前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[向MySQL表格插入数据的具体方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MySQL
何为MySQL? MySQL是一种关系型DBMS,通常用来构建网络应用。与其他关系型DBMS不同,MySQL在在使用过程中可以选择开源免费或者商业授权版本。 何为插入记录命令? 插入记录命令是用来将数据插入MySQL数据库表格内的命令。使用这个命令,可以在MySQL数据库表格内创建一个新增行,这个记录可以包含一行或者多行数据。 MySQL中插入记录命令的格式 以下是MySQL中插入记录命令的基础格式: INSERT 进入 table_name (column1, column2, column3,...columnN)VALUES (value1, value2, value3,...valueN); 其中,table_name是要插入数据的数据库表的名称,column1, column2,...是要插入的字段名,value1, value2,...是要插入到相应数据字段中的数据。 MySQL中插入记录命令的例子 以下是一个MySQL中插入记录命令的示例,将新的客户记录插入到名为“customers”的数据库表格内: INSERT 进入 customers (customer_name, contact_name, country)VALUES ('John Doe', 'Jane Smith', 'USA'); 使用这个语句,可以将客户姓名为“John Doe”,联系人为“Jane Smith”,国家为“USA”的数据插入到名为“customers”的数据表格内。 总结 MySQL中插入记录命令是一个非常有用的工具,在构建网络应用时经常需要使用到。熟练掌握它的格式和使用方法,可以帮助构建人员更高效地管理和使用MySQL数据库。
2023-09-26 10:25:10
67
编程狂人
ClickHouse
...ickHouse进行数据分析时,我们可能会遇到一些常见的问题。这中间啊,有一个问题相当普遍,也是我们需要好好琢磨琢磨的,那就是“表格的列突然自动增长出错了”。 二、问题解析 1. 什么是“表的列出现自动增长错误”? 当我们创建一个表并定义了一个具有自动增长属性的列时,如果我们尝试插入一条数据并且这个列没有被指定为值,则会出现这个错误。 2. 为什么会出现这种错误? 这是因为ClickHouse在处理数据时,需要确保每一行的数据都是完整的。如果你在往数据库里插数据的时候,忘记给自增列填数值了,ClickHouse这个家伙就会觉得这条数据缺胳膊少腿的,不够完整,然后就“怒”了,给你抛出一个错误来。 三、解决方案 1. 使用默认值 如果我们知道某一列的所有数据应该具有相同的初始值,我们可以直接将这个初始值设置为该列的默认值。例如: sql CREATE TABLE test ( id UInt32, value UInt32 DEFAULT 0, name String ) ENGINE = MergeTree() ORDER BY id; 在这个例子中,value列的默认值被设置为了0,这样我们就无需在插入数据时手动指定它的值了。 2. 插入完整数据 另一种避免这种错误的方法是在插入数据时提供所有列的值。例如: sql INSERT INTO test (id, value, name) VALUES (1, 0, 'test'); 在这个例子中,我们在插入数据时提供了value列的值,因此ClickHouse不会抛出错误。 四、总结 通过以上分析,我们可以看出“表的列出现自动增长错误”实际上是因为我们在插入数据时不提供完整的信息导致的。要搞定这个问题,关键点在于得把所有列的数值都清清楚楚地填上,或者,对于那种会自动增长的列,给它设定一个默认的初始值就搞定了。只要我们遵循这些规则,就可以有效地避免这个错误。 五、建议 在使用ClickHouse进行数据分析时,我们应该始终注意保持数据的一致性和完整性。这不仅能让我们彻底告别“表的列自动增长出错”的烦恼,更能实实在在地提升咱们的工作效率,让数据分析的质量蹭蹭上涨。 六、结语 ClickHouse是一款强大的实时数据分析工具,但是在使用它的时候也会遇到各种各样的问题。不过,只要我们把这些小问题背后的“猫腻”摸清楚,再掌握几招解决它们的窍门,那咱们就能更溜地运用ClickHouse,让它帮咱们把数据分析的事儿做得妥妥的。
2023-07-20 08:25:08
553
林中小径-t
.net
...ore的推出与发展,数据访问技术也在不断演进。ADO.NET虽然作为.NET框架下久经考验的数据访问接口,但为了适应现代化应用开发的需求,微软推出了Entity Framework Core(EF Core)这一ORM框架,它为数据库操作提供了更高层次的抽象和更强大的功能。 在EF Core中,开发者不再需要手动编写SQL命令或处理参数化问题,只需通过定义模型类与数据库表映射,即可实现数据的CRUD操作。例如,在进行插入操作时,只需创建对应实体类的对象并添加到DbContext中,框架会自动处理参数绑定及空值检查,极大地提高了开发效率和代码可读性。 此外,EF Core还支持多种数据库引擎,包括但不限于SQL Server、MySQL、PostgreSQL等,具备良好的跨平台能力,符合现代云原生和微服务架构的要求。最近发布的EF Core 5.0版本更是增强了对数据库迁移、性能优化以及并发控制等方面的支持,让.NET生态下的数据访问层构建更加便捷高效。 因此,对于正在使用SqlHelper类进行.NET开发的团队来说,了解并适时采用EF Core等现代化数据访问技术,不仅可以解决传统方式带来的参数匹配、空值处理等问题,还能紧跟技术潮流,提升整体项目的技术栈水平和开发效率,确保软件在安全性、稳定性和可维护性上达到更高的标准。
2023-09-22 13:14:39
507
繁华落尽_
Datax
亲爱的数据分析师们, 你是否曾经在处理大量数据时,遇到了Datax的批量插入操作超出最大行数限制的问题?如果你的答案是肯定的,那么你来到了正确的地方。本文将帮助你理解这个错误,并提供一些解决这个问题的方法。 首先,我们需要了解什么是Datax的最大行数限制。Datax是个超级厉害的数据传输神器,不仅速度快得飞起,性能杠杠的,而且稳定性超强,尤其擅长处理那种海量级别的数据交换工作,简直无所不能!不过,这个高效的家伙Datax也带来个小插曲,就是它对每条数据的操作都有个“小脾气”——有个单次操作能处理的最大行数限制。要是你碰巧超过了这个限制,Datax可不会跟你客气,它会立马蹦出一个异常消息,明确告诉你:“喂,老兄,你的批量插入操作已经超标啦,超出了我能处理的最大行数限制!” 现在,让我们来深入了解一下这个错误的具体表现以及如何解决。 一、错误的表现形式 当你尝试插入的数据量超过了Datax的最大行数限制,你会收到一个类似的错误提示: bash ERROR: batch size (65536) is larger than the max insert row count of your destination table, you can reduce batch size or increase the max insert row count of your destination table. 二、错误的原因分析 这个错误的主要原因是你的批量插入数据量过大,超出了Datax对单次操作的最大行数限制。具体来说,这可能是由于以下原因造成的: 1. 数据量过大 如果你一次性想要插入的数据过多,那么这个错误就很容易出现。 2. Datax配置不当 如果你没有正确配置Datax,让它适应你的大数据量需求,也会导致这个错误。 3. 目标表设置不当 如果你的目标表的max insert row count设置得过低,也可能引发这个错误。 三、解决方案 针对上述错误的原因,我们可以从以下几个方面来解决问题: 1. 分批插入数据 如果是因为数据量过大导致的错误,你可以考虑分批次插入数据,每次只插入一部分数据,直到所有数据都被插入为止。这样既可以避免超过最大行数限制,也可以提高插入效率。 2. 调整Datax配置 如果你发现是Datax配置不当导致的错误,你需要检查并调整Datax的配置。例如,你可以增加Datax的并发度,或者调整Datax的内存大小等。 3. 调整目标表设置 如果你发现是目标表的max insert row count设置过低导致的错误,你需要去数据库管理后台,把目标表的max insert row count调高。 四、预防措施 为了避免这种错误的发生,我们还可以采取以下预防措施: 1. 在开始工作前,先进行一次数据分析,估算需要插入的数据量,以此作为基础来设定Datax的工作参数。 2. 对于大项目,可以采用分阶段的方式,先完成一部分,再进行下一部分。 3. 及时监控Datax的工作状态,一旦发现问题,及时进行调整。 总结 当你的Datax批量插入操作遇到最大行数限制时,不要惊慌,要冷静应对。经过以上这些分析和解决步骤,我真心相信你绝对能够挖掘出最适合你的那个解决方案,没跑儿!记住,数据分析师的使命就是让数据说话,让数据为你服务,而不是被数据所困扰。加油!
2023-08-21 19:59:32
525
青春印记-t
Datax
一、引言 在大数据处理的过程中,Datax是一个不可或缺的工具。然而,在实际动手操作的过程中,我们可能会时不时碰到一些小插曲。比如在用Datax Writer这个插件往数据库里写入数据的时候,就可能会遇到一个头疼的问题——唯一键约束冲突。这就像是你拿着一堆数据卡片想放进一个已经塞得满满当当、每个格子都有编号的柜子里,结果发现有几张卡片上的编号跟柜子里已有卡片重复了,放不进去,这时候就尴尬啦!这个问题可能看似简单,但实则涉及到多个方面,包括数据预处理、数据库设计等。本文将针对这个问题进行详细的分析和解答。 二、问题描述 当我们使用Datax Writer插件向数据库中插入数据时,如果某个字段设置了唯一键约束,那么在插入重复数据时就会触发唯一键约束冲突。比如,我们弄了一个用户表,其中特意设了个独一无二的邮箱字段。不过,假如我们心血来潮,试图往这个表格里插两条一模一样的邮箱记录,那么系统就会毫不客气地告诉我们:哎呀,违反了唯一键约束,有冲突啦! 三、问题原因分析 首先,我们需要明白为什么会出现唯一键约束冲突。这是因为我们在插数据的时候,没对它们进行严格的“查重”工序,就直接一股脑儿地全塞进去了,结果就有了重复的数据跑进去啦。 其次,我们需要从数据库设计的角度来考虑这个问题。如果我们在设置数据库的时候,没把唯一键约束整对了,那么很可能就会出现唯一键冲突的情况。比如说,我们在用户表里给每位用户设了个独一无二的邮箱地址栏,然后在用户信息表里也整了个同样的邮箱地址栏,还把它设成了关键的主键。这样一来,当我们往里边输入数据的时候,就特别容易踩到“唯一键约束冲突”这个坑。 四、解决方案 对于上述问题,我们可以采取以下几种解决方案: 1. 数据预处理 在插入数据之前,我们需要对数据进行有效的去重处理。例如,我们可以使用Python的pandas库来进行数据去重。具体的代码如下: python import pandas as pd 读取数据 df = pd.read_csv('data.csv') 去重 df.drop_duplicates(inplace=True) 写入数据 df.to_sql('users', engine, if_exists='append', index=False) 这段代码会先读取数据,然后对数据进行去重处理,最后再将处理后的数据写入到数据库中。 2. 调整数据库设计 如果我们发现是由于数据库设计不当导致的唯一键约束冲突,那么我们就需要调整数据库的设计。比如说,我们能够把那些重复的字段挪到另一个表格里头,然后在往里填充数据的时候,就像牵线搭桥一样,通过外键让这两个表格建立起亲密的关系。 sql CREATE TABLE users ( id INT PRIMARY KEY, email VARCHAR(50) UNIQUE ); CREATE TABLE user_info ( id INT PRIMARY KEY, user_id INT, info VARCHAR(50), FOREIGN KEY (user_id) REFERENCES users(id) ); 在这段SQL语句中,我们将用户表中的email字段设置为唯一键,并将其移到了user_info表中,然后通过user_id字段将两个表关联起来。 五、总结 以上就是解决Datax Writer插件写入数据时触发唯一键约束冲突的方法。需要注意的是,这只是其中的一种方法,具体的操作方式还需要根据实际情况来确定。另外,为了让这种问题离我们远远的,咱们最好养成棒棒的数据处理习惯,别让数据重复“撞车”。
2023-10-27 08:40:37
721
初心未变-t
转载文章
...le 表名(属性名 数据类型[约束条件],…); Paimary key 主键 auto_increment自增 foreign key 外键 references 另一表名(字段名).–>外键这个表连接着另外一个表的哪个键. 删除表: drop table 表名;–>表结构也删除了(也即是这个表没了) Truncate table 表名 --> 只删除表中数据,表结构不会删除. 2.In 与 not in 在或不在这个(1,3)里面,单个查询,只会查询(1或者3) 3.Between and 与 not … 和上面差不多,Between 1 and 3 但是这个是范围查询(1,3) 1-3 之间(包含1,3) 4.Like,模糊查询 “%” 代表任意字符,”_”代表单个字符. 5.Is Not null 与 is null 是否为空 6.And 与 or 一个是所有条件都要完成,or则是任何一个条件完成即可 7.Distinct 去重 8.Order by age asc 与 desc 排序,假如根据age排序,asc正序(升序默认),desc倒叙(降序) 9.Gruop by 分组查询,单独使用无意义,group_concat(字段),拼接,若是根据age group by 则会发现age一样的会出现在同一字段内 例如: : 最后要注意group by 后面的字段与所查字段的关系(一对一),当然还有having,having和where基本一样,只不过跟在group by后面. 10.Limit 分页查询 limit 0,5 .查询前5条数据,从0开始,5结束,但是5取不到,也即是取头不取尾. 11.聚合函数:count() 查询数据的总数据量 经常使用别名 例如:as total sum(字段)函数:求和…若字段为成绩,where条件或gruop by 为个人的id,那么查出的就是个人的成绩总分. AVG(字段),但是查的是平均分,min(字段)与max(字段) 查出最小或最大. 三者都类似sum(),当然max()与min()若是在最前面使用,就会当条件查询只会出来这一笔数据.例如: 12.Sql多表查询,内连接不只是inner join,平时写的from a表,b表 where 条件这也是内连接,意思就是两张表中数据都有才可以查询出来 13.而外连接分为左连接和右连接,意思是以左表或右表为主,假如两张表,左表数据多,右表数据少,且条件符合,则左连接的时候左表数据全部出来,右表没有的为null,反之也是一样. 14.Exist() 与 not exist() …()内的数据是否为空,若是为空则代表false,返回数据为空,若不为空,则代表true,正常查询. 15.Any 与 all 例如 age > any(age1,age2) 大于两者中的一个就可以,但是all的情况下则是全部大于.也就是相当于,any为大于最小的,all则是大于最大的就行了,当然若是小于号那就是另外一种情况了,另外分析. 16.Union,(也就是联合的意思,自带distinct,重复的去除)用法,例如两张表的id要全部查出来,则:select id from A union select id from B ,若Aid为1,2,3,Bid为1,2,4.则查出来的数据为1.2.3.4,若是union all,则不带distinct,用法一样,查出来以后为1.2.3.1.2.4. 17.给表取别名,表名 空格 别名 给字段取别名 字段名 as 别名. 18.Insert插入数据时若是使用insert into 表名 values();主键必须到写进去,当然与其他数据不相同即可,若是自增,可以写null.若是insert into 表名(字段)values(值),这时插入数据,字段不用写主键字段,写入其他数据字段名与值就可以完成数据的添加.(主键自己生成为前提,UUID,auto_increament都可以). 19.Insert into 插入多条数据时,其他与18一样,只不过由values()变成了values(),(),(); 20.索引是由数据库表中一列或多列组合而成,其作用提高对表数据的查询速度.像图书目录. 优缺点:优:提高了查询数据的效率.缺:创建和维护索引的时间增加了(内容改了,目录也要改). 21.索引分类:普通索引,唯一性索引UNIQUE(unique修饰,例如主键),全文索引FULLTEXT(创建在文本上,例如:char,varchar,varchar2等,mysql默认引擎不支持,),单列索引:单个字段建立索引,多列索引:多个字段创建一个索引,空间索引SPATIAL:不常用(mysql默认引擎不支持) 22.创建索引: index为关键字,或者key (1)可以index(字段名)–>普通索引 (2)Unique index(字段名)–>唯一索引 (3)Unique index 别名(字段名)–>取别名的唯一索引 (4)index 别名(字段名1,字段名2)–>取别名的多列索引 1.创建表的时候创建索引, 前三个为参数修饰,唯一性,全文,空间索引; 2.在已存在的表上创建索引,或者用ALTER TABLE 表名 ADD 索引,也就是用修改表的形式来创建索引 Create index 索引别名 on 表名(字段名) -->普通单列索引 Create index 索引别名 on 表名(字段名1,字段名2) -->多列索引 Create unique index 索引别名 on 表名(字段名) -->唯一单列索引 Alter table 表名 add +(1)|(2)|(3)|(4)即可. 23.删除索引: drop index 索引名 on 表名. 24.NOW(); mysql的函数,表示当前时间 25.视图:是一个虚拟的表,没有物理数据,是从其他表中导出的数据,当原表数据发生改变时,视图数据也会发生改变,反之也一样. (1)作用:操作简单化;增加数据安全性:不直接对表进行操作;提高表的逻辑性:原表修改字段对视图无影响. (2)创建视图:语法:create view 视图名 as 查询语句. 例如:create view vi as select id,name from user;–>这是把user中id,name字段的数据写入到vi视图中. 若是想自己定义字段名不用查出的字段名,可以如下面这样写. 例如:create view vi(vi_id,vi_name) as select id,name from user;–>这样的话id对应vi_id,name对应vi_name; 上面的都是单表的视图,多表的视图也是一样的,只不过后面的单表查询变成多表查询了. 建议创建视图后自己定义字段名,也即是定义别名. (3)查看视图: Describe(desc) 视图名–>查看视图基本信息 Show table status like ‘视图名’ --> 查看视图基本信息 Show create view 视图名 --> 视图详细信息,建表具体信息. 在view表中查看视图详细信息–>view 系统表 自带的. (4)修改视图:修改使徒的定义 Create or replace view 没有的话就创建,有的话就替换 例如:Create or replace view vi(id,name) as select语句. Alter view 只修改不能创建(也就是说视图必须存在的情况下才可修改) Alter view vi as select语句 (5)更新视图:视图是虚拟的,对视图进行的crud操作都会对原表的数据产生影响. 也就是说对视图的操作最后都会转换为对视图所连接那个表的操作. (6)删除视图:删除数据库中已存在的视图,视图为虚表,因此只会删除结构,不会删除数据. Drop view if exist 视图名. 26.触发器:由事件来触发某个操作,这些事件包括insert语句,update语句和delete语句.当数据库系统执行这些事件时,就会激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...主机 前端 API 方法 前端 API 方法调用 测试 二、学习页面:获取视频播放地址 0x01 需求分析 0x02 课程发布:储存媒资信息 需求分析 数据模型 Dao Service 测试 0x03 Logstash:扫描课程计划媒资 创建索引 创建模板文件 配置 mysql.conf 启动 logstash.bat Logstash多实例运行 0x04 搜素服务:查询课程媒资接口 需求分析 Api接口定义 Service Controller 测试 三、在线学习:接口开发 0x01 需求分析 0x02 搭建开发环境 0x03 Api接口 0x04 服务端开发 需求分析 搜索服务注册Eureka 搜索服务客户端 自定义错误代码 Service Controller 测试 0x05 前端开发 需求分析 api方法 配置代理 视频播放页面 简单的测试 完整的测试 1、上传文件 一些问题 ~~方案1:删除本地分块文件重新尝试上传~~ 方案2:检查前端提交的MD5值是否正确 2、为课程计划选择媒资信息 3、前端门户测试 四、待完善的一些功能 😁 认识作者 一、学习页面:查询课程计划 0x01 需求分析 到目前为止,我们已可以编辑课程计划信息并上传课程视频,下一步我们要实现在线学习页面动态读取章节对应的视频并进行播放。在线学习页面所需要的信息有两类: 课程计划信息 课程学习信息(视频地址、学习进度等) 如下图: 在线学习集成媒资管理的需求如下: 1、在线学习页面显示课程计划 2、点击课程计划播放该课程计划对应的视频 本章节实现学习页面动态显示课程计划,进入不同课程的学习页面右侧动态显示当前课程的课程计划。 0x02 Api接口 课程计划信息从哪里获取? 在课程发布完成后会自动发布到一个 course_pub 的表中,logstash 会自动将课程发布后的信息自动采集到 ES 索引库中,这些信息也包含课程计划信息。 所以考虑性能要求,课程发布后对课程的查询统一从 ES 索引库中查询。 前端通过请求 搜索服务 获取课程信息,需要单独在 搜索服务 中定义课程信息查询接口。 本接口接收课程id,查询课程所有信息返回给前端。 我们在搜素服务 API 下添加以下方法 @ApiOperation("根据id搜索课程发布信息")public Map<String,CoursePub> getdetail(String id); 返回的课程信息为 json 结构:key 为课程id,value 为课程内容。 0x03 服务端开发 在搜索服务中开发查询课程信息接口。 Controller 在搜素服务下添加以下方法 / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/@Override@GetMapping("/getdetail/{id}")public Map<String, CoursePub> getdetail(@PathVariable("id")String id) {return esCourseService.getdetail(id);} Service / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/public Map<String, CoursePub> getdetail(String id) {//设置索引SearchRequest searchRequest = new SearchRequest(es_index);//设置类型searchRequest.types(es_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//设置查询条件,根据id进行查询searchSourceBuilder.query(QueryBuilders.termQuery("id",id));//这里不使用source的原字段过滤,查询所有字段// searchSourceBuilder.fetchSource(new String[]{"name", "grade", "charge","pic"}, newString[]{});//设置搜索源对象searchRequest.source(searchSourceBuilder);//执行搜索SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取搜索结果SearchHits hits = searchResponse.getHits();SearchHit[] searchHits = hits.getHits(); //获取最优结果Map<String,CoursePub> map = new HashMap<>();for (SearchHit hit: searchHits) {//从搜索结果中取值并添加到coursePub对象Map<String, Object> sourceAsMap = hit.getSourceAsMap();String courseId = (String) sourceAsMap.get("id");String name = (String) sourceAsMap.get("name");String grade = (String) sourceAsMap.get("grade");String charge = (String) sourceAsMap.get("charge");String pic = (String) sourceAsMap.get("pic");String description = (String) sourceAsMap.get("description");String teachplan = (String) sourceAsMap.get("teachplan");CoursePub coursePub = new CoursePub();coursePub.setId(courseId);coursePub.setName(name);coursePub.setPic(pic);coursePub.setGrade(grade);coursePub.setTeachplan(teachplan);coursePub.setDescription(description);//设置map对象map.put(courseId,coursePub);}return map;} 测试 使用 swagger-ui 或 postman 测试查询课程信息接口。 0x04 前端开发 配置NGINX虚拟主机 学习中心的二级域名为 ucenter.xuecheng.com ,我们在 nginx 中配置 ucenter 虚拟主机。 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;} } 前端ucenterupstream ucenter_server_pool{server 127.0.0.1:7081 weight=10;server 127.0.0.1:13000 weight=10;} 在学习中心要调用搜索的 API,使用 Nginx 解决代理,如下图: 在 ucenter 虚拟主机下配置搜索 Api 代理路径 后台搜索(公开api)upstream search_server_pool{server 127.0.0.1:40100 weight=10;} 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/;} } 前端 API 方法 在学习中心 xc-ui-pc-leanring 对课程信息的查询属于基础常用功能,所以我们将课程查询的 api 方法定义在base 模块下,如下图: 在system.js 中定义课程查询方法: import http from './public'export const course_view = id => {return http.requestGet('/openapi/search/course/getdetail/'+id);} 前端 API 方法调用 在 learning_video.vue 页面中调用课程信息查询接口得到课程计划,将课程计划json 串转成对象。 xc-ui-pc-leanring/src/module/course/page/learning_video.vue 1、定义视图 课程计划 <!--课程计划部分代码--><div class="navCont"><div class="course-weeklist"><div class="nav nav-stacked" v-for="(teachplan_first, index) in teachplanList"><div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>{ {teachplan_first.pname} }<i class="pull-right"></i></div><li v-if="teachplan_first.children!=null" v-for="(teachplan_second, index) in teachplan_first.children"><i class="glyphicon glyphicon-check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li><!-- <div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>第一章<i class="pull-right"></i></div><li ><i class="glyphicon glyphicon-check"></i><a :href="url" >第一节</a></li>--><!--<li><i class="glyphicon glyphicon-unchecked"></i>为什么分为A、B、C部分</li>--></div></div></div> 课程名称 <div class="top text-center">{ {coursename} }</div> 定义数据对象 data() {return {url:'',//当前urlcourseId:'',//课程idchapter:'',//章节Idcoursename:'',//课程名称coursepic:'',//课程图片teachplanList:[],//课程计划playerOptions: {//播放参数autoplay: false,controls: true,sources: [{type: "application/x-mpegURL",src: ''}]},} } 在 created 钩子方法中获取课程信息 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;} let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;} })}, 测试 在浏览器请求:http://ucenter.xuecheng.com//learning/4028e581617f945f01617f9dabc40000/0 4028e581617f945f01617f9dabc40000:第一个参数为课程 id,测试时从 ES索引库找一个课程 id 0:第二个参数为课程计划 id,此参数用于点击课程计划播放视频。 如果出现跨域问题,但是确定已经配置了跨域,请尝试结束所以 nginx.exe 的进程 和 清空浏览器缓存。 如果还没有解决?重启电脑试试。 二、学习页面:获取视频播放地址 0x01 需求分析 用户进入在线学习页面,点击课程计划将播放该课程计划对应的教学视频。 业务流程如下: 业务流程说明: 1、用户进入在线学习页面,页面请求搜索服务获取课程信息(包括课程计划信息)并且在页面展示。 2、在线学习请求学习服务获取视频播放地址。 3、学习服务校验当前用户是否有权限学习,如果没有权限学习则提示用户。 4、学习服务校验通过,请求搜索服务获取课程媒资信息。 5、搜索服务请求ElasticSearch获取课程媒资信息。 为什么要请求 ElasticSearch 查询课程媒资信息? 出于性能的考虑,公开查询课程信息从搜索服务查询,分摊 mysql 数据库的访问压力。 什么时候将课程媒资信息存储到 ElasticSearch 中? 课程媒资信息是在课程发布的时候存入 ElasticSearch,因为课程发布后课程信息将基本不再修改。 0x02 课程发布:储存媒资信息 需求分析 课程媒资信息是在课程发布的时候存入 ElasticSearch 索引库,因为课程发布后课程信息将基本不再修改,具体的业务流程如下。 1、课程发布,向课程媒资信息表写入数据。 1)根据课程 id 删除 teachplanMediaPub 中的数据 2)根据课程 id 查询 teachplanMedia 数据 3)将查询到的 teachplanMedia 数据插入到 teachplanMediaPub 中 2、Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 数据模型 在 xc_course 数据库创建课程计划媒资发布表: CREATE TABLE teachplan_media_pub (teachplan_id varchar(32) NOT NULL COMMENT '课程计划id',media_id varchar(32) NOT NULL COMMENT '媒资文件id',media_fileoriginalname varchar(128) NOT NULL COMMENT '媒资文件的原始名称',media_url varchar(256) NOT NULL COMMENT '媒资文件访问地址',courseid varchar(32) NOT NULL COMMENT '课程Id',timestamp timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT'logstash使用',PRIMARY KEY (teachplan_id)) ENGINE=InnoDB DEFAULT CHARSET=utf8 数据模型类如下: package com.xuecheng.framework.domain.course;import lombok.Data;import lombok.ToString;import org.hibernate.annotations.GenericGenerator;import javax.persistence.;import java.io.Serializable;import java.util.Date;@Data@ToString@Entity@Table(name="teachplan_media_pub")@GenericGenerator(name = "jpa-assigned", strategy = "assigned")public class TeachplanMediaPub implements Serializable {private static final long serialVersionUID = -916357110051689485L;@Id@GeneratedValue(generator = "jpa-assigned")@Column(name="teachplan_id")private String teachplanId;@Column(name="media_id")private String mediaId;@Column(name="media_fileoriginalname")private String mediaFileOriginalName;@Column(name="media_url")private String mediaUrl;@Column(name="courseid")private String courseId;@Column(name="timestamp")private Date timestamp;//时间戳} Dao 创建 TeachplanMediaPub 表的 Dao,向 TeachplanMediaPub 存储信息采用先删除该课程的媒资信息,再添加该课程的媒资信息,所以这里定义根据课程 id 删除课程计划媒资方法: public interface TeachplanMediaPubRepository extends JpaRepository<TeachplanMediaPub, String> {//根据课程id删除课程计划媒资信息long deleteByCourseId(String courseId);} 从TeachplanMedia查询课程计划媒资信息 //从TeachplanMedia查询课程计划媒资信息public interface TeachplanMediaRepository extends JpaRepository<TeachplanMedia, String> {List<TeachplanMedia> findByCourseId(String courseId);} Service 编写保存课程计划媒资信息方法,并在课程发布时调用此方法。 1、保存课程计划媒资信息方法 本方法采用先删除该课程的媒资信息,再添加该课程的媒资信息,在 CourseService 下定义该方法 //保存课程计划媒资信息private void saveTeachplanMediaPub(String courseId){//查询课程媒资信息List<TeachplanMedia> byCourseId = teachplanMediaRepository.findByCourseId(courseId);if(byCourseId == null) return; //没有查询到媒资数据则直接结束该方法//将课程计划媒资信息储存到待索引表//删除原有的索引信息teachplanMediaPubRepository.deleteByCourseId(courseId);//一个课程可能会有多个媒资信息,遍历并使用list进行储存List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for (TeachplanMedia teachplanMedia: byCourseId) {TeachplanMediaPub teachplanMediaPub = new TeachplanMediaPub();BeanUtils.copyProperties(teachplanMedia, teachplanMediaPub);teachplanMediaPubList.add(teachplanMediaPub);}//保存所有信息teachplanMediaPubRepository.saveAll(teachplanMediaPubList);} 2、课程发布时调用此方法 修改课程发布的 coursePublish 方法: ....//保存课程计划媒资信息到待索引表saveTeachplanMediaPub(courseId);//页面urlString pageUrl = cmsPostPageResult.getPageUrl();return new CoursePublishResult(CommonCode.SUCCESS,pageUrl);..... 测试 测试课程发布后是否成功将课程媒资信息存储到 teachplan_media_pub 中,测试流程如下: 1、指定一个课程 2、为课程计划添加课程媒资 3、执行课程发布 4、观察课程计划媒资信息是否存储至 teachplan_media_pub 中 注意:由于此测试仅用于测试发布课程计划媒资信息的功能,可暂时将 cms页面发布的功能暂时屏蔽,提高测试效率。 测试结果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vrzs5589-1595567273126)(https://qnoss.codeyee.com/20200704_15/image7)] 0x03 Logstash:扫描课程计划媒资 Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 创建索引 1、创建 xc_course_media 索引 2、并向此索引创建如下映射 POST: http://localhost:9200/xc_course_media/doc/_mapping {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }} 索引创建成功 创建模板文件 在 logstach 的 config 目录文件 xc_course_media_template.json 文件路径为 %ES_ROOT_DIR%/logstash6.8.8/config/xc_course_media_template.json %ES_ROOT_DIR% 为 ElasticSearch 和 logstash 的安装目录 内容如下: {"mappings" : {"doc" : {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }},"template" : "xc_course_media"} } 配置 mysql.conf 在logstash的 config 目录下配置 mysql_course_media.conf 文件供 logstash 使用,logstash 会根据 mysql_course_media.conf 文件的配置的地址从 MySQL 中读取数据向 ES 中写入索引。 参考https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html 配置输入数据源和输出数据源。 input {stdin {} jdbc {jdbc_connection_string => "jdbc:mysql://localhost:3306/xc_course?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC" 数据库信息jdbc_user => "root"jdbc_password => "123123" MYSQL 驱动地址,修改为maven仓库对应的位置jdbc_driver_library => "D:/soft/apache-maven-3.5.4/repository/mysql/mysql-connector-java/5.1.40/mysql-connector-java-5.1.40.jar" the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"jdbc_paging_enabled => "true"jdbc_page_size => "50000"要执行的sql文件statement_filepath => "/conf/course.sql"statement => "select from teachplan_media_pub where timestamp > date_add(:sql_last_value,INTERVAL 8 HOUR)"定时配置schedule => " "record_last_run => truelast_run_metadata_path => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_metadata"} } output {elasticsearch {ES的ip地址和端口hosts => "localhost:9200"hosts => ["localhost:9200","localhost:9202","localhost:9203"]ES索引库名称index => "xc_course_media"document_id => "%{teachplan_id}"document_type => "doc"template => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_template.json"template_name =>"xc_course_media"template_overwrite =>"true"} stdout {日志输出codec => json_lines} } 启动 logstash.bat 启动 logstash.bat 采集 teachplan_media_pub 中的数据,向 ES 写入索引。 logstash.bat -f ../config/mysql_course_media.conf 课程发布成功后,Logstash 会自动参加 teachplan_media_pub 表中新增的数据,效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ILPBxfXi-1595567273134)(https://qnoss.codeyee.com/20200704_15/image10)] Logstash多实例运行 由于之前我们还启动了一个 Logstash 对课程的发布信息进行采集,所以如果想两个 logstash 实例同时运行,因为每个实例都有一个.lock文件,所以不能使用同一个目录来存放数据,所以我们需要使用 --path.data= 为每个实例指定单独的数据目录,具体的代码如下: 该配置是在windows下进行的 课程发布实例 logstash_start_course_pub.bat @title logstash in course_publogstash.bat -f ..\config\mysql.conf --path.data=../data/course_pub 课程计划媒体发布实例 logstash_start_teachplan_media.bat @title logstash i n teachplan_media_publogstash.bat -f ../config/mysql_course_media.conf --path.data=../data/teachplan_media/ 同时运行效果如下 0x04 搜素服务:查询课程媒资接口 需求分析 搜索服务 提供查询课程媒资接口,此接口供学习服务调用。 Api接口定义 @ApiOperation("根据课程计划查询媒资信息")public TeachplanMediaPub getmedia(String teachplanId); Service 1、配置课程计划媒资索引库等信息 在 application.yml 中配置 xuecheng:elasticsearch:hostlist: ${eshostlist:127.0.0.1:9200} 多个结点中间用逗号分隔course:index: xc_coursetype: docsource_field: id,name,grade,mt,st,charge,valid,pic,qq,price,price_old,status,studymodel,teachmode,expires,pub_time,start_time,end_timemedia:index: xc_course_mediatype: docsource_field: courseid,media_id,media_url,teachplan_id,media_fileoriginalname 2、service 方法开发 在 课程搜索服务 中定义课程媒资查询接口,为了适应后续需求,service 参数定义为数组,可一次查询多个课程计划的媒资信息。 / 根据一个或者多个课程计划id查询媒资信息 @param teachplanIds 课程id @return QueryResponseResult/public QueryResponseResult<TeachplanMediaPub> getmedia(String [] teachplanIds){//设置索引SearchRequest searchRequest = new SearchRequest(media_index);//设置类型searchRequest.types(media_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//源字段过滤String[] media_index_arr = media_field.split(",");searchSourceBuilder.fetchSource(media_index_arr, new String[]{});//查询条件,根据课程计划id查询(可以传入多个课程计划id)searchSourceBuilder.query(QueryBuilders.termsQuery("teachplan_id", teachplanIds));searchRequest.source(searchSourceBuilder);SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取结果SearchHits hits = searchResponse.getHits();long totalHits = hits.getTotalHits();SearchHit[] searchHits = hits.getHits();//数据列表List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for(SearchHit hit:searchHits){TeachplanMediaPub teachplanMediaPub =new TeachplanMediaPub();Map<String, Object> sourceAsMap = hit.getSourceAsMap();//取出课程计划媒资信息String courseid = (String) sourceAsMap.get("courseid");String media_id = (String) sourceAsMap.get("media_id");String media_url = (String) sourceAsMap.get("media_url");String teachplan_id = (String) sourceAsMap.get("teachplan_id");String media_fileoriginalname = (String) sourceAsMap.get("media_fileoriginalname");teachplanMediaPub.setCourseId(courseid);teachplanMediaPub.setMediaUrl(media_url);teachplanMediaPub.setMediaFileOriginalName(media_fileoriginalname);teachplanMediaPub.setMediaId(media_id);teachplanMediaPub.setTeachplanId(teachplan_id);//将对象加入到列表中teachplanMediaPubList.add(teachplanMediaPub);}//构建返回课程媒资信息对象QueryResult<TeachplanMediaPub> queryResult = new QueryResult<>();queryResult.setList(teachplanMediaPubList);queryResult.setTotal(totalHits);return new QueryResponseResult<TeachplanMediaPub>(CommonCode.SUCCESS,queryResult);} Controller / 根据课程计划id搜索发布后的媒资信息 @param teachplanId @return/@GetMapping(value="/getmedia/{teachplanId}")@Overridepublic TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId) {//为了service的拓展性,所以我们service接收的是数组作为参数,以便后续开发查询多个ID的接口String[] teachplanIds = new String[]{teachplanId};//通过service查询ES获取课程媒资信息QueryResponseResult<TeachplanMediaPub> mediaPubQueryResponseResult = esCourseService.getmedia(teachplanIds);QueryResult<TeachplanMediaPub> queryResult = mediaPubQueryResponseResult.getQueryResult();if(queryResult!=null&& queryResult.getList()!=null&& queryResult.getList().size()>0){//返回课程计划对应课程媒资return queryResult.getList().get(0);} return new TeachplanMediaPub();} 测试 使用 swagger-ui 和 postman 测试课程媒资查询接口。 三、在线学习:接口开发 0x01 需求分析 根据下边的业务流程,本章节完成前端学习页面请求学习服务获取课程视频地址,并自动播放视频。 0x02 搭建开发环境 1、创建数据库 创建 xc_learning 数据库,学习数据库将记录学生的选课信息、学习信息。 导入:资料/xc_learning.sql 2、创建学习服务工程 参考课程管理服务工程结构,创建学习服务工程: 导入:资料/xc-service-learning.zip 项目工程结构如下 0x03 Api接口 此 api 接口是课程学习页面请求学习服务获取课程学习地址。 定义返回值类型: package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResponseResult;import com.xuecheng.framework.model.response.ResultCode;import lombok.Data;import lombok.NoArgsConstructor;import lombok.ToString;@Data@ToString@NoArgsConstructorpublic class GetMediaResult extends ResponseResult {public GetMediaResult(ResultCode resultCode, String fileUrl) {super(resultCode);this.fileUrl = fileUrl;}//媒资文件播放地址private String fileUrl;} 定义接口,学习服务根据传入课程 ID、章节 Id(课程计划 ID)来取学习地址。 @Api(value = "录播课程学习管理",description = "录播课程学习管理")public interface CourseLearningControllerApi {@ApiOperation("获取课程学习地址")public GetMediaResult getMediaPlayUrl(String courseId,String teachplanId);} 0x04 服务端开发 需求分析 学习服务根据传入课程ID、章节Id(课程计划ID)请求搜索服务获取学习地址。 搜索服务注册Eureka 学习服务要调用搜索服务查询课程媒资信息,所以需要将搜索服务注册到 eureka 中。 1、查看服务名称是否为 xc-service-search 注意修改application.xml中的服务名称:spring:application:name: xc‐service‐search 2、配置搜索服务的配置文件 application.yml,加入 Eureka 配置 如下: eureka:client:registerWithEureka: true 服务注册开关fetchRegistry: true 服务发现开关serviceUrl: Eureka客户端与Eureka服务端进行交互的地址,多个中间用逗号分隔defaultZone: ${EUREKA_SERVER:http://localhost:50101/eureka/,http://localhost:50102/eureka/}instance:prefer-ip-address: true 将自己的ip地址注册到Eureka服务中ip-address: ${IP_ADDRESS:127.0.0.1}instance-id: ${spring.application.name}:${server.port} 指定实例idribbon:MaxAutoRetries: 2 最大重试次数,当Eureka中可以找到服务,但是服务连不上时将会重试,如果eureka中找不到服务则直接走断路器MaxAutoRetriesNextServer: 3 切换实例的重试次数OkToRetryOnAllOperations: false 对所有操作请求都进行重试,如果是get则可以,如果是post,put等操作没有实现幂等的情况下是很危险的,所以设置为falseConnectTimeout: 5000 请求连接的超时时间ReadTimeout: 6000 请求处理的超时时间 3、添加 eureka 依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring‐cloud‐starter‐netflix‐eureka‐client</artifactId></dependency> 4、修改启动类,在class上添加如下注解: @EnableDiscoveryClient 搜索服务客户端 在 学习服务 创建搜索服务的客户端接口,此接口会生成代理对象,调用搜索服务: package com.xuecheng.learning.client;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import org.springframework.cloud.openfeign.FeignClient;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.PathVariable;@FeignClient(value = "xc‐service‐search")public interface CourseSearchClient {@GetMapping(value="/getmedia/{teachplanId}")public TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId);} 自定义错误代码 我们在 com.xuecheng.framework.domain.learning.response 包下自定义一个错误消息模型 package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResultCode;import lombok.ToString;@ToStringpublic enum LearningCode implements ResultCode {LEARNING_GET_MEDIA_ERROR(false,23001,"学习中心获取媒资信息错误!");//操作代码boolean success;//操作代码int code;//提示信息String message;private LearningCode(boolean success, int code, String message){this.success = success;this.code = code;this.message = message;}@Overridepublic boolean success() {return success;}@Overridepublic int code() {return code;}@Overridepublic String message() {return message;} } 该消息模型基于 ResultCode 来实现,代码如下 package com.xuecheng.framework.model.response;/ Created by mrt on 2018/3/5. 10000-- 通用错误代码 22000-- 媒资错误代码 23000-- 用户中心错误代码 24000-- cms错误代码 25000-- 文件系统/public interface ResultCode {//操作是否成功,true为成功,false操作失败boolean success();//操作代码int code();//提示信息String message(); 从 ResultCode 中我们可以看出,我们约定了用户中心的错误代码使用 23000,所以我们定义的一些错误信息的代码就从 23000 开始计数。 Service 在学习服务中定义 service 方法,此方法远程请求课程管理服务、媒资管理服务获取课程学习地址。 package com.xuecheng.learning.service.impl;import com.netflix.discovery.converters.Auto;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import com.xuecheng.framework.domain.learning.response.GetMediaResult;import com.xuecheng.framework.exception.ExceptionCast;import com.xuecheng.framework.model.response.CommonCode;import com.xuecheng.learning.client.CourseSearchClient;import com.xuecheng.learning.service.LearningService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;@Servicepublic class LearningServiceImpl implements LearningService {@AutowiredCourseSearchClient courseSearchClient;/ 远程调用搜索服务获取已发布媒体信息中的url @param courseId 课程id @param teachplanId 媒体信息id @return/@Overridepublic GetMediaResult getMediaPlayUrl(String courseId, String teachplanId) {//校验学生权限,是否已付费等//远程调用搜索服务进行查询媒体信息TeachplanMediaPub mediaPub = courseSearchClient.getmedia(teachplanId);if(mediaPub == null) ExceptionCast.cast(CommonCode.FAIL);return new GetMediaResult(CommonCode.SUCCESS, mediaPub.getMediaUrl());} } Controller 调用 service 根据课程计划 id 查询视频播放地址: @RestController@RequestMapping("/learning/course")public class CourseLearningController implements CourseLearningControllerApi {@AutowiredLearningService learningService;@Override@GetMapping("/getmedia/{courseId}/{teachplanId}")public GetMediaResult getMediaPlayUrl(@PathVariable String courseId, @PathVariable String teachplanId) {//获取课程学习地址return learningService.getMedia(courseId, teachplanId);} } 测试 使用 swagger-ui 或postman 测试学习服务查询课程视频地址接口。 0x05 前端开发 需求分析 需要在学习中心前端页面需要完成如下功能: 1、进入课程学习页面需要带上 课程 Id参数及课程计划Id的参数,其中 课程 Id 参数必带,课程计划 Id 可以为空。 2、进入页面根据 课程 Id 取出该课程的课程计划显示在右侧。 3、进入页面后判断如果请求参数中有课程计划 Id 则播放该章节的视频。 4、进入页面后判断如果 课程计划id 为0则需要取出本课程第一个 课程计划的Id,并播放第一个课程计划的视频。 进入到模块 xc-ui-pc-leanring/src/module/course api方法 let sysConfig = require('@/../config/sysConfig')let apiUrl = sysConfig.xcApiUrlPre;/获取播放地址/export const get_media = (courseId,chapter) => {return http.requestGet(apiUrl+'/api/learning/course/getmedia/'+courseId+'/'+chapter);} 配置代理 在 Nginx 中的 ucenter.xuecheng.com 虚拟主机中配置 /api/learning/ 的路径转发,此url 请转发到学习服务。 学习服务upstream learning_server_pool{server 127.0.0.1:40600 weight=10;}学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/; }学习服务location ^~ /api/learning/ {proxy_pass http://learning_server_pool/learning/;} } 视频播放页面 1、如果传入的课程计划id为0则取出第一个课程计划id 在 created 钩子方法中完成 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;}let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){console.log("准备开始播放视频")let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;//开始学习if(this.chapter == "0" || !this.chapter){//取出第一个教学计划this.chapter = this.getFirstTeachplan();console.log("第一个教学计划id为 ",this.chapter);this.study(this.chapter);}else{this.study(this.chapter);} }})}, 取出第一个章节 id,用户未输入课程计划 id 或者输入为 0 时,播放第一个。 //取出第一个章节getFirstTeachplan(){for(var i=0;i<this.teachplanList.length;i++){let firstTeachplan = this.teachplanList[i];//如果当前children存在,则取出第一个返回if(firstTeachplan.children && firstTeachplan.children.length>0){let secondTeachplan = firstTeachplan.children[0];return secondTeachplan.id;} }return ;}, 开始学习: //开始学习study(chapter){// 获取播放地址courseApi.get_media(this.courseId,chapter).then((res)=>{if(res.success){let fileUrl = sysConfig.videoUrl + res.fileUrl//播放视频this.playvideo(fileUrl)}else if(res.message){this.$message.error(res.message)}else{this.$message.error("播放视频失败,请刷新页面重试")} }).catch(res=>{this.$message.error("播放视频失败,请刷新页面重试")});}, 2、点击右侧课程章节切换播放 在原有代码基础上添加 click 事件,点击调用开始学习方法(study)。 <li v‐if="teachplan_first.children!=null" v‐for="(teachplan_second, index) inteachplan_first.children"><i class="glyphicon glyphicon‐check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li> 3、地址栏路由url变更 这里需要注意一个问题,在用户点击课程章节切换播放时,地址栏的 url 也应该同步改变为当前所选择的课程计划 id 4、在线学习按钮 将 learnstatus 默认更改为 1,这样就能显示出马上学习的按钮,方便我们后续的集成测试。 文件路径为 xc-ui-pc-static-portal/include/course_detail_dynamic.html 部分代码块如下 <script>var body= new Vue({ //创建一个Vue的实例el: "body", //挂载点是id="app"的地方data: {editLoading: false,title:'测试',courseId:'',charge:'',//203001免费,203002收费learnstatus: 1 ,//课程状态,1:马上学习,2:立即报名、3:立即购买course:{},companyId:'template',company_stat:[],course_stat:{"s601001":"","s601002":"","s601003":""} }, 简单的测试 访问在线学习页面:http://ucenter.xuecheng.com//learning/课程id/课程计划id 通过 url 传入两个参数:课程id 和 课程计划id 如果没有课程计划则传入0 测试项目如下: 1、传入正确的课程id、课程计划id,自动播放本章节的视频 2、传入正确的课程id、课程计划id传入0,自动播放第一个视频 3、传入错误的课程id 或 课程计划id,提示错误信息。 4、通过右侧章节目录切换章节及播放视频。 访问: http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/4028e58161bd18ea0161bd1f73190008 传入正确的课程id、课程计划id,自动播放本章节的视频 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ef0xxym7-1595567273153)(https://qnoss.codeyee.com/20200704_15/image17)] 传入正确的课程id、课程计划id传入0,自动播放第一个视频 访问 http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/0 识别出第一个课程计划的 id 需要注意的是这里的 chapter 参数是我自己在 study 函数里加上去的,可以忽略。 传入错误的课程id或课程计划id,提示错误信息。 通过右侧章节目录切换章节及播放视频。 点击章节即可播放,但是点击制定章节后 url 没有发生改变,这个问题暂时还没有解决,关注笔记后面的内容。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TOGdxwb4-1595567273158)(https://qnoss.codeyee.com/20200704_15/image20)] 完整的测试 准备工作 启动 RabbitMQ,启动 Logstash、ElasticSearch 建议把所有后端服务都开起来 启动 前端静态门户、启动 nginx 、启动课程管理前端 我们整理一下测试的流程 上传两个媒资视频文件,用于测试 进入到课程管理,为课程计划选择媒资信息 发布课程,等待 logstash 将数据采集到 ElasticSearch 的索引库中 进入学成网主页,点击课程,进入到搜索门户页面 搜索课程,进入到课程详情页面 点击开始学习,进入到课程学习页面,选择课程计划中的一个章节进行学习。 1、上传文件 首先我们使用之前开发的媒资管理模块,上传两个视频文件用于测试。 第一个文件上传成功 一些问题 在上传第二个文件时,发生了错误,我们来检查一下问题出在了哪里 在媒体服务的控制台中可以看到,在 mergeChunks 方法在校验文件 md5 时候抛出了异常 我们在 MD5 校验这里打个断点,重新上传文件,分析一下问题所在。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpEMZGI8-1595567273166)(https://qnoss.codeyee.com/20200704_15/image23)] 单步调试后发现,合并文件后的MD5值与用户上传的源文件值不相等 方案1:删除本地分块文件重新尝试上传 考虑到可能是在用户上传完 视频的分块文件时发生了一些问题,导致合并文件后与源文件的大小不等,导致MD5也不相同,这里我们把这个视频上传到本地的文件全部删除,在媒资上传页面重新上传文件。 对比所有分块文件的字节大小和本地源文件的大小,完全是相等的 删除所有文件后重新上传,md5值还是不等,考虑从调试一下文件合并的代码。 方案2:检查前端提交的MD5值是否正确 在查阅是否有其他的MD5值获取方案时,发现了一个使用 windows 本地命令获取文件MD5值的方法 certutil -hashfile .\19-在线学习接口-集成测试.avi md5 惊奇的发现,TM的原来是前端那边转换的MD5值不正确,后端这边是没有问题的。 从前面的图可以看出,本地和后端转换的都是以一个 f6f0 开头的MD5值 那么问题就出现在前端了,还需要花一些时间去分析一下,这里暂时就先告一段落,因为上传了几个文件测试中只有这一个文件出现了问题。 2、为课程计划选择媒资信息 进入到一个课程的管理页面 http://localhost:12000//course/manage/baseinfo/4028e58161bcf7f40161bcf8b77c0000 将刚才我们上传的媒资文件的信息和课程计划绑定 选择效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-epKaqzCD-1595567273178)(https://qnoss.codeyee.com/20200704_15/image29)] 2、发布课程,等待 logstash 从 course_pub 以及 teachplan_media_pub 表中采集数据到 ElasticSearch 当中 发布成功后,我们可以从 teachplan_media_pub 表中看到刚才我们发布的媒资信息 再观察 Logstash 的控制台,发现两个 Logstash 的实例都对更新的课程发布信息进行了采集 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTUve2ik-1595567273183)(https://qnoss.codeyee.com/20200704_15/image32)] 3、前端门户测试 打开我们的门户主站 http://www.xuecheng.com/ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4wZe9R84-1595567273185)(https://qnoss.codeyee.com/20200704_15/image33)] 点击导航栏的课程,进入到我们的搜索门户页面 如果无法进入到搜索门户,请检查你的 xc-ui-pc-portal 前端工程是否已经启动 进入到搜索门户后,可以看到一些初始化时搜索的课程数据,默认是搜索第一页的数据,每页2个课程。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BJ1AKoJb-1595567273187)(https://qnoss.codeyee.com/20200704_15/image34)] 我们可以测试搜索一下前面我们选择媒资信息时所用的课程 点击课程,进入到课程详情页面,然后再点击开始学习。 点击马上学习后,会进入到该课程的在线学习页面,默认自动播放我们第一个课程计划中的视频。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tcuLWnf2-1595567273193)(https://qnoss.codeyee.com/20200704_15/image37)] 我们可以在右侧的目录中选择第二个课程计划,会自动播放所选的课程计划所对应的媒资视频播放地址,该 播放地址正是我们刚才通过 Logstash 自动采集到 ElasticSearch 的索引信息,效果图如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cvi9Dr0Y-1595567273195)(https://qnoss.codeyee.com/20200704_15/image38)] 四、待完善的一些功能 课程发布前,校验课程计划里面是否包含二级课程计划 课程发布前,校验课程计划信息里面是否全部包含媒资信息 删除媒资信息,并且同步删除ES中的索引 在获取该课程的播放地址时校验用户的合法、 在线学习页面,点击右侧目录中的课程计划同时改变url中的课程计划地址 视频文件 19-在线学习接口-集成测试.avi 前端上传时提交的MD5值不正确 😁 认识作者 作者:👦 LCyee ,全干型代码🐕 自建博客:https://www.codeyee.com 记录学习以及项目开发过程中的笔记与心得,记录认知迭代的过程,分享想法与观点。 CSDN 博客:https://blog.csdn.net/codeyee 记录和分享一些开发过程中遇到的问题以及解决的思路。 欢迎加入微服务练习生的队伍,一起交流项目学习过程中的一些问题、分享学习心得等,不定期组织一起刷题、刷项目,共同见证成长。 本篇文章为转载内容。原文链接:https://blog.csdn.net/codeyee/article/details/107558901。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 12:41:01
73
转载
MySQL
MySQL是一个普遍的关联型数据库管理系统,它的开源及高稳定性使其成为商业应用中的首选项数据库。如果要运用MySQL,首先需要开启MySQL服务。以下是开启MySQL服务的步骤: 1. 启动指令行(Terminal)。2. 键入以下指令:sudo /usr/local/mysql/support-files/mysql.server start3. 按回车键后,键入您的管理员密码(密码不会显示),然后按回车键。4. 如果MySQL服务成功开启,您将看到指令行显示“SUCCESS!” 通过上述步骤,您的MySQL服务已经成功运行。如果需要停止MySQL服务,只需运用以下指令: sudo /usr/local/mysql/support-files/mysql.server stop 需要注意的是,每次开启MySQL服务后,请确保运用以下指令关闭MySQL服务: sudo /usr/local/mysql/support-files/mysql.server stop 这样能够确保MySQL服务正常关闭,从而避免不必要的错误和数据损失。
2023-10-18 17:15:18
48
电脑达人
Java
...递减排序来取得需要的数据,其中递增是从小到大排序,而递减则是从大到小排序。以下是两种排序的具体方法: SELECT FROM 表名 ORDER BY 列名 ASC; 以上SQL语句可以完成递增排序,其中ASC为标识符表示递增。 SELECT FROM 表名 ORDER BY 列名 DESC; 以上SQL语句可以完成递减排序,其中DESC为标识符表示递减。 在Java中使用SQL语句也非常简易,只需要通过JDBC链接资料库,然后使用PreparedStatement运行SQL语句即可。以下是一个简易的例子: Connection conn = null; PreparedStatement ps = null; ResultSet rs = null; try { Class.forName("com.mysql.cj.jdbc.Driver"); conn = DriverManager.getConnection(URL, USERNAME, PASSWORD); String sql = "SELECT FROM student ORDER BY age DESC"; ps = conn.prepareStatement(sql); rs = ps.executeQuery(); while (rs.next()) { //加工流程 } } catch (SQLException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } finally { try { if (rs != null) rs.close(); if (ps != null) ps.close(); if (conn != null) conn.close(); } catch (SQLException e) { e.printStackTrace(); } } 以上代码完成了通过递减排序取得学生表中的所有数据,并通过while迭代进行加工。需要注意的是,在使用JDBC链接MySQL资料库时,需要先载入MySQL的JDBC驱动程序。 总的来说,Java中的SQL递增和递减排序仅仅是一种非常基本的资料库检索操作,但对于需要大量数据排序的应用程序来说,这个操作却是非常重要的。
2023-08-17 09:50:12
327
数据库专家
转载文章
... 最终找到办法,就是mysql设置的问题,有my.ini的就找这个文件,没有的就找my.cnf(这个一般都在/ect/my.conf) 本作者使用的CentOS7.6系统: 然后打开MySql配置文件 然后找到[MySql] 然后找 sql-mode=STRICT_TRANS_TABLESNO_ENGINE_SUBSTITUTION 问题原因: 主要是MySQL使用了严格验证方式: 解决方法: 直接把sql-mode模式改变下 这个可能你我的不相同,你只要找到sql-mode 就好 然后把这句删掉,改成: sql-mode=NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION 然后在重启数据库 service mysqld restart 完美解决 更多教程:www.zcxsmart.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/LizmWintac/article/details/126901852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 23:16:25
289
转载
c#
...Helper类并解决数据插入问题后,我们了解到参数化SQL、数据库连接管理和数据类型匹配对于保证数据库操作的安全与效率至关重要。针对这些关键点,近期的数据库开发领域也出现了诸多值得关注的研究成果和实践案例。 首先,关于SQL注入防御,微软近期在其.NET 5框架中进一步强化了对参数化查询的支持,并引入了新的SqlRaw和SqlInterpolated方法,以帮助开发者更自然地编写安全的SQL语句。同时,业界也在提倡采用ORM(对象关系映射)工具如Entity Framework Core等,它们通过抽象数据库交互过程,能够有效避免SQL注入风险,提升开发效率。 其次,在数据库连接管理方面,随着云数据库服务的发展,诸如Azure SQL Database等服务提供了智能连接复用机制,可以自动优化连接池资源,减轻开发者手动管理连接的压力。同时,一些开源数据库连接池组件,例如Pomelo.EntityFrameworkCore.MySql的连接池功能,也在持续优化性能,确保高并发场景下的稳定性和资源利用率。 再者,关于数据类型的严格校验,很多现代数据库系统开始支持更强的数据验证特性,如PostgreSQL的check约束、MySQL 8.0的generated columns等功能,能够在数据库层面就对插入数据进行严格的格式和内容检查,从而减少因数据类型不匹配引发的问题。 综上所述,紧跟技术发展潮流,关注数据库领域的最新研究动态与最佳实践,将有助于我们在日常开发工作中更好地运用SqlHelper类或其他数据库操作工具,实现更加安全高效的数据存储与访问。
2023-08-29 23:20:47
508
月影清风_
Golang
...olang进行高性能数据库访问和操作 嗨,各位Gopher们!今天咱们聊聊如何使用Golang(简称Go)来高效地访问和操作数据库。这不仅关乎性能,更是我们作为开发者追求卓越编程体验的一部分。在这过程中,咱们会碰到一堆有趣的问题,还能挖出不少值得研究的技术点,挺好玩的!所以,让我们一起开始这段旅程吧! 1. 理解Golang与数据库交互的基础 首先,我们要明白Golang是如何与数据库进行交互的。Go语言以其简洁和高效著称,尤其是在处理并发任务时。说到聊数据库访问,咱们通常就是扯到SQL查询啊,还有怎么管事务,再有就是怎么用连接池这些事儿。 1.1 连接池的重要性 连接池是数据库访问中非常关键的一环。它允许我们在不频繁建立新连接的情况下,重用已有的数据库连接,从而提高效率并减少资源消耗。想象一下,如果你每次执行SQL查询都要打开一个新的数据库连接,那效率该有多低啊! 1.2 SQL查询与ORM 在进行数据库操作时,我们有两种主要的方法:直接编写SQL语句或者使用ORM(对象关系映射)。直接编写SQL语句虽然能够提供更多的控制权,但可能会增加出错的风险。而ORM则通过将数据库表映射到程序中的对象,使得数据操作更加直观。不过,选择哪种方式,还要根据具体的应用场景和个人偏好来决定。 2. 实践篇 构建高性能数据库访问 现在,让我们进入实践部分。咱们这就来点儿实战教学,用几个小例子带你看看怎么用Go语言搞定又快又稳的数据库操作。 2.1 使用标准库 database/sql Go语言的标准库提供了database/sql包,它是一个用于SQL数据库的通用接口。下面是一个简单的例子: go package main import ( "database/sql" _ "github.com/go-sql-driver/mysql" // 注意这里需要导入MySQL驱动 "fmt" ) func main() { db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/dbname") if err != nil { panic(err.Error()) } defer db.Close() // 执行一个简单的查询 rows, err := db.Query("SELECT id, name FROM users") if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var id int var name string err = rows.Scan(&id, &name) if err != nil { panic(err.Error()) } fmt.Println(id, name) } } 2.2 使用ORM工具:Gorm 对于更复杂的项目,使用ORM工具如Gorm可以极大地简化数据库操作。Gorm就像是给数据库操作加了个“翻译”,让我们可以用更贴近日常说话的方式来摆弄数据库里的数据,感觉就像是在玩弄对象一样轻松。下面是如何使用Gorm的一个简单示例: go package main import ( "gorm.io/driver/mysql" "gorm.io/gorm" "log" ) type User struct { ID uint Name string } func main() { dsn := "user:password@tcp(127.0.0.1:3306)/dbname?charset=utf8mb4&parseTime=True&loc=Local" db, err := gorm.Open(mysql.Open(dsn), &gorm.Config{}) if err != nil { log.Fatal(err) } // 创建用户 newUser := User{Name: "John Doe"} db.Create(&newUser) // 查询用户 var user User db.First(&user, newUser.ID) log.Printf("Found user: %s\n", user.Name) } 3. 性能优化技巧 在实际开发中,除了基础的数据库操作外,我们还需要考虑如何进一步优化性能。这里有几个建议: - 索引:确保你的数据库表上有适当的索引,特别是对于那些频繁查询的字段。 - 缓存:利用缓存机制(如Redis)来存储常用的数据结果,可以显著减少数据库的负载。 - 批量操作:尽量减少与数据库的交互次数,比如批量插入或更新数据。 - 异步处理:对于耗时的操作,可以考虑使用异步处理方式,避免阻塞主线程。 4. 结语 通过以上的内容,我们大致了解了如何使用Go语言进行高性能的数据库访问和操作。当然,这只是冰山一角,真正的高手之路还很长。希望能给你带来点儿灵感,让你在Go语言的路上越走越远,越走越顺!记住,编程是一场马拉松,不是短跑,保持耐心,不断学习和尝试新的东西吧! --- 希望这篇文章能帮助你更好地理解和应用Golang在数据库访问方面的最佳实践。如果你有任何问题或想法,欢迎随时交流讨论!
2024-10-21 15:42:48
78
百转千回
转载文章
...p等,广告需要设定在具体的广告位,当用户点击广告的时候,一般都会通过ajax或Socket往后台发送日志数据,在这里我们是要做基于SparkStreaming做实时在线统计。那么数据就需要放进消息系统(Kafka)中,我们的Spark Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
转载文章
...者往 Web 页面里插入恶意可执行网页脚本代码,当用户浏览该页之时,嵌入其中 Web 里面的脚本代码会被执行,从而可以达到攻击者盗取用户信息或其他侵犯用户安全隐私的目的。XSS 的攻击方式千变万化,但还是可以大致细分为几种类型。 非持久型 XSS 非持久型 XSS 漏洞,也叫反射型 XSS 漏洞,一般是通过给别人发送带有恶意脚本代码参数的 URL,当 URL 地址被打开时,特有的恶意代码参数被 HTML 解析、执行。 非持久型 XSS 举一个例子,比如你的 Web 页面中包含有以下代码: Select your language:<select><script>document.write(''+ '<option value=1>'+ location.href.substring(location.href.indexOf('default=') + 8)+ '</option>');document.write('<option value=2>English</option>');</script></select> 攻击者可以直接通过 URL 类似:https://xx.com/xx?default=<script>alert(document.cookie)</script>) 注入可执行的脚本代码。 非持久型 XSS 漏洞攻击有以下几点特征: 即时性,不经过服务器存储,直接通过 HTTP 的 GET 和 POST 请求就能完成一次攻击,拿到用户隐私数据。 攻击者需要诱骗点击 反馈率低,所以较难发现和响应修复 盗取用户敏感保密信息 为了防止出现非持久型 XSS 漏洞,需要确保这么几件事情: Web 页面渲染的所有内容或者渲染的数据都必须来自于服务端。 尽量不要从 URL,document.referrer,document.forms 等这种 DOM API 中获取数据直接渲染。 尽量不要使用 eval, new Function(),document.write(),document.writeln(),window.setInterval(),window.setTimeout(),innerHTML,document.creteElement() 等可执行字符串的方法。 如果做不到以上几点,也必须对涉及 DOM 渲染的方法传入的字符串参数做 escape 转义。 前端渲染的时候对任何的字段都需要做 escape 转义编码。 escape 转义的目的是将一些构成 HTML 标签的元素转义,比如 <,>,空格 等,转义成 <,>, 等显示转义字符。有很多开源的工具可以协助我们做 escape 转义。 持久型 XSS 持久型 XSS 漏洞,也被称为存储型 XSS 漏洞,一般存在于 Form 表单提交等交互功能,如发帖留言,提交文本信息等,黑客利用的 XSS 漏洞,将内容经正常功能提交进入数据库持久保存,当前端页面获得后端从数据库中读出的注入代码时,恰好将其渲染执行。 主要注入页面方式和非持久型 XSS 漏洞类似,只不过持久型的不是来源于 URL,refferer,forms 等,而是来源于后端从数据库中读出来的数据。持久型 XSS 攻击不需要诱骗点击,黑客只需要在提交表单的地方完成注入即可,但是这种 XSS 攻击的成本相对还是很高。攻击成功需要同时满足以下几个条件: POST 请求提交表单后端没做转义直接入库。 后端从数据库中取出数据没做转义直接输出给前端。 前端拿到后端数据没做转义直接渲染成 DOM。 持久型 XSS 有以下几个特点: 持久性,植入在数据库中 危害面广,甚至可以让用户机器变成 DDoS 攻击的肉鸡。 盗取用户敏感私密信息 为了防止持久型 XSS 漏洞,需要前后端共同努力: 后端在入库前应该选择不相信任何前端数据,将所有的字段统一进行转义处理。 后端在输出给前端数据统一进行转义处理。 前端在渲染页面 DOM 的时候应该选择不相信任何后端数据,任何字段都需要做转义处理。 基于字符集的 XSS 其实现在很多的浏览器以及各种开源的库都专门针对了 XSS 进行转义处理,尽量默认抵御绝大多数 XSS 攻击,但是还是有很多方式可以绕过转义规则,让人防不胜防。比如「基于字符集的 XSS 攻击」就是绕过这些转义处理的一种攻击方式,比如有些 Web 页面字符集不固定,用户输入非期望字符集的字符,有时会绕过转义过滤规则。 以基于 utf-7 的 XSS 为例 utf-7 是可以将所有的 unicode 通过 7bit 来表示的一种字符集 (但现在已经从 Unicode 规格中移除)。 这个字符集为了通过 7bit 来表示所有的文字, 除去数字和一部分的符号,其它的部分将都以 base64 编码为基础的方式呈现。 <script>alert("xss")</script>可以被解释为:+ADw-script+AD4-alert(+ACI-xss+ACI-)+ADw-/script+AD4- 可以形成「基于字符集的 XSS 攻击」的原因是由于浏览器在 meta 没有指定 charset 的时候有自动识别编码的机制,所以这类攻击通常就是发生在没有指定或者没来得及指定 meta 标签的 charset 的情况下。 所以我们有什么办法避免这种 XSS 呢? 记住指定 XML 中不仅要指定字符集为 utf-8,而且标签要闭合 牛文推荐:http://drops.wooyun.org/papers/1327 (这个讲的很详细) 基于 Flash 的跨站 XSS 基于 Flash 的跨站 XSS 也是属于反射型 XSS 的一种,虽然现在开发 ActionScript 的产品线几乎没有了,但还是提一句吧,AS 脚本可以接受用户输入并操作 cookie,攻击者可以配合其他 XSS(持久型或者非持久型)方法将恶意 swf 文件嵌入页面中。主要是因为 AS 有时候需要和 JS 传参交互,攻击者会通过恶意的 XSS 注入篡改参数,窃取并操作cookie。 避免方法: 严格管理 cookie 的读写权限 对 Flash 能接受用户输入的参数进行过滤 escape 转义处理 未经验证的跳转 XSS 有一些场景是后端需要对一个传进来的待跳转的 URL 参数进行一个 302 跳转,可能其中会带有一些用户的敏感(cookie)信息。如果服务器端做302 跳转,跳转的地址来自用户的输入,攻击者可以输入一个恶意的跳转地址来执行脚本。 这时候需要通过以下方式来防止这类漏洞: 对待跳转的 URL 参数做白名单或者某种规则过滤 后端注意对敏感信息的保护, 比如 cookie 使用来源验证。 CSRF CSRF(Cross-Site Request Forgery),中文名称:跨站请求伪造攻击 那么 CSRF 到底能够干嘛呢?你可以这样简单的理解:攻击者可以盗用你的登陆信息,以你的身份模拟发送各种请求。攻击者只要借助少许的社会工程学的诡计,例如通过 QQ 等聊天软件发送的链接(有些还伪装成短域名,用户无法分辨),攻击者就能迫使 Web 应用的用户去执行攻击者预设的操作。例如,当用户登录网络银行去查看其存款余额,在他没有退出时,就点击了一个 QQ 好友发来的链接,那么该用户银行帐户中的资金就有可能被转移到攻击者指定的帐户中。 所以遇到 CSRF 攻击时,将对终端用户的数据和操作指令构成严重的威胁。当受攻击的终端用户具有管理员帐户的时候,CSRF 攻击将危及整个 Web 应用程序。 CSRF 原理 下图大概描述了 CSRF 攻击的原理,可以理解为有一个小偷在你配钥匙的地方得到了你家的钥匙,然后拿着要是去你家想偷什么偷什么。 csrf原理 完成 CSRF 攻击必须要有三个条件: 用户已经登录了站点 A,并在本地记录了 cookie 在用户没有登出站点 A 的情况下(也就是 cookie 生效的情况下),访问了恶意攻击者提供的引诱危险站点 B (B 站点要求访问站点A)。 站点 A 没有做任何 CSRF 防御 你也许会问:「如果我不满足以上三个条件中的任意一个,就不会受到 CSRF 的攻击」。其实可以这么说的,但你不能保证以下情况不会发生: 你不能保证你登录了一个网站后,不再打开一个 tab 页面并访问另外的网站,特别现在浏览器都是支持多 tab 的。 你不能保证你关闭浏览器了后,你本地的 cookie 立刻过期,你上次的会话已经结束。 上图中所谓的攻击网站 B,可能是一个存在其他漏洞的可信任的经常被人访问的网站。 预防 CSRF CSRF 的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
MySQL
MySQL是一种很广泛应用的关系型数据库管理系统软件。在采用MySQL时,我们经常需要往要添加记录的列里写入数据。下面就介绍一下如何在MySQL中写入数据。 首先,我们需要接入到MySQL数据库,可以采用下面的代码: $conn = mysqli_connect("localhost", "username", "password", "dbname"); if (!$conn) { die("接入失败: " . mysqli_connect_error()); } 其中,localhost指接入的服务器地址,username和password分别指接入的账号和口令,dbname指接入的数据库实例。 接下来,我们需要创建执行语句,以往数据库里添加记录。简单的执行语句可以采用下面的模板: INSERT INTO table_name (column1, column2, column3, ...) VALUES (value1, value2, value3, ...); 其中,table_name指要添加记录的表格名称,column1,column2,column3, ...分别指要添加记录的字段名称,value1,value2,value3, ...分别指要添加记录的数据项。 此处为一个添加记录的示例: $sql = "INSERT INTO students (name, age, gender, class) VALUES ('张三', 18, '男', '一班')"; if (mysqli_query($conn, $sql)) { echo "新条目成功添加"; } else { echo "错误信息: " . $sql . " " . mysqli_error($conn); } 其中,students指要添加记录的表格名称,name、age、gender、class分别指要添加记录的字段名称,后面的数据项分别为'张三'、18、'男'、'一班'。 最后,我们需要关闭接入: mysqli_close($conn); 通过上面的步骤,我们可以在MySQL中往明确字段里写入数据。
2023-06-05 22:29:31
72
算法侠
MySQL
MySQL是一种普遍的关系型数据库管理系统,时常应用于构建Web应用程序。在构建或管理MySQL数据库时,时常需要查看MySQL的版本号。以下是一些方法来查找MySQL的版本号。 方法1:通过命令行查找MySQL版本号。 1. 启动终端或命令行窗口。 2. 键入命令 "mysql --version",然后按Enter键。 3. MySQL版本号将显示在命令行窗口中。 例如: $ mysql --version mysql Ver 14.14 Distrib 5.7.19, for Linux (x86_64) using EditLine wrapper 方法2:通过MySQL命令行客户端查找MySQL版本号。 1. 启动MySQL命令行客户端。 2. 键入命令 "SELECT VERSION();",然后按Enter键。 3. MySQL版本号将显示在MySQL命令行客户端中。 例如: mysql>SELECT VERSION(); +-------------------------+ | VERSION() | +-------------------------+ | 5.7.19-0ubuntu0.16.04.1 | +-------------------------+ 1 row in set (0.00 sec) 无论您选择哪种方法,从中获得的MySQL版本号都是相同的。查看MySQL版本号是一个重要的工作,因为MySQL的版本可能会改变,从而可能会引起应用程序或Web应用程序的行为也随之发生改变。
2023-10-03 21:22:15
106
软件工程师
Java
...r来暂存String数据。最后,我们将暂存的String数据转化成一个完整的字符串。 接下来,我们演示如何将一个字符串转化成PDF文件: try (PDDocument document = new PDDocument()) { PDPage page = new PDPage(); document.addPage(page); PDPageContentStream contentStream = new PDPageContentStream(document, page); contentStream.beginText(); contentStream.setFont(PDType1Font.HELVETICA_BOLD, 12); contentStream.newLineAtOffset(100, 700); contentStream.showText("Hello, World!"); contentStream.endText(); contentStream.close(); document.save("output.pdf"); } catch (IOException e) { e.printStackTrace(); } 在这个示例中,我们新建了一个PDDocument对象,并插入了一个PDPage。然后,我们采用PDPageContentStream来插入一些文本,并将其存储到一个新的PDF文件中。 总之,PDF和String之间的互转在Java程序设计中非常常见。我们可以采用外部库iText来完成这个功能。在将PDF文件转化成String时,我们采用PDDocument和PDFTextStripper类,而在将String转化成PDF文件时,我们采用PDDocument和PDPageContentStream类。以上是一个简单示例,如果需要采用更高级的功能,请参考iText官方手册。
2023-08-30 10:08:22
314
键盘勇士
MySQL
MySQL , MySQL是一种开源的关系型数据库管理系统,广泛应用于网站和应用程序开发中,支持多种操作系统,提供SQL接口供用户查询、更新和管理数据。在本文语境下,MySQL是开发者需要导出其数据库结构及注释信息的主要操作对象。 mysqldump , mysqldump是MySQL自带的一个用于备份数据库的实用程序,它可以生成一个包含创建数据库表结构以及插入数据的SQL脚本文件。在文章中,mysqldump工具被用来执行导出MySQL数据库结构(包括注释)的操作,通过指定不同的参数可以控制是否包含数据或注释内容。 SQL结构 , SQL结构指的是使用SQL语言定义的数据库结构,它包括但不限于数据库、表、列、索引、视图等元素的定义以及它们之间的关系。在本文上下文中,SQL结构是指MySQL数据库中的表结构,包括表名、列名、数据类型、约束条件以及相关的注释信息,这些信息会被mysqldump命令以SQL语句的形式导出到一个文件中以便于迁移、备份或版本控制。 表结构注释 , 在MySQL数据库中,表结构注释是对表本身的一种描述性文本信息,可以通过特定的SQL语法添加至表定义中,为数据库使用者提供更多关于该表用途、字段含义等背景信息。在文章所讨论的场景中,表结构注释是希望在导出数据库结构时一并保留的重要内容,以方便其他开发者理解数据库设计意图和业务逻辑。 --skip-comments , 这是mysqldump工具的一个命令行选项,但在本文实际应用中应避免使用此选项,因为它的作用是跳过(忽略)在导出过程中遇到的所有注释信息。在文章给出的错误示例中,若要包含注释,则不应使用--skip-comments。
2023-03-21 16:29:33
108
电脑达人
MySQL
关系型数据库管理系统 , 关系型数据库管理系统(RDBMS)是一种基于关系模型的数据库管理系统,它通过表格、行和列的形式组织数据,并利用SQL(Structured Query Language)语言进行数据查询、更新等操作。在MySQL中,数据以表的形式存储,各个表之间可以建立关联,形成复杂的数据关系网络,以此实现高效、可靠的数据管理。 SQL语言 , SQL(Structured Query Language)是一种用于管理关系数据库的标准计算机编程语言,包括数据查询、数据插入、更新和删除以及数据库结构管理等功能。在MySQL环境中,用户可以使用SQL语句创建、修改或删除数据库及其中的表结构,同时也可以对数据进行复杂的检索、排序、统计与聚合操作。 mysqldump命令 , mysqldump是MySQL提供的一种用于备份数据库的重要工具,它可以将MySQL数据库中的所有数据和表结构生成为一个可移植的SQL脚本文件。通过执行mysqldump命令,用户能够完整地备份整个数据库或者部分特定的数据库表,便于在数据丢失或需要恢复时快速还原到某个时间点的状态,确保数据的安全性和完整性。例如,在MySQL中,用户可以通过命令行运行mysqldump命令,指定要备份的数据库名和其他相关参数来完成备份任务。
2023-02-05 14:43:17
74
程序媛
转载文章
...句是一种用于合并两个数据集(通常来自不同的表)并根据匹配条件执行更新或插入操作的高级DML语句。在本文的上下文中,MERGE INTO语法被用来同步ZZ_TEST1和ZZ_TEST2两张表的数据,当发现ZZ_TEST1表中的id字段与ZZ_TEST2表中的pid字段相匹配时,则会将ZZ_TEST2表中的text1字段值更新到ZZ_TEST1表的text字段。 子查询更新 , 子查询更新是SQL中的一种技术,它允许在UPDATE语句中嵌套一个SELECT查询作为要更新字段的新值来源。在文章中,通过使用子查询更新方法,可以实现将ZZ_TEST2表中的text1字段值安全地更新到ZZ_TEST1表对应的记录中,这里的关联条件是T2.pid等于T1.id。 ROWID , 在Oracle数据库中,ROWID是一个伪列,它是每行记录的唯一物理地址标识符。ROWID包含了表空间、文件号、块号和行在块内的偏移量等信息,可以直接定位到具体的数据块并访问特定行。在文章提供的MERGE语句示例中,为了确保在ZZ_TEST2表存在多条相同id记录时只更新一条至ZZ_TEST1表,通过比较ROWID来选取每个id的最大ROWID对应的记录进行更新操作,避免了因关联键重复而导致的数据冲突问题。
2023-09-10 10:14:44
798
转载
MySQL
将数据传输到MySQL数据库中是数据处理的重要步骤。为方便说明,假设我们要将一个名为“test”的数据表创建到指定MySQL服务器的数据库中。 第一步是连接到MySQL服务器。使用以下PHP代码进行连接: $db_host = "localhost"; // MySQL服务器地址 $db_user = "root"; // MySQL用户名 $db_pass = "password"; // MySQL用户密码 $db_name = "database_name"; // 数据库名 $conn = mysqli_connect($db_host, $db_user, $db_pass, $db_name); if (!$conn) { die("连接错误:" . mysqli_connect_error()); } 连接成功后,我们可以将数据传输到MySQL数据库中。将以下PHP代码放到您的脚本中: $sql = "CREATE TABLE test ( id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY, name VARCHAR(30) NOT NULL, email VARCHAR(50) NOT NULL, reg_date TIMESTAMP )"; if (mysqli_query($conn, $sql)) { echo "数据表test创建成功"; } else { echo "创建数据表错误: " . mysqli_error($conn); } 以上代码将在您的MySQL数据库中创建名为test的数据表。该表包含id、name、email和reg_date列。id列将自动递增,并将作为主键。name和email列不能为NULL,而reg_date列将保存创建行的时间戳。 上传数据到MySQL数据库中可能需要一些额外的数据处理。您可以从CSV文件、文本文件、XML文件、JSON数据或通过表格收集的数据中读取数据,然后将其转换为MySQL可以处理的常规数据格式。使用以下PHP代码将数据上传到MySQL数据库中: $myfile = fopen("data.txt", "r") or die("不能打开文件!"); while (!feof($myfile)) { $line = fgets($myfile); $line_arr = explode(",", $line); $name = $line_arr[0]; $email = $line_arr[1]; $sql = "INSERT INTO test (name, email) VALUES ('$name', '$email')"; mysqli_query($conn, $sql); } fclose($myfile); echo "上传数据到MySQL数据库成功"; 以上代码将从文本文件中获取数据,并将其上传到MySQL数据库的test数据表中。请注意,我们将数据数组中的第一和第二个元素映射到MySQL表test中的name和email列。 当您上传或更新数据时,请记得在您的PHP脚本中使用适当的错误处理和安全措施,以确保数据库安全。
2024-01-19 14:50:17
333
数据库专家
MySQL
关系型数据库管理系统 , 关系型数据库管理系统是一种以表格形式存储数据,并使用结构化查询语言(SQL)进行交互的软件系统。在MySQL中,这种系统将数据组织成一系列相互关联的表格,通过预定义的关系或键来建立这些表格之间的联系,确保数据的一致性和完整性。用户可以通过执行SQL语句对数据进行增删改查等操作。 主键 , 在MySQL的表格设计中,主键是一个或一组列,其值能够唯一标识表中的每一行记录。例如,在上述customers表格中,id字段被定义为主键,它具有自动递增属性,这意味着每当新增一行记录时,系统会自动为该字段赋予一个唯一的、大于已有记录的数值,从而保证了每条客户记录的唯一性。 自动递增 , 自动递增是MySQL中主键的一种特殊属性。当某个字段被标记为自动递增(AUTO_INCREMENT),在插入新记录时不需手动指定该字段的值,MySQL会自动为该字段分配下一个可用的唯一整数值。比如在创建customers表格时,id字段设置为自动递增,每次插入新客户信息时,系统会自动为新记录分配一个比现有记录更大的id值,确保了主键字段的唯一性和连续性。 INSERT INTO 语句 , 在MySQL中,INSERT INTO 是用于向表格中添加新记录的关键SQL语句。它允许用户指定要插入数据的表格名称以及相应的列名和对应值。例如,INSERT INTO customers (first_name, last_name, email, age) VALUES ( John , Doe , john@example.com , 30 )这条语句会在customers表格中插入一条包含姓名、电子邮件和年龄的新客户记录。 SELECT 语句 , SELECT 是MySQL中用于从数据库表格中检索数据的核心SQL命令。通过编写不同的SELECT语句,可以实现对表格中数据的不同筛选、排序和组合需求。如 SELECT FROM customers; 这条语句表示从customers表格中选择所有列的所有记录,返回整个表格的内容。 DROP TABLE 语句 , 在MySQL中,DROP TABLE 是一种DDL(数据定义语言)命令,用于删除不再需要的数据库表格及其所有相关数据。例如,执行 DROP TABLE customers; 将永久删除名为customers的表格,包括其中的所有客户记录,这个操作不可逆,所以在执行前应确保已备份重要数据或确实不需要该表格。
2023-01-01 19:53:47
73
代码侠
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mount /dev/sda1 /mnt
- 挂载设备到指定目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"