容忽视。在实现异步加载的过程中,如何保证敏感信息的安全传输,防止数据泄露,是开发者必须关注的重要课题。目前,TLS协议、加密算法及权限控制等多种手段被广泛应用于保障异步加载数据的安全性。 综上所述,无论是从提升用户体验、优化系统性能,还是从保障数据安全的角度出发,深入研究并合理运用树形表格与异步加载技术都是现代软件开发过程中不可或缺的一环。随着技术的迭代更新,相关领域的最佳实践和创新解决方案将持续涌现,值得广大开发者密切关注与学习。
2023-03-08 18:52:23
386
幽谷听泉_t
Apache Solr
...如何借助Solr实现商品搜索优化的成功案例。该平台在处理每日数十亿次查询请求的过程中,通过Solr的分布式架构和实时索引功能,显著提升了用户搜索体验及商品推荐精准度。 同时,Apache Solr与机器学习框架的集成也日益紧密。例如,有研究团队利用Solr与TensorFlow的结合,构建了一套基于深度学习的商品分类系统,通过Solr进行数据预处理和特征提取,然后输入到TensorFlow模型中训练,有效提高了大规模商品自动分类的准确率。 此外,Solr社区也在不断推出新的插件和功能扩展,如引入更先进的分词算法以支持复杂语言环境下的搜索需求,以及研发针对时序数据分析的专用索引结构等。这些进展不仅进一步强化了Solr在大数据分析领域的地位,也为未来AI驱动的数据应用提供了更为坚实的基础支撑。 总之,Apache Solr凭借其强大的性能、灵活的扩展性以及与前沿技术的深度融合,正在全球范围内激发更多大数据与人工智能应用场景的可能性,为各行业提供更为强大而全面的数据处理解决方案。对于任何寻求提升数据处理效率与洞察能力的企业或个人来说,深入理解和掌握Solr技术无疑具有重要的实践价值与战略意义。
2023-10-17 18:03:11
536
雪落无痕-t
MySQL
在深入了解了无限极分类的原理与实现方法后,我们发现无论是递归还是非递归方式,在现代信息技术领域都有着广泛的应用。近日,电商平台亚马逊在其商品分类系统升级中就应用了类似的无限级分类技术,以优化用户体验和提高搜索效率。通过构建层次化的商品分类树结构,用户可以更直观、快速地定位到目标商品,同时后台算法也能根据分类结构进行智能推荐。 此外,随着大数据和人工智能的发展,无限极分类也在数据挖掘、机器学习等领域展现出强大的潜力。例如,在处理大规模的文档或知识图谱时,基于深度优先或广度优先策略的无限级分类有助于构建复杂的关系网络,进而提升语义理解和推理能力。一项发表于《ACM Transactions on Information Systems》的研究论文详细探讨了如何利用非递归算法对大规模文本数据进行高效且准确的多层次分类,从而为信息检索、个性化推荐等应用场景提供有力支持。 综上所述,无限极分类作为一种基础的数据处理手段,其重要性不仅体现在传统的数据库设计与查询优化中,而且在前沿的信息技术和人工智能研究中也发挥着不可或缺的作用。对于技术人员来说,深入理解并灵活运用无限极分类方法,无疑将有助于解决实际问题,提升系统的性能与智能化水平。
2023-08-24 16:14:06
58
星河万里_t
建站模板下载
...的线上商城,支持更多商品分类与灵活的分期付款方式,为用户提供便捷、高效的购物体验,适合各类企业进行电子商务网站建设使用。 点我下载 文件大小:9.37 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-06 19:25:43
109
本站
建站模板下载
...计的多页面模板,强调商品种类齐全与生活服务的整合。此模板以“网上商城”为核心,围绕“生活”和“绿色”理念,提供商品分类清晰、界面时尚美观的网店搭建方案,满足用户一站式购物需求,适用于各类购物类生活服务商城场景,旨在构建一个集时尚、齐全、便捷于一体的线上购物环境。 点我下载 文件大小:4.78 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-26 18:00:16
131
本站
建站模板下载
...强调了“更多”元化的商品分类与展示方式,助力提升用户体验及实现商业目标。 点我下载 文件大小:2.48 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-22 18:27:25
278
本站
建站模板下载
...。它集成了首页展示、商品分类、在线选购、购物车等功能模块,方便用户实现一站式网上购物体验。此模板是打造专业且高质感服饰商城的理想选择,助力企业快速构建自己的线上时尚服装销售平台。 点我下载 文件大小:3.87 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-01 17:21:16
101
本站
建站模板下载
...图展示功能,便于突出商品特色。整站布局合理,包含商城必备模块,如商品分类、详情页、购物车等,并优化了SEO性能。其HTML5技术保证了在不同设备上的良好浏览体验,助力企业搭建专业且具有视觉吸引力的生鲜蔬果线上交易平台。 点我下载 文件大小:2.56 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-12 08:31:43
252
本站
建站模板下载
...备丰富的功能模块,如商品分类、购物车、更多精选推荐等,助力企业便捷高效地开展线上销售业务。 点我下载 文件大小:1.37 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-09 20:50:18
57
本站
建站模板下载
...便用户随时浏览和切换商品分类。它专为购物类网站打造,尤其适合化妆品行业,提供丰富的页面模板以适应不同展示需求。该模板拥有出色的响应式特性,能自动适配各种设备屏幕,确保在PC、平板和手机等终端上都能获得优质的浏览体验。其多用途、多页式的架构设计,使得搭建功能齐全、界面美观的网上商城更为便捷高效,是构建专业化妆品购物平台的理想选择。 点我下载 文件大小:5.16 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-05 22:46:32
47
本站
JQuery插件下载
...为实现类似京东商城的商品切换选项卡特效而设计,采用强大的SuperSlide.js库为核心,以增强用户体验和页面交互性。该插件通过模拟京东官方商城的流畅商品分类及内容展示效果,提供了一种实用且易于实施的解决方案。它适用于电子商务网站或其他需要展示多类别的项目或产品列表的场景。在技术特性方面,此插件特别优化了对老旧浏览器如IE8的兼容性支持,确保在不同平台与浏览器环境下都能保持良好的视觉表现和功能稳定性。开发者只需简单地引入所需的样式文件(style.css)和jQuerySuperSlide库,即可快速构建出具有动态切换效果的商品选项卡界面,用户可以通过点击不同的标签来无缝切换各类商品信息。总之,这款插件以其高效、易用和广泛兼容的特点,极大地简化了开发人员在搭建具备丰富商品切换展示功能的网页时的工作流程,并有助于提升最终用户的浏览满意度与购买转化率。 点我下载 文件大小:225.76 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-06-03 21:21:16
42
本站
JQuery插件下载
...户能够轻松浏览和查找商品。此插件的最大特色在于其独特的商品分类侧边栏列表设计,使得商品分类一目了然,用户只需点击左侧的下拉菜单,即可快速查看各种商品的详细列表。更值得一提的是,这款插件特别考虑到了兼容性问题,确保在IE8等旧版浏览器中也能正常工作,满足了更多用户的浏览需求。对于希望提升网站用户体验,尤其是需要支持多种浏览器环境的电商网站开发者来说,这款插件无疑是一个理想的选择。其简洁明了的设计风格和强大的功能性,不仅提升了用户的购物体验,还大大简化了商品浏览的过程,使用户能够更加便捷地找到自己所需的商品。此外,这款插件易于集成到现有的网站结构中,开发者可以根据实际需要进行自定义调整,以适应不同电商平台的独特需求。无论是小型个人店铺还是大型综合商城,都能通过这款插件获得显著的用户体验提升,从而推动销售增长,增加用户粘性。总之,这是一款结合了美观与实用性,同时兼顾技术兼容性的优秀jQuery商城导航菜单插件。 点我下载 文件大小:59.44 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-17 11:27:07
113
本站
JQuery插件下载
...电子商务网站中,用于商品或产品分类的动态调整。-教育类网站,允许学生或教师对课程、资源进行个性化排序。-内容管理系统的文章或帖子列表,实现用户友好的编辑和组织方式。-游戏或互动式应用中,用户可以自由调整游戏元素的位置,增加游戏的沉浸感和参与度。安装与集成:1.引入依赖:首先确保你的项目中包含了jQuery库。2.引入插件:从可靠的源下载DDSort.js文件,并将其添加到项目中。3.初始化插件:在文档加载完毕后,调用DDDsort插件,指定需要排序的元素及目标区域等参数。javascript$('.your-element-selector').DDSort({target:'.target-selector',//其他配置选项});DDSort通过其直观的接口和强大的功能,为开发者提供了一种高效、灵活的解决方案,旨在简化页面元素的动态排序过程,提升用户体验,同时确保兼容旧版浏览器的需求。无论是用于商业网站、教育平台还是个人项目,DDSort都能成为实现高效、交互性强的排序功能的理想选择。 点我下载 文件大小:44.43 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-22 21:22:28
85
本站
MySQL
...源的关系型数据库管理系统,广泛应用于Web应用开发中,支持SQL标准语句进行数据查询、更新、管理等操作。在本文的上下文中,MySQL提供了COUNT函数用于统计一列数据的个数,是实现数据库统计需求的基础工具。 COUNT函数 , 在MySQL以及其它支持SQL标准的关系型数据库中,COUNT函数是一个聚合函数,用于计算指定列或行的数量。结合文章内容,COUNT(column_name)可以用来计算特定列(如username)非NULL值的数量,而COUNT()则会统计表中的所有行数,包括NULL值。 GROUP BY和HAVING , 这两个关键词在SQL查询语句中起到对数据分组和条件筛选的作用。GROUP BY用于将数据按照一个或多个列进行分类汇总,每个不同的组会产生一条结果记录;HAVING则是对GROUP BY后的结果集进一步设置过滤条件,它与WHERE子句类似,但HAVING可以在分组后对汇总统计量(如COUNT的结果)进行筛选。例如,在电商场景下,可能需要按商品类别使用GROUP BY统计各品类商品的销售数量,并通过HAVING筛选出销售额超过一定阈值的类别。
2023-03-09 20:28:54
148
诗和远方_t
VUE
... {},//当前菜品分类 currentPayMethod: {},//当前支付方式 currentProduct: {},//选择的产品信息 customerList: [],//客户列表 shoppingCartList: [],//购物车中的商品 productDetail: {},//商品详情 orderDetail: {},//订单详情 currentTable: {},//当前桌位信息 hasNewOrder: false,//是否有新订单 newOrderInfo: {},//新订单信息 currentOrder: {},//当前订单信息 refundInfo: {}//退款信息 } }) 通过使用Vuex状态管控库,Vue商米可以进行整体状态管控,方便进行模块相互间的通信和信息共享。同时,Vue商米还通过使用Element UI组件库和Axios库进行用户界面和在线请求的开发,增强了软件的使用者感受和反馈速率。 除此之外,Vue商米还支持多种外部支付渠道,如支付宝、微信支付、银联支付等,可以帮助商家迅速对接外部支付系统,提高用户付款的便捷性。此外,Vue商米还支持多种语言版本,可以适应不同地区与国家的用户需求。 //Element UI组件 { { title } } 总的来说,Vue商米是一款性能强劲、方便操作、可个性化定制的店铺运营软件,可以满足商家的各种需求,提升门店运营和管理效率。
2024-02-11 16:26:36
120
电脑达人
Apache Pig
...据按照特定的标准进行分类的过程。例如,我们可以根据用户的年龄将用户数据分为不同的桶。这样可以让我们更有效地进行数据分析。 三、为什么需要数据分区和分桶? 在处理大数据时,如果我们不进行数据分区和分桶,那么每次我们都需要从头开始读取整个数据集。这不仅浪费时间,而且还会增加内存压力。通过把数据分门别类地分区、分桶,我们就能像在超市选购商品那样,只提取我们需要的那一部分数据,这样一来,不仅能让整个过程飞快运行,更能高效利用资源,提升整体性能。就像是你去超市,不需要逛遍所有货架,只需找到对应区域拿取需要的商品,省时省力,对不对? 四、如何在Apache Pig中实现数据分区和分桶? 在Apache Pig中,我们可以使用一些内置函数来实现数据分区和分桶。以下是一些常用的方法: 1. 使用split()函数进行数据分区 python -- 定义一个字段,用于数据分区 splitA = load 'input' as (value:chararray); -- 对于这个字段进行数据分区 splitA = group splitA by value; -- 保存结果 store splitA into 'output'; 2. 使用bucket()函数进行数据分桶 python -- 定义一个字段,用于数据分桶 bucketB = load 'input' as (value:chararray); -- 对于这个字段进行数据分桶 bucketB = bucket bucketB into bag{ $value } by toInt($value) div 10; -- 保存结果 store bucketB into 'output'; 五、总结 在处理大数据时,数据分区和分桶是必不可少的技术手段。它们可以帮助我们更快地访问和处理数据,从而提高性能和效率。在Apache Pig这个工具里头,我们可以直接用它自带的一些内置函数,轻轻松松就把这些功能给实现了,就像变魔术一样简单。我希望这篇文章能够帮助你更好地理解和利用Apache Pig的这些特性。如果你有任何问题,欢迎随时向我提问!
2023-06-07 10:29:46
431
雪域高原-t
Saiku
...品维度则代表了“什么商品”。这样理解的话,就更接地气啦,就像是我们日常生活中常常会用到的不同观察视角和分类方式。 二、维度设计基础(3) 首先,让我们打开Schema Workbench,开始构建一个维度。以“时间维度”为例: xml 上述XML片段描述了一个典型的时间维度,它包含年、季度、月三个层级。每一个层级对应数据库表time_dimension中的一个字段,并指定了其类型和特性。 三、构建维度实战(4) 在实际操作中,我们需要根据业务需求设计维度结构。假设我们要为电商数据分析系统构建一个“商品维度”,可能包括品牌、类别、子类别等多个层级: xml 在这个例子中,我们构建的商品维度包含了品牌、类别和子类别三层,每一层都映射到product_dimension表的相应字段。 四、深度思考与探讨(5) 维度设计并非简单的字段堆砌,而是需要深入理解业务场景,确保所构建的维度能够有效支持各类分析需求。比如在电商这个环境里,我们或许还要琢磨着把价格区间、销量档次这些因素也加进来,这样就能更精准地对商品销售情况做出深度剖析。 同时,设计过程中还要注意各层级之间的关联性和完整性,确保用户在钻取或上卷时能获得连贯且有意义的数据视图。这种设计过程充满了挑战,但也正是其魅力所在——它要求我们不断挖掘数据背后的业务逻辑,用数据讲故事。 总结来说,Saiku的Schema Workbench为我们提供了一种直观而强大的方式来构建和管理维度,从而更好地服务于企业的决策支持系统。在这个过程中,我们每一次挠头琢磨、大胆尝试和不断优化,其实都是在深度解锁那个错综复杂的业务世界,同时也在拼命挖宝一样,力求把数据的价值榨取得满满当当。
2023-11-09 23:38:31
101
醉卧沙场
转载文章
... 智通在线手机销售系统,是迪信通公司作为其与手机厂商合作进行手机销售的一个网上虚拟商店,此系统即实现了会员注册,手机预订、销售、支付,帐单查询的一体化功能,使网上销售手机成为现实。 3、开发环境(工具) 软件环境: WindowsXP + ZendStudio数 据 库:MySQL应用技术:PHP、HTML、CSS、JavaScript工 具: ZendStudio, DW ,Photoshop, fireFox, MYSQL 4、实现功能: 本系统划分为两大模块。 其中第一部分是网站前台页面,功能为: 1.网站首页:包括用户注册登录模块,手机预订,手机查询; 2.用户注册:提供有效的用户名、密码、验证码登录系统; 3.用户登录:提供与注册一致的有效提供有效的用户名、密码、验证码登录系统; 4.基本信息管理:可以修改密码、邮箱、头像等基本信息(真实姓名不可修改); 5.购物车管理:实现商品的浏览、查询及购物车功能,客户可顺利浏览商品并放入购物车等待确认订单。 6.订单管理: A、购物车商品可通过生成订单来生成购物清单并确定地址等信息。 B、核对、提交订单,包括: a、收货人信息(收货人姓名、地址、手机号码或者固定电话,电子邮箱、邮编)可以修改; b、配送方式:选择送货人日期; c、支付方式:货到付款; d、发票信息; e、提交订单:提交订单后商品开始发货,款项在货到时当面付清; f、取消订单:在提交订单但还未发货前可取消订单。 查询订单: A、用户登陆网站后可以随时对历史订单进行查询。 8、支付模块 用户确认订单后可以进行在线支付,采用第三方支付平台。 第二部分为:后台管理模块-管理员身份 1.管理员登陆:提供有效的用户名和密码,成功登录后才能使用后台管理功能; 2.客户管理:客户的删除,查询(不可以添加,需要用户自己注册); 3.手机管理: a.手机分类 b.手机厂商分类 c.价格管理 d.优惠管理 e.手机参数管理 f.手机系统分类 g.手机的上市、下架 4.订单管理: 订单确认、订单取消、订单支付。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_1262330535/article/details/118614819。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:24:03
353
转载
Flink
...按照页码、内容或主题分类存储到不同的架子上,使得在后续查询或操作时,系统能够迅速定位和处理相关数据,从而显著提升处理效率并降低资源消耗。 KeyedStream与keyBy()方法 , 在Apache Flink框架中,KeyedStream是一个特殊的DataStream,其中的数据已经被标记(或键控)为具有相同键值的记录流。keyBy()方法用于创建KeyedStream,它允许开发者指定一个或多个字段作为键值,进而根据这些键值对数据进行分区。例如,在处理订单流时,通过调用keyBy(orderId),Flink会确保具有相同订单号的所有订单被分发到同一个并行任务进行处理,实现状态管理和窗口操作的局部性优化。 云原生 , 云原生是一种构建和运行应用程序的方法论,其核心思想是充分利用云计算平台的弹性伸缩、快速部署、自动化运维等特性,以容器、微服务、持续交付、声明式API和 DevOps 等技术为基础,构建可扩展、高可用、易于管理的应用程序体系结构。在本文语境下,Flink全面支持在Kubernetes等云原生环境上运行,并利用其动态扩缩容及数据分区调度能力,提供更为便捷、高效的流处理环境,体现了云原生技术在大数据处理领域的应用价值。
2023-08-15 23:30:55
421
素颜如水-t
Mahout
...算法时,就像去超市选商品那样,可以根据数据的不同“口味”——比如文本、图像、音频这些类型;还有问题的“属性”——像是分类、回归、聚类这些不同的需求;当然啦,性能要求也是咱们的重要考量因素,就像是挑水果要看新鲜度一样。 例如,如果我们正在处理大量文本数据,并且想要进行主题建模,那么我们可以选择Latent Dirichlet Allocation (LDA)算法。这是因为LDA是一种专门用于文本数据分析的主题模型算法,能够有效地从大量文本数据中提取出主题信息。 2. 数据预处理 在实际应用中,数据通常会包含很多噪声和冗余信息,这不仅会降低算法的效率,也会影响结果的准确性。因此,对数据进行预处理是非常重要的。 例如,我们可以使用Apache Commons Math库中的FastMath类来进行数值计算,以提高计算速度。同时,咱们还可以借助像Spark这类大数据处理神器,来搞分布式的计算,妥妥地应对那些海量数据。 3. 使用GPU加速 对于一些计算密集型的算法,如深度学习,我们可以考虑使用GPU进行加速。在Mahout中,有一些内置的算法可以直接使用GPU进行计算。 例如,我们可以使用Mahout的SVM(Support Vector Machine)算法,并通过添加一个后缀.gpu来启用GPU加速: java double[] labels = new double[points.size()]; labels[0] = -1; labels[1] = 1; MultiLabelClfDataModel model = new MultiLabelClfDataModel(points, labels); SVM svm = new SVM(model); svm.setNumIterations(500); svm.setMaxWeight(1.0e+8); svm.setEps(1.0e-6); svm.setNumLabels(2); svm.useGpu(); 4. 使用MapReduce 对于一些大数据集,我们可以使用MapReduce框架来进行分布式计算。在Mahout中,有一些内置的算法可以直接使用MapReduce进行计算。 例如,我们可以使用Mahout的KMeans算法,并通过添加一个后缀.mr来启用MapReduce: java Job job = Job.getInstance(conf); job.setJarByClass(KMeans.class); job.setMapperClass(MapKMeans.class); job.setReducerClass(ReduceKMeans.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); job.setInputFormatClass(SequenceFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setNumReduceTasks(numClusters); job.waitForCompletion(true); 总结 以上就是我分享的一些关于如何优化Mahout算法性能的建议。总的来说,优化性能主要涉及到选择合适的算法、进行数据预处理、使用GPU加速和使用MapReduce等方面。希望这些内容能对你有所帮助。如果你还有其他问题,欢迎随时与我交流!
2023-05-04 19:49:22
129
飞鸟与鱼-t
Apache Solr
...许用户对搜索结果进行分类统计,如按类别、品牌或其他字段进行频数计数。在分布式系统这个大家庭里,每个分片就像独立的小组成员,它们各自进行facet统计的工作,然后把结果一股脑儿汇总到协调节点那里。不过呢,这样操作有时就可能会让统计数据不太准,出现点儿小差错。 03 分布式环境下facet统计的问题详解 想象一下这样的场景:假设我们有一个电商网站的商品索引分布在多个Solr分片上,想要根据商品类别进行facet统计。当你发现某一类商品正好像是被均匀撒豆子或者随机抽奖似的分散在各个不同的分片上时,那么仅仅看单个分片的facet统计数据,可能就无法准确把握全局的商品总数啦。这是因为每个分片只会算它自己那部分的结果,就像各自拥有一个小算盘在敲打,没法看到全局的数据全貌。这就像是一个团队各干各的,没有形成合力,所以就出现了“跨分片facet统计不准确”的问题,就像是大家拼凑出来的报告,由于信息不完整,难免出现偏差。 java // 示例:在分布式环境下,错误的facet统计请求方式 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); // 此处默认为分布式查询,但facet统计未指定全局聚合 04 理解并解决问题 为了确保facet统计在分布式环境中的准确性,Solr提供了facet.method=enum参数来实现全局唯一计数。这种方法就像个超级小能手,它会在每个分片上麻利地生成一整套facet结果集合,然后在那个协调节点的大本营里,把所有这些结果汇拢到一起,这样一来,就能巧妙地避免了重复计算的问题啦。 java // 示例:修正后的facet统计请求,启用enum方法以保证跨分片统计准确 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.setFacetMethod(FacetParams.FACET_METHOD_ENUM); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); 不过,需要注意的是,facet.method=enum虽然能保证准确性,但会增加网络传输和内存消耗,对于大数据量的facet统计可能会造成性能瓶颈。因此,在设计系统时,需结合业务需求权衡统计精确性与响应速度之间的关系。 05 探讨与优化策略 面对facet统计的挑战,除了使用正确的配置参数外,还可以从以下几个方面进一步优化: - 预聚合:针对频繁查询的facet字段,可定期进行预计算并将统计结果存储在索引中,减轻实时统计的压力。 - 合理分片:在构建索引时,依据facet字段的分布特性调整分片策略,尽量使相同或相似facet值的商品集中在同一分片上,降低跨分片统计的需求。 - 硬件与集群扩容:提升网络带宽和服务器资源,或者适当增加Solr集群规模,分散facet统计压力。 06 结语 Apache Solr的强大之处在于其高度可定制化和扩展性,面对跨分片facet统计这类复杂问题,我们既需要深入理解原理,也要灵活运用各种工具和技术手段。只有通过持续的动手实践和不断改进优化,才能确保在数据统计绝对精准无误的同时,在分散各地的分布式环境下也能实现飞速高效的检索目标。在这个过程中,不断探索、思考与改进,正是技术人员面对技术挑战的乐趣所在。
2023-11-04 13:51:42
376
断桥残雪
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
jobs
- 列出当前Shell会话中的后台作业及其状态。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"